LOCAL EXISTENCE THEOREM FOR THE EQUATIONS OF MOTION OF VISCOUS LIQUID IN HÖLDER WEIGHT SPACES

A. G. KHACHATRYAN *

Chair of Higher Mathematics, Faculty of Radiophysics YSU, Armenia

In this paper a proof of a local existence theorem for the equation of motion of viscous liquid in Hölder weight spaces is presented.

MSC2010: Primary 35R35; Secondary 35A01.
Keywords: parabolic systems, viscous motion equations, Hölder weight spaces.

Introduction. In this paper we present a proof of a local existence theorem for the equation of motion of viscous liquid in Hölder weight spaces

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\rho \nabla \cdot \vec{v}=0 ; \quad \rho \frac{\partial \vec{v}}{\partial t}=\rho \cdot \vec{f}+\nabla(\lambda \cdot \nabla \cdot \vec{v})+2 \nabla \cdot \mu D-\nabla p, \tag{1}\\
& \rho c_{v} \frac{\partial \theta}{\partial t}=\nabla \cdot \kappa \nabla \theta+(\nabla \cdot \vec{v})^{2}+2 \mu D: D+\left(\rho^{2} E_{\rho}-E\right) \nabla \cdot \vec{v} .
\end{align*}
$$

Here ρ is the density, $v=\left(v_{1}, v_{2}, v_{3}\right)$ is the velocity vector, \vec{f} is a vector of external forces, $c_{v}=E_{\theta}=\frac{\partial E(\rho, \theta)}{\partial \theta}$ is the specific heat of the liquid which is a positive functions on ρ and $\theta, E_{\rho}=\frac{\partial E(\rho, \theta)}{\partial \rho}$.

Pressure p, specific internal energy E, coefficients of viscosity λ, μ, and coefficient of heat conduction κ are given functions on the variables ρ, θ satisfying the conditions $\kappa, \mu>0,2 \mu+\lambda>0$. Let ∇ be an operator of differentiation with respect to variables $x_{i}: \nabla=\left(\partial / \partial x_{1}, \partial / \partial x_{2}, \partial / \partial x_{3}\right)$. For any function $a(x)$, vector $\vec{b}(x)$, and matrix $A(x)$ with elements $a_{i j}(x), i, j=1,2,3$, we have:

$$
\begin{aligned}
\nabla a & =\left(\frac{\partial a}{\partial x_{1}} ; \frac{\partial a}{\partial x_{2}}, \frac{\partial a}{\partial x_{3}}\right) ; \nabla \cdot b=\frac{\partial b_{1}}{\partial x_{1}}+\frac{\partial b_{2}}{\partial x_{2}}+\frac{\partial b_{3}}{\partial x_{3}} ;(\vec{b} \cdot \nabla) a=b_{1} \frac{\partial a}{\partial x_{1}}+b_{2} \frac{\partial a}{\partial x_{1}}+ \\
& +b_{3} \frac{\partial a}{\partial x_{1}} ; \nabla \cdot A(x)=g, \quad g_{i}=\frac{\partial A_{1 i}}{\partial x_{1}}+\frac{\partial A_{2 i}}{\partial x_{2}}+\frac{\partial A_{3 i}}{\partial x_{3}} ; \quad \frac{d f}{d t}=\frac{\partial f}{\partial t}+(\vec{v} \cdot \nabla f) .
\end{aligned}
$$

[^0]Finally, $D(\vec{v})$ is the deformation tensor, i.e. a matrix with elements

$$
D_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right), i, j=1,2,3, D: D=\sum_{i, j=1}^{3} D_{i j} D_{i j}
$$

All these functions depend on points $\left(x_{1}, x_{2}, x_{3}\right)$ of the domain Ω filled by liquid.
The initial boundary value problem for the system (1) is considered. We suppose that the walls of the container of liquid are fixed and the usual adherence condition for velocity vector is satisfied

$$
\begin{equation*}
\vec{v} l_{\Gamma_{T}}=0,\left.\quad \theta\right|_{\Gamma_{T}}=\theta_{1}(x, t), \tag{2}
\end{equation*}
$$

where $\Gamma_{T}=\partial \Omega \times[0, T]$. We suppose that the following initial conditions hold:

$$
\begin{equation*}
\rho(x, 0)=\rho_{0}(x), \quad \vec{v}(x, 0)=\vec{v}_{0}(x), \quad \theta(x, 0)=\theta_{0}(x) . \tag{3}
\end{equation*}
$$

Now let recall the definition of Hölder weight space. By $C^{s}(\Omega)$ with any $s \geqslant 0$, we denote the space of functions, which are $[s]$ times continuously differentiable in the domain Ω and have the finite norm $|u|_{\Omega}^{(s)}=\sum_{|\alpha|<s}\left|D^{\alpha} u\right|_{\Omega}+[u]_{\Omega}^{(s)}$, where $|u|_{\Omega}=\sup _{x \in \Omega}|u(x)|, \quad[u]_{\Omega}^{(s)}=\sum_{|\alpha|=s}\left|D^{\alpha} u\right|_{\Omega}$ and $[u]_{\Omega}^{(s)}=\sum_{|\alpha|=[s]^{x}, y \in \Omega} \sup \frac{\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right|}{|x-y|^{s-[s]}}$ for integer and non-integer s respectively.

Let $C_{s, Q_{T}}^{l, l / 2}$ with any non-integer $l>0$ and $s \in[0, l)$ be a set of functions given in Q_{T} with the following finite norm

$$
\begin{gather*}
|u|_{s, Q_{T}}^{(l)}=\sup _{t<T} t^{\frac{l-s}{2}}[u]_{Q_{t}}^{(t)}+\sum_{s<2 \alpha+|\gamma|<l} \sup _{t<T} t^{\frac{2 \alpha+|\gamma|-s}{2}}\left|D_{t}^{\alpha} D_{x}^{\gamma} u\right|_{\Omega}+[u]_{Q_{T}}^{(s)}+ \tag{4}\\
+\left.\sum_{2 \alpha+|\gamma| \leqslant s t<T} \sup ^{\mid D_{t}^{\alpha}} D_{x}^{\gamma} u(x, t)\right|_{\Omega},
\end{gather*}
$$

where $[u]_{Q_{T}}^{(s)}=\sup _{t<T}[u]_{\Omega}^{(s)}+\sum_{s-2<2 a+\gamma \leqslant s, x, t, \tau} \sup _{t} \frac{\left|D_{t}^{a} D_{x}^{\gamma} u(x, t)-D_{t}^{a} D_{x}^{\gamma} u(y, t)\right|}{|t-\tau|^{s-2 a-\gamma \mid}}$
and $Q_{t}=\Omega \times(t / 2, t)$. For $s=l$ this space matches with the space $C^{l, l / 2}\left(Q_{T}\right)$. For $s<0$ define the norm $C_{s}^{l, l / 2}\left(Q_{T}\right)$ by the same formula (4) without the last two summands. In [1] the following result was obtained:

Theorem \boldsymbol{A} [1]. Let $\Omega \subset R^{3}$ be a bounded or unbounded domain. whose boundary is from the class $C^{2+\alpha}, \alpha \in(0,1)$. Let the function f and $\frac{\partial f}{\partial x_{i}}$ be from $C^{\alpha, \frac{\alpha}{2}}\left(Q_{t_{0}}\right), \rho \in C^{1+\alpha}(\Omega), \vec{v}_{0}, \theta_{0} \in C^{2+\alpha}(\Omega), \theta_{1} \in C^{2+\alpha, 1+\frac{\alpha}{2}}\left(\Gamma_{t_{0}}\right)$ and we have the relations:

$$
\begin{equation*}
0<\theta^{\prime} \leqslant \theta_{0}(x) \leqslant \theta^{\prime \prime}, \quad \theta^{\prime} \leqslant \theta_{1}(x) \leqslant \theta^{\prime \prime}, \quad 0<\rho^{\prime} \leqslant \rho_{0}(x) \leqslant \rho^{\prime \prime}, \tag{5}
\end{equation*}
$$

together with the following consistency conditions for any $x \in S$:

$$
\begin{gather*}
\vec{v}_{0}(x)=0, \quad \theta_{0}(x)=\theta_{1}(x, 0), \quad x \in S=\partial \Omega, \tag{6}\\
\rho_{0}(x) f(x, 0)+\nabla\left(\lambda\left(\rho_{0}, \theta_{0}\right) \nabla \cdot \vec{v}_{0}\right)+2 \nabla \mu\left(\rho_{0}, \theta_{0}\right) D\left(\vec{v}_{0}\right)-\nabla p\left(\rho_{0}, \theta_{0}\right)=0, \\
\nabla \kappa\left(\rho_{0}, \theta_{0}\right) \nabla \theta_{0}+\lambda\left(\rho_{0}, \theta_{0}\right)\left(\nabla \cdot \vec{v}_{0}\right)^{2}+2 \mu\left(\rho_{0}, \theta_{0}\right) D\left(\vec{v}_{0}\right): D\left(\vec{v}_{0}\right)+ \tag{7}\\
+\left(\rho_{0}^{2} E_{p_{0}}\left(\rho_{0}, \theta_{0}\right)-P\left(\rho_{0}, \theta_{0}\right) \nabla \cdot \vec{v}_{0}\right)=\left.\rho_{0} C_{v_{0}}\left(\rho_{0}, \theta_{0}\right) \frac{\partial \theta_{1}}{\partial t}\right|_{t=0} .
\end{gather*}
$$

We assume that $\lambda(\rho, \theta), \mu(\rho, \theta), P(\rho, \theta), E(\rho, \theta)$ are defined for

$$
\begin{equation*}
\beta \rho^{\prime} \leqslant \rho \leqslant \beta^{-1} \rho^{\prime \prime}, \quad \beta \theta^{\prime} \leqslant \theta \leqslant \beta^{-1} \theta^{\prime \prime}, \quad \beta \in(0: 1) \tag{8}
\end{equation*}
$$

and belong to $C^{2+\alpha}$.
Then, the problem (1)-(3) have a unique solution (\vec{v}, ρ, θ) determined on $Q_{t_{1}}$ $\left(t_{1} \leqslant t_{0}\right), \vec{v} \in C^{2+\alpha, 1+\frac{\alpha}{2}}\left(Q_{t_{1}}\right), \quad \theta \in C^{2+\alpha, 1+\frac{\alpha}{2}}\left(Q_{t_{1}}\right), \rho, \frac{\partial \rho}{\partial x_{i}}, \frac{\partial p}{\partial x_{i}} \in C^{\alpha, \frac{\alpha}{2}}\left(Q_{t_{1}}\right)$.

In the present paper we extend the mentioned result for larger class of spaces $C_{1+\alpha}^{2+\alpha, 1+\frac{\alpha}{2}}\left(Q_{t}\right)$, which elements may have derivatives and a singularity at $t=0$. This kind of generalization allows to prove solvability of the problem (1)-(3) with less smoothness requirements $\theta_{0}, v_{0} \in C^{1+\alpha}(\Omega)$ and fewer conditions than in the works of Tani [1,2].

Some Preliminary Assumptions. Let a vector $\vec{u} \in C_{1+\alpha}^{2+\alpha, 1+\frac{\alpha}{2}}\left(Q_{T}\right)$, where $Q_{T}=\Omega \times(0, T)$. We consider the one-parameter family of transformations

$$
\begin{equation*}
x=\xi+\int_{0}^{t} \vec{u}(\xi, \tau) d \tau=X(\xi, t) \tag{9}
\end{equation*}
$$

of the domain Ω into the domain $\Omega_{t} \subset R^{3}$ with the boundary S_{t}.
By $U(t)$ we denote Jakob matrix of transformations (9) with entries

$$
\begin{equation*}
a^{k l}=\delta_{k l}+\int_{0}^{t} \frac{\partial u_{k}(\xi, \tau)}{\partial \xi_{l}} d \tau \tag{10}
\end{equation*}
$$

Assume $A=\left(U^{*}\right)^{-1}$ and denote its entries by $a_{k l}$. To guarantee the condition $\operatorname{det} U \neq 0$ we require the smallness conditions just as in [3, 4] were done

$$
\begin{equation*}
|\vec{u}|_{1+\alpha, Q_{T_{1}}}^{(2+\alpha)}\left(T_{1}^{\frac{1+\alpha}{2}}+T_{1}^{\frac{1}{2}}\right) \leqslant \delta . \tag{11}
\end{equation*}
$$

Then if $t \leqslant T_{1}, T_{1} \leqslant T$, we have $1-3 \delta-6 \delta^{2}-6 \delta^{3} \leqslant \operatorname{det} U(\xi, t) \leqslant 1+3 \delta+6 \delta^{2}+$ $6 \delta^{3}$, and when $\delta \leqslant \frac{1}{8}$ we have $\frac{1}{2} \leqslant \operatorname{det} U(\xi, t) \leqslant \frac{3}{2}$.

We present the estimations of $A, A-I$.
Lemma 1. For any $a(\xi, t) \in C_{\alpha-1}^{\alpha, \frac{\alpha}{2}}\left(Q_{T_{1}}\right), b(\xi, t) \in C_{\alpha}^{1+\alpha, \frac{1+\alpha}{2}}\left(Q_{T_{1}}\right)$ we have

$$
\begin{align*}
& \left|\int_{0}^{t} a(\xi, \tau) d \tau\right|_{1-\alpha, Q_{T_{1}}}^{\left(\alpha, \frac{\alpha}{2}\right)} \leqslant T_{1}^{\frac{1+\alpha}{2}}|a|_{1-\alpha, Q_{T_{1}}}^{(\alpha)}+T_{1}^{\frac{1}{2}}|a|_{1-\alpha, Q_{T_{1}}}^{(\alpha)}, \tag{12}\\
& \left|\int_{0}^{t} b(\xi, \tau) d \tau\right|_{Q_{T_{1}}}^{\left(1+\alpha, \frac{\alpha}{2}\right)} \leqslant T_{1}|b|_{\alpha, Q_{T_{1}}}^{(1+\alpha)}+T_{1}^{\frac{1+\alpha}{2}}|b|_{\alpha, Q_{T_{1}}}^{(1+\alpha)}+T_{1}^{\frac{1}{2}}|b|_{\alpha, Q_{T_{1}}}^{\alpha+1} \tag{13}
\end{align*}
$$

Lemma 2. For $\delta \leqslant 1 / 8$ the following inequalities hold:

$$
\begin{align*}
& |U-I|_{\alpha, Q_{T_{1}}}^{1+\alpha, \frac{1+\alpha}{2}} \leqslant 2 \delta, \tag{14}\\
& |A|_{\alpha, Q_{T_{1}}}^{\left(1+\alpha, \frac{1+\alpha}{2}\right)} \leqslant C_{1}, \tag{15}\\
& \left.|A-I|_{\alpha, Q_{T_{1}}}^{(1+\alpha} \frac{1+\alpha}{2}\right) \leqslant C_{2}|u-I|_{\alpha, Q_{T_{1}}}^{\left(1+\alpha, \frac{1+\alpha}{2}\right)} \leqslant 2 C_{2} \delta_{1}, \tag{16}
\end{align*}
$$

where C_{1}, C_{2} are independent of δ.

Lemma 3. Let the condition be satisfied for vectors u and u^{\prime}. Then for $t \in\left[0, T_{1}\right]$ the following inequalities hold:

$$
\begin{gather*}
\left|U-U^{\prime}\right|_{\alpha, Q_{t}}^{\left(1+\alpha, \frac{1+\alpha}{2}\right)} \leqslant C\left\{t^{\frac{1+\alpha}{2}}\left|\vec{u}-\vec{u}^{\prime}\right|_{1+\alpha, Q_{t}}^{(2+\alpha)}+t^{\frac{1}{2}}\left|\vec{u}-\vec{u}^{\prime}\right|_{1+\alpha, Q_{t}}^{(2+\alpha)}\right\} \\
\leq\left. C_{3} \cdot t^{\frac{1}{2}}\right|_{\vec{u}}-\left.\vec{u}^{\prime}\right|_{1+\alpha, Q_{t}} ^{(2+\alpha)}, \tag{17}\\
\left|A-A^{\prime}\right|_{\alpha, Q_{t}}^{\left(1+\alpha, \frac{1+\alpha}{2}\right)} \leqslant C_{4} t^{\frac{1}{2}}\left|\vec{u}-\vec{u}^{\prime}\right|_{1+\alpha, Q_{t}}^{2+\alpha} \tag{18}\\
\left|\frac{\partial A}{\partial \xi_{i}}-\frac{\partial A^{\prime}}{\partial \xi_{i}^{\prime}}\right|_{\alpha, Q_{t}}^{\left(1+\alpha, \frac{1+\alpha}{2}\right)} \leqslant C_{5} t^{\frac{1}{2}}\left|\vec{u}-\vec{u}^{\prime}\right|_{1+\alpha, Q_{t}}^{2+\alpha} \tag{19}
\end{gather*}
$$

Lemma 4. If $\vec{u}, \vec{u}^{\prime} \in C_{1+\alpha}^{2+\alpha}\left(Q_{T}\right)$, then the inequalities

$$
\begin{align*}
& \left|g_{i j}(\vec{u})\right|_{1-\alpha, Q_{T}}^{(\alpha)} \leqslant C_{6} T|\vec{u}|_{1+\alpha, Q_{T}}^{(2+\alpha)} \tag{20}\\
& \left|g_{i j}(\vec{u})-g_{i j}\left(\vec{u}^{\prime}\right)\right|_{1-\alpha, Q_{T}}^{(\alpha)} \leqslant C_{7}\left|\vec{u}-\vec{u}^{\prime}\right|_{1+\alpha, Q_{T}}^{(2+\alpha)} \tag{21}
\end{align*}
$$

hold for $g_{i j}=\int_{0}^{t} a_{i j}(\vec{u}) \frac{\partial u_{i}}{\partial \xi_{j}} d \tau$, where $a_{i j}$ are the elements of the matrix A.
Proof. From (15) and (18), (20) and (21) are obtained respectively.
Lemma 5. If $\vec{u}, \vec{u}^{\prime} \in C_{1+\alpha}^{2+\alpha}\left(Q_{T}\right)$, then the inequalities

$$
\begin{align*}
& \left|l_{i j}(\vec{u})\right|_{1-\alpha, Q_{T}}^{(\alpha)} \leqslant C_{8} T|\vec{u}|_{1+\alpha, Q_{T}}^{(2+\alpha)}, \tag{22}\\
& \left|l_{i j}(\vec{u})-l_{i j}\left(\vec{u}^{\prime}\right)\right|_{1-\alpha, Q_{t}}^{(\alpha)} \leqslant C_{9} T\left|\vec{u}-\vec{u}^{\prime}\right|_{1+\alpha, Q_{T}}^{(2+\alpha)} \tag{23}
\end{align*}
$$

hold for $l_{i j}(u)=\exp \left(-\int_{0}^{t} a_{i j} \frac{\partial u_{i}}{\partial \xi_{j}} d \tau\right)$, where $a_{i j}$ are the entries of the matrix A.
Lemma 6. Let $\vec{u}, \vec{u}^{\prime} \in C_{1+\alpha}^{2+\alpha}\left(Q_{T}\right)$ and $r_{i j}=\rho l_{i j}(\vec{u})$, where $\rho_{0}(\xi) \in C^{1+\alpha}(\Omega)$, $0<\bar{\rho}_{0} \leqslant \rho_{0}(\xi) \leqslant \overline{\bar{\rho}}_{0}$. Then the following inequalities hold:

$$
\begin{align*}
& \left|r_{i j}(\vec{u})\right|_{1-\alpha, Q_{T}}^{(\alpha)} \leqslant C_{10} T|\vec{u}|_{1+\alpha, Q_{T}}^{(2+\alpha)}, \quad\left|r_{i j}(\vec{u})\right|_{1-\alpha, Q_{T}}^{(\alpha)} \leqslant C_{11} T \cdot|\vec{u}|_{1+\alpha, Q_{T}}^{(2+\alpha)}, \tag{24}\\
& \left|r_{i j}(\vec{u})-r_{i j}\left(\vec{u}^{\prime}\right)\right|_{1-\alpha, Q_{T}}^{(\alpha)} \leqslant C_{12} T\left|\vec{u}-u^{\prime}\right|_{1+\alpha, Q_{T}}^{(2+\alpha)}, \tag{25}\\
& \left|\frac{1}{r_{i j}(\vec{u})}-\frac{1}{r_{i j}\left(\vec{u}^{\prime}\right)}\right|_{1-\alpha, Q_{T}}^{(\alpha)} \leqslant C_{13} T\left|\vec{u}-u^{\prime}\right|_{1+\alpha, Q_{T}}^{(2+\alpha)} \tag{26}
\end{align*}
$$

The proof of (24)-(26) is obtained from inequalities (21), (22).
Similar inequalities are true also for the function $\frac{\partial r_{i j}}{\partial \xi_{i}}$.
Existence of Local Solutions for Initial Boundary Value. Let us switch from Euler coordinates to Lagrange coordinates in the system (1)

$$
\begin{equation*}
x=\xi+\int_{0}^{t} \vec{u}(\xi, \tau) d \tau \equiv X(\xi, t) \tag{27}
\end{equation*}
$$

In these coordinates the system (1) can be rewritten as

$$
\begin{align*}
& \frac{\partial r}{\partial t}+r \nabla_{\vec{u}} \cdot u=0 \tag{28}\\
& r \frac{\partial \vec{u}}{\partial t}-\nabla_{\vec{u}}\left(\lambda \nabla_{\vec{u}} \cdot \vec{u}\right)-2 \nabla_{\vec{u}} \cdot \mu D_{\vec{u}}(\vec{u})-\nabla_{\vec{u}} P=0 \tag{29}\\
& r c_{v} \cdot \frac{\partial T}{\partial t}-\nabla_{\vec{u}} \cdot \kappa \nabla_{\vec{u}} T-\left(\lambda \nabla_{\vec{u}} \cdot \vec{u}\right)^{2}-2 \mu D_{\vec{u}}(\vec{u}): D_{\vec{u}}(\vec{u})-F(r, T) \nabla_{\vec{u}} \cdot \vec{u}=0 . \tag{30}
\end{align*}
$$

Here $r(\xi, t), T(\xi, t)$ are the density and the temperature in Lagrange coordinates, $F(r, T)=r^{2} \frac{\partial E}{\partial r}-p(r, T), D_{\vec{u}}(\vec{u})$ are matrices with the entries

$$
\begin{aligned}
& \sum_{m=1}^{3}\left(a_{i m} \frac{\partial u_{j}}{\partial \xi_{m}}+a_{j m} \frac{\partial u_{i}}{\partial \xi_{m}}\right), \quad i, j=1,2,3 \\
& \nabla_{u}=A \nabla=\left\{\sum_{m=1}^{3} a_{1 m} \frac{\partial}{\partial \xi_{m}}, \sum_{m=1}^{3} a_{2 m} \frac{\partial}{\partial \xi_{m}}, \sum_{m=1}^{3} a_{3 m} \frac{\partial}{\partial \xi_{m}},\right\}
\end{aligned}
$$

$a_{i j}$ are the entries of the matrix $A=\left(X^{\prime-1}\right)^{T}$, where X^{\prime} is the Jacob transformation of the matrix X, i.e. $X_{i k}^{\prime}=\frac{\partial x_{i}}{\partial \xi_{k}}=\delta_{i k}+\int_{0}^{t} \frac{\partial u_{i}}{\partial \xi_{k}} d \tau, T$ is the sign of transposition.

So, $a_{i j}$ are rational functions on $X_{i k}^{\prime}$. Let us integrate Eq. (28) and consider the whole problem as a problem of determining \vec{u}, T, which satisfy the initial boundary conditions

$$
\begin{equation*}
\left.\vec{u}\right|_{D_{T}}=0,\left.\quad T\right|_{D_{T}}=0 ; \vec{u}(\xi, 0)=\vec{v}_{0}(\xi), \quad T(\xi, 0)=\theta_{0}(\xi) \tag{31}
\end{equation*}
$$

and the systems (29) and (30) with

$$
\begin{equation*}
r(\xi, t)=\rho_{0}(\xi) \exp \left(-\int_{0}^{t} \nabla_{\vec{u}} \cdot \vec{u}(\xi, \tau) c(\tau)\right) \tag{32}
\end{equation*}
$$

Let $\vec{u}^{\prime}, T^{\prime}$ be functions given in $D_{T}=\Omega \times(0, T)$, which satisfy (31) (it is easy to see that such functions exist). Let $\hat{X}=\xi+\int_{0}^{t} \vec{u}^{\prime}(\xi, \tau) d \tau, \quad A^{\prime}=\left(\hat{X}^{\prime-1}\right)^{T}$, $r=\rho_{0} \exp \left(-\int_{0}^{t} \nabla_{\vec{u}} \cdot \vec{u} d \tau\right)$. Consider an auxiliary initial boundary value problem

$$
\begin{align*}
& \frac{\partial \vec{u}}{\partial t}-\frac{1}{r^{\prime}} \nabla_{\vec{u}^{\prime}}\left(\nabla_{\vec{u}^{\prime}} \cdot \vec{u}\right)-\frac{2}{r^{\prime}} \nabla_{\vec{u}^{\prime}} \cdot \mu^{\prime} D_{\vec{u}^{\prime}}(\vec{u})+\frac{p_{T^{\prime}}^{\prime}}{r^{\prime}} \nabla_{\vec{u}^{\prime}} \cdot T=\frac{-p_{T^{\prime}}^{\prime}}{r^{\prime}} \cdot \nabla_{\vec{u}^{\prime}} r^{\prime} \\
& \frac{\partial T}{\partial t}-\frac{1}{r^{\prime} c_{v}^{\prime}} \nabla_{\vec{u}} \cdot k \nabla_{\vec{u}^{\prime}} T-\frac{\lambda}{r^{\prime} c_{v}^{\prime}}\left(\nabla_{u^{\prime}} \cdot \vec{u}\right)\left(\nabla_{\vec{u}^{\prime}} \cdot \vec{u}\right)-\frac{2 \mu^{\prime}}{r^{\prime} c_{v}^{\prime}} D\left(\vec{u}^{\prime}\right): D_{\vec{u}^{\prime}}(\vec{u}) \tag{33}\\
& -\frac{1}{r^{\prime} c_{v}^{\prime}} F^{\prime} \nabla_{\vec{u}^{\prime}} \cdot \vec{u}=0 . \\
& \left.\quad \vec{u}\right|_{\partial D_{T}}=0,\left.\quad T\right|_{\partial D_{T}}=0 \text { and } \vec{u}(\xi, 0)=\vec{v}_{0}(x), \quad T(\xi, 0)=\theta_{0}(\xi), \tag{34}
\end{align*}
$$

where $\lambda^{\prime}=\lambda\left(r^{\prime}, T^{\prime}\right), p^{\prime}=p\left(r^{\prime}, T^{\prime}\right)$ and so on, and $D_{\vec{u}^{\prime}}(\vec{u})$ is a matrix with entries

$$
\sum_{m=1}^{n}\left(a_{i m}^{\prime} \frac{\partial u_{j}}{\partial \xi_{m}}+a_{j m}^{\prime} \frac{\partial u_{i}}{\partial \xi_{m}}\right), \quad \nabla_{\vec{u}^{\prime}}=A^{\prime} \nabla
$$

As it was shown in the work [1], the system (33) is of parabolic type. If we introduce vectors $U=\{\vec{u}, T\}, \quad U^{\prime}=\left\{\vec{u}^{\prime}, T^{\prime}\right\}, \quad U_{1}=\left\{0, \theta_{1}\right\}, \quad U_{0}=\left\{\vec{v}_{0}, \theta_{0}\right\}$, $H\left(U^{\prime}\right)=\left\{\frac{-p_{r^{\prime}}}{r^{\prime}} \nabla_{\vec{u}} r^{\prime}, 0\right\}$, then we can rewrite (33), (34) in the form

$$
\begin{equation*}
\mathcal{L}\left(U^{\prime}\right) U=H\left(U^{\prime}\right),\left.\quad U\right|_{\Gamma_{t}}=U_{1}^{0},\left.\quad U\right|_{t=0}=U_{0} \tag{35}
\end{equation*}
$$

where $\mathcal{L}\left(U^{\prime}\right)$ is the matrix of differential operators of the left part of (33). Assuming $U^{\prime}=U$ in the initial non-linear problem (35), we obtain

$$
\begin{equation*}
\mathcal{L}(U) U=H(U),\left.\quad U\right|_{\Gamma_{t}}=U_{1}^{0},\left.\quad U\right|_{t=0}=U_{0} \tag{36}
\end{equation*}
$$

Theorem. Let $\Omega \subset R^{3}$ be a bounded or unbounded domain with boundary from the class $C^{2+\alpha}, \alpha \in(0,1)$. Let the functions $\rho_{0}, \theta_{0}, \vec{v}_{0} \in C^{1+\alpha}(\Omega)$, $\theta_{1} \in C_{1+\alpha}^{2+\alpha}\left(\Gamma_{t}\right)$ satisfy the relations (5), (6). Assume the function $\lambda(\rho, \theta), \mu(\rho, \theta)$, $p(\rho, \theta), E(\rho, \theta)$ are given in the domain determined by the conditions (5) and have bounded partial derivatives of the first and the second orders. Then the problem (1)(3) has the unique solution (v, ρ, θ) determined on $Q_{t}, t \leqslant t_{0}, \vec{v}, \theta \in C_{1+\alpha}^{2+\alpha, 1+\frac{\alpha}{2}}\left(Q_{t^{\prime}}\right)$ and $\rho, \frac{\partial \rho}{\partial x_{i}}, \frac{\partial \rho}{\partial t} \in C_{\alpha-1}^{\alpha, \frac{\alpha}{2}}\left(Q_{t^{\prime}}\right)$, and consistency conditions (6) are satisfied.

Proof. As we have already seen, the problem (1)-(3) can be written in the form of (36). Now we will reduce the problem (36) to an equation of the form $V=B V$ in the Banach space $V \subset C_{1+\alpha}^{2+\alpha}\left(Q_{t}\right)$ of the vectors vanishing on the boundary Γ_{t}, when $t=0$.

Consider the problem

$$
\begin{equation*}
\mathcal{L}\left(U_{0}\right) U_{1}=H\left(U_{0}\right),\left.\quad U_{1}\right|_{\Gamma_{t}}=U_{1}^{0},\left.\quad U_{1}\right|_{t=0}=U_{0}, \tag{37}
\end{equation*}
$$

where U_{1} is 4-component vector, $U_{0} \in C^{1+\alpha}(\Omega), \quad U_{1}^{0} \in C_{1+\alpha}^{2+\alpha, 1+\frac{\alpha}{2}}\left(\Gamma_{t}\right)$, $U_{1}(\xi, 0)=U_{0}(\xi)$. From the results of the work [5] we know that the problem 37] has a unique solution in the class of functions $C_{1+\alpha}^{2+\alpha, 1+\frac{\alpha}{2}}\left(Q_{t}\right)$, for which the following evaluation is true

$$
\begin{equation*}
\left|U_{1}\right|_{1+\alpha, Q_{t}}^{2+\alpha} \leqslant C\left\{\left|U_{1}^{0}\right|_{1+\alpha, \Gamma_{t}}^{2+\alpha}+\left|U_{0}\right|_{\Omega}^{(1+\alpha)}\right\} \tag{38}
\end{equation*}
$$

After subtracting (37) from (36) and putting $V=U-U_{1}$, we will obtain

$$
\begin{aligned}
& \mathcal{L}\left(U_{1}\right) V=\left[\mathcal{L}\left(U_{1}\right)-\mathcal{L}\left(U_{1}+V\right)\right]\left(U_{1}+V\right)+\left[H\left(U_{1}+V\right)-H\left(U_{1}\right)\right]+ \\
& +\left[\mathcal{L}\left(U_{0}\right)-\mathcal{L}\left(U_{1}\right)\right] U_{1}+\left[H\left(U_{1}\right)-H\left(U_{0}\right)\right],\left.\quad V\right|_{\Gamma_{t}}=0,\left.\quad V\right|_{t=0}=0 .
\end{aligned}
$$

This problem is equivalent to the equation

$$
\begin{align*}
V= & R(\tau)\left\{\mathcal{L}\left(U_{1}\right)-\mathcal{L}\left(U_{1}+V\right)\right\}\left(U_{1}+V\right)+\left[H\left(U_{1}+V\right)-H\left(U_{1}\right)\right]+ \\
& +\left[\mathcal{L}\left(U_{0}\right)-\mathcal{L}\left(U_{1}\right)\right] U_{1}+\left[H\left(U_{1}\right)-H\left(U_{0}\right)\right]=B_{\tau} V=B_{1} v, \tag{39}
\end{align*}
$$

where $R(\tau)$ is an operator, which juxtaposes the vector $F \in C_{\alpha-1}^{\alpha}\left(Q_{T}\right)$ with the solution $v \in \stackrel{\circ}{C}_{1+t, Q_{\Gamma}}^{2+\alpha, 1+\frac{\alpha}{2}}$ of the mixed problem of parabolic system differential equations:

$$
\begin{equation*}
\mathcal{L}\left(U_{1}\right) V=F,\left.V\right|_{\Gamma_{t}}=0,\left.V\right|_{t=0}=0, \text { where } C_{1+\alpha, Q_{t}}^{2+\alpha}=\left\{v: v \in C_{1+\alpha, Q_{t}}^{2+\alpha},\left.v\right|_{\Gamma_{t}}=0\right\} . \tag{40}
\end{equation*}
$$

The existence of bounded operator $R(\tau)$ in Hölder weight spaces is shown in the work [5]. Since $R(\tau)$ is bounded, if τ satisfies the condition

$$
\begin{equation*}
|U|_{1+\alpha, Q_{t}}^{2+\alpha}\left(\tau+\tau^{\frac{1-\alpha}{2}}\right) \leqslant \delta \tag{41}
\end{equation*}
$$

with a small $\delta>0$, we obtain

$$
\begin{gathered}
|V|_{1+\alpha, Q_{\tau}}^{2+\alpha} \leqslant C\|R(\tau)\|\left\{\left|\left[\mathcal{L}\left(U_{1}\right)-L\left(U_{1}+V\right)\right]\left(U_{1}+V\right)\right|_{1-\alpha, Q_{\tau}}^{\alpha}+\right. \\
\left.\left|H\left(U_{1}+V\right)-H\left(U_{1}\right)\right|_{\alpha-1, Q_{\tau}}^{\alpha}+\left|\left[\mathcal{L}\left(U_{0}\right)-\mathcal{L}\left(U_{1}\right)\right]\right|_{\alpha-1, Q_{\tau}}^{\alpha}\left|H\left(U_{1}\right)-H\left(U_{0}\right)\right|_{\alpha-1, Q_{\tau}}^{\alpha}\right\} .
\end{gathered}
$$

Thus, if $U_{1}, U_{1}+V, U_{1}+W$ satisfy the condition 41), then $V(\xi, 0)=W(\xi, 0)=0$ and by Lemmas 1-5, we obtain the inequalities

$$
\begin{align*}
& \left|B_{\tau} V\right|_{1+\alpha, Q_{\tau}}^{2+\alpha} \leqslant\|R(\tau)\| \tau^{\gamma}\left\{c_{1}|V|_{1-\alpha, Q_{\tau}}^{2+\alpha}+c_{2}\left|U_{0}-U_{1}\right|_{1+\alpha, Q_{\tau}}^{2+\alpha}\right\}, \tag{42}\\
& \left|B_{\tau} V-B_{\tau} W\right|_{1+\alpha, Q_{\tau}}^{2+\alpha} \leqslant\|R(\tau)\| c_{3} \tau^{\gamma}|V-W|_{1+\alpha, Q_{\tau}}^{2+\alpha}, \tag{43}
\end{align*}
$$

where $\gamma>0$ and the constants c_{1}, c_{2}, c_{3} do not depend on τ, V, W. Chose the numbers $t_{1}>0$ and $\eta>0$ such that

$$
\begin{aligned}
& \left|U_{0}\right|_{1+\alpha, Q_{t}}^{2+\alpha}\left(t_{1}+t_{2}^{\frac{1-\alpha}{2}}\right) \leqslant \delta,\left|U_{1}\right|_{1+\alpha, Q_{t}}^{2+\alpha}\left(t_{1}+t_{2}^{\frac{1-\alpha}{2}}\right) \leqslant \frac{\delta}{2},\left\|R\left(t_{1}\right)\right\| c_{3} t_{1}^{\gamma} \\
& \left\|R\left(t_{1}\right)\right\| c_{1} t_{1}^{\gamma} \leqslant \frac{1}{2}, 2 c_{2}\left\|R\left(t_{1}\right)\right\|\left|U_{1}-U_{0}\right|_{1+\alpha, Q_{t}}^{2+\alpha} \cdot t_{1}^{\gamma} \leqslant \eta \leqslant \delta / 2\left(t_{1}+t_{2}^{\frac{1-\alpha}{2}}\right)
\end{aligned}
$$

denote by K_{η} the set of vectors satisfying conditions $|V|_{1+\alpha, Q_{t_{1}}}^{2+\alpha} \leq \eta$, from $\stackrel{\circ}{C}_{1+\alpha, Q_{t^{\prime}}}^{2+\alpha, 1+\frac{\alpha}{2}}$. Since the operator $B_{t_{1}}$ maps set K_{η} into itself, the Eq. (40) is solvable in K_{η}, and for any $V, W \in K_{\eta}$ we have $\left|B_{t_{1}} V-B_{t_{1}} W\right|_{1+\alpha, Q_{t_{1}}}^{2+\alpha} \leqslant c_{4}|V-W|_{1+\alpha, Q_{t-1}}^{2+\alpha, 1+\frac{\alpha}{2}}, \quad c_{4}<1$.

So, the solution of the problem (33)-(34) is obtained in the class of vectors from

$$
C_{1+\alpha}^{2+\alpha}\left(Q_{t_{1}}\right), \quad T \in\left[\beta \bar{\theta}_{0}, \beta^{-1} \overline{\bar{\theta}}_{0}\right], \quad r \in\left[\beta \bar{\rho}_{0}, \beta^{-1} \overline{\bar{\rho}}_{0}\right] .
$$

The question on solvability of above mentioned problem on an arbitrary interval $\left(0, t_{1}\right)$ is still open.

Received 18.06.2016

REFERENCES

1. Tani A. The Initial Value Problem for the Equation of Motion of General Fluid with Som Slip Boundary Condition. Keio Math. Sem. Rep., 1983, № 8, p. 77-83.
2. Tani A. Global Solution to the Conserved Phase Field Equations of Penrose-Fife Type. // Commun. Appl. Anal., 2012, v. 16, № 4, p. 703-706.
3. Solonnikov V.A., Kazhikhov A.V. Existence Theorem for the Equations of Motion of a Compressible Viscous Fluid. // Ann. Rev. Fluid. Mech., 1981, v. 13, p. 79-95.
4. Solonnikov V.A. Solvability of the Problem of the Motion of a Viscous Incompressible Fluid that Bounded by Free Surface. // Izv. Akad. Nauk SSSR. Mat., 1977, v. 41, № 6, p. 1388-1424 (in Russian).
5. Solonnikov V.A., Khachatryan A.G. Estimates of Solutions of Parabolic Initial Boundary Value Problems in Weighted Hölder Norms. // Trudi MNAN, 1980, v. 147, p. 147-155 (in Russian).

[^0]: * E-mail: aramkh@ysu.am

