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Introduction. In this paper Noethericity preservation problem and the index of
differential linear operators in anisotropic weighted Sobolev spaces in Rm are studied.

Let us state some known results concerning the Noethericity and index of
differential operators. Noethericity for elliptic operators on smooth compact mani-
folds was proved in [1], and the formula for their indices is in the topological form
(see [2]). For the elliptic operators in unbounded domains Noethericity has been
proved for the special class of operators in weighted Sobolev spaces in Rm (see [3]),
and the Noethericity in terms of limiting operators was studied (see [4]). The class
of Noetherian semi-elliptic operators with constant coefficients in Rm is described
in [5, 6], Noethericity for a class of semi-elliptic operators with variable coefficients
in weighted Sobolev spaces was obtained in [7]. Index invariance on the scale of
anisotropic spaces is studied in [8], where the sufficient condition for it is established.

Basic Concepts and Definitions.
D e f i n i t i o n 1. A linear bounded operator A acting from whole a Banach

space X to a Banach space Y is called Noetherian, if the following conditions hold:
1. The image of the operator A is closed

(
Im(A) = Im(A)

)
.

2. The kernel of the operator A is finite dimensional (dimKer(A)< ∞) .
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3. The cokernel of the operator A is finite dimensional

(dimcoker(A) = dimY/Im(A)< ∞) .

The difference between the dimension of the kernel and the cokernel is called
index of the operator:

ind(A) = dimKer(A)−dimcoker(A).

D e f i n i t i o n 2. A linear bounded operator A from a Banach space X to
a Banach space Y is called normally solvable, if the image of operator A is closed(

Im(A) = Im(A)
)
.

Let Xi,Yi (i = 1,2) be Banach spaces such that X2 is dense in X1, Y2 is dense
in Y1, and the embedding operators X2 ⊂ X1,Y2 ⊂ Y1 are bounded.

Let Ai : Xi → Yi be bounded linear operators such that Dom(Ai) |Xi = Xi|i=1,2
and A1x = A2x, ∀x ∈ X2. The operators A∗i : (Yi)

∗→ (Xi)
∗ are corresponding adjoint

operators. Suppose that Ai : Xi→ Yi (i = 1,2) are Noetherian operators. Notice that
Ker (A2) ⊂ Ker (A1) ,Ker ((A1)

∗) ⊂ Ker ((A2)
∗). From Noethericity of Ai it follows

that dimcoker(Ai) = dimKer ((Ai)
∗) (see [9]). So the following inequalities hold:

dimKer (A1)≥ dimKer (A2) , dimcoker(A2)≥ dimcoker(A1). (1)

From (1) it follows that ind(A1) ≥ ind(A2). So ind(A1) = ind(A2) holds if and
only if

dimKer (A1) = dimKer (A2) , dimcoker(A2) = dimcoker(A1). (2)

Let m ∈N, Zm
+, Nm, Rm be sets of m-dimensional: multi-indices, multi-indices

with natural components and Euclidean space respectively.
Set

Q :=

{
g(x) ∈C∞ (Rm) : g(x)> 0,∀x ∈ Rm;

|Dβ g(x)|
g(x)

⇒ 0
∣∣∣
|x|→∞

,

∀β ∈ Zm
+, β 6= 0

}
.

For k ∈ Z+ and ν ∈ Nm denote

Ck,ν (Rm) :=
{

a(x) : Dβ a(x) ∈C(Rm), sup
x∈Rm
|Dβ a(x)|< ∞,

∀β ∈ Zm
+, s.t. (β : ν)≤ k

}
.

D e f i n i t i o n 3. For k ∈ Z+,ν ∈ Nm denote by Hk,ν(Rm) the space of
measurable functions {u} equipped with a norm

‖u‖k,ν =

(
∑

(α:ν)≤k

∫
|Dαu(x)|2 dx

)1/2

< ∞.
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D e f i n i t i o n 4. For k∈Z+, ν ∈Nm and for a positive function q(x) denote
by Hk,ν

q (Rm) the space of measurable functions {u} equipped with a norm

‖u‖k,ν ,q =

(
∑

(α:ν)≤k

∫ ∣∣∣Dαu(x)q(x)(k−(α:ν))
∣∣∣2 dx

)1/2

< ∞.

D e f i n i t i o n 5. For k ∈ Z+,ν ∈ Nm and µ ∈ Q denote by H̃k,ν
µ (Rm)

the space of functions u with µu ∈ Hk,ν(Rm) with a norm
‖u‖

′

k,ν ,µ = ‖µu‖k,ν < ∞.

Consider k,s ∈ N and k ≥ s.
Let

P(x,D) = ∑
(α:ν)≤s

aα(x)Dα , (3)

where m ∈ N;α ∈ Zm
+; ν ∈ Nm; (α : ν) =

α1

ν1
+ . . . +

αm

νm
; s ∈ N,

Dα = Dα1
1 . . .Dαm

m ; D j =−i
∂

∂x j
; x = (x1, . . . ,xm) ∈ Rm; aα (x) ∈Ck−s,ν (Rm) .

Denote the principal part of P(x,D) and its symbol by
Ps (x,D) = ∑

(α:ν)=s
aα(x)Dα , Ps (x,ξ ) = ∑

(α:ν)=s
aα(x)ξ α . (4)

With certain conditions on the coefficients of differential form P(x,D) it
defines a linear bounded operator acting from whole Hk,ν(Rm) to Hk−s,ν(Rm).
Denote this operatorby

(
P;Hk,ν

)
.

The differential form P(x,D) defines a bounded linear operator acting from
whole H̃k,ν

µ (Rm) to H̃k−s,ν
µ (Rm). Denote it by

(
P; H̃k,ν

µ

)
.

For a function q(x) with
1

q(x)
⇒ 0

∣∣∣
|x|→∞

, the differential form P(x,D)

defines a bounded linear operator acting from whole Hk,ν
q (Rm) to Hk−s,ν

q (Rm).

Denote this operator by
(

P;Hk,ν
q

)
.

D e f i n i t i o n 6. The differential expression P(x,D) of the form (3) is
called semi-elliptic at a point x = x0, if the following is satisfied:

Ps (x0,ξ ) 6= 0; ∀ξ ∈ Rm; |ξ | 6= 0.
D e f i n i t i o n 7. The differential expression P(x,D) of the form (3) is

called semi-elliptic in Rm or just semi-elliptic, if it is semi-elliptic at each point
x ∈ Rm.

Main Results.
L e m m a 1. The operator

(
P;Hk,ν

)
is a Noetherian operator if and only if(

P; H̃k,ν
µ

)
is Noetherian, and the following equalities hold:

dimKer
(

P;Hk,ν
)
= dimKer

(
P; H̃k,ν

µ

)
,

dimcoker
(

P;Hk,ν
)
= dimcoker

(
P; H̃k,ν

µ

)
,

ind
(

P;Hk,ν
)
= ind

(
P; H̃k,ν

µ

)
.
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P r o o f . Let Mµ be the operator of multiplication by µ(x) :
Mµ : H̃k,ν

µ (Rm)→ Hk,ν(Rm), Mµu(x) = µ(x)u(x), ∀u ∈ H̃k,ν
µ (Rm);

M−1
µ : Hk,ν(Rm)→ H̃k,ν

µ (Rm), M−1
µ v(x) = v(x)/µ(x), ∀v ∈ Hk,ν(Rm).

Consider the following operator: P̃u≡MµPM−1
µ .

It is a linear bounded operator acting from Hk,ν(Rm) to Hk−s,ν(Rm). Then for
u ∈ Hk,ν(Rm) we have P̃u = MµPM−1

µ u = Pu+Tu, where

Tu = ∑
(α:ν)≤s

aα(x) ∑
β≤α,β 6=0

Cβ

α µ(x)Dβ

(
1

µ(x)

)
Dα−β u(x).

The operator T : Hk,ν(Rm)→ Hk−s,ν(Rm) is linear bounded with lower order

terms, and for each 0 6= β ∈ Zm
+ we have µ(x)Dβ

(
1

µ(x)

)
⇒ 0

∣∣∣
|x|→∞

.

Taking into account the above remarks and conditions on the coefficients of
the operator, it can be checked that for each ε > 0 there exists φε(x) ∈C∞

0 (Rm) such
that T = T

′
ε +T

′′
ε , where T

′
ε = (1−φε)T satisfies

‖T ′ε u‖k−s,ν ≤ ε‖u‖k,ν , ∀u ∈ Hk,ν(Rm),

and T
′′

ε = φεT is a compact operator acting from Hk,ν(Rm) to Hk−s,ν(Rm).
So, applying the Theorem 8.3.2 from [10], we get that T : Hk,ν(Rm) →

Hk−s,ν(Rm) is a compact operator.
This implies that P̃(x,D) : Hk,ν(Rm)→ Hk−s,ν(Rm) is Noetherian operator if

and only if P(x,D) : Hk,ν(Rm)→ Hk−s,ν(Rm) is Noetherian with index equality

ind
(

P̃;Hk,ν
)
= ind

(
P;Hk,ν

)
(see [10], 8.5.20).

Consider u ∈ Ker
(
P̃;Hk,ν

)
. Then it is easy to see that v = M−1

µ u ∈ H̃k,ν
µ (Rm)

and Pv = 0. On the other hand, for v ∈ Ker
(

P; H̃k,ν
µ

)
we have u = Mµv ∈ Hk,ν(Rm)

and P̃u = 0. Considering similar correspondence for adjoint operator’s kernel
elements, we get that there are bijections between bases of kernels and adjoint
operator’s kernels for

(
P̃;Hk,ν

)
and

(
P; H̃k,ν

µ

)
, so,

dimKer
(

P; H̃k,ν
µ

)
= dimKer

(
P̃;Hk,ν

)
, (5)

dimKer
(

P; H̃k,ν
µ

)∗
= dimKer

(
P̃;Hk,ν

)∗
. (6)

If P̃(x,D) is Noetherian, then from its normal solvability we get
Im
(
P̃;Hk,ν

)
= ⊥

(
Ker

(
P̃;Hk,ν

)∗) (see [9]), where ⊥
(

Ker
(
P̃;Hk,ν

)∗) is the set of

elements from Hk−s,ν(Rm), which are orthogonal to Ker
(
P̃;Hk,ν

)∗ . Using this, it can

be shown that for
(

P; H̃k,ν
µ

)
holds Im

(
P; H̃k,ν

µ

)
= ⊥

(
Ker

(
P; H̃k,ν

µ

)∗)
. It implies

that
(

P; H̃k,ν
µ

)
is also normally solvable

(
Im
(

P; H̃k,ν
µ

)
= Im

(
P; H̃k,ν

µ

))
. Similarly

it can be shown, that if
(

P; H̃k,ν
µ

)
is Noetherian, then from its normal solvability fol-

lows the normal solvability of
(
P̃;Hk,ν

)
. And taking into account (5),(6), we obtain
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that from Noethericity of
(
P̃;Hk,ν

)
it follows that

(
P; H̃k,ν

µ

)
is Noetherian and vice

versa. From (5),(6) for indexes we get ind
(
P̃;Hk,ν

)
= ind

(
P; H̃k,ν

µ

)
. So it is proved

that
(
P;Hk,ν

)
is a Noetherian operator if and only if

(
P; H̃k,ν

µ

)
is Noetherian, and we

have ind
(
P;Hk,ν

)
= ind

(
P; H̃k,ν

µ

)
. From (2) it follows that

dimKer
(
P;Hk,ν

)
= dimKer

(
P; H̃k,ν

µ

)
,

dimcoker
(
P;Hk,ν

)
= dimcoker

(
P; H̃k,ν

µ

)
. �

L e m m a 2. Let q(x) ∈ Q be a function satisfying
1

q(x)
⇒ 0

∣∣∣
|x|→∞

. Let(
P;Hk,ν

)
be a Noetherian operator and

(
P;Hk,ν

q

)
be normally solvable. Then(

P;Hk,ν
q

)
is also Noetherian with

dimKer
(

P;Hk,ν
q

)
= dimKer

(
P;Hk,ν

)
,

dimcoker
(

P;Hk,ν
q

)
= dimcoker

(
P;Hk,ν

)
,

ind
(

P;Hk,ν
q

)
= ind

(
P;Hk,ν

)
.

P r o o f . Consider µ(x) = (q(x))k ∈ Q. Then we will have the following
embeddings:

H̃k,ν
µ (Rm) ↪→ Hk,ν

q (Rm) ↪→ Hk,ν(Rm).

Considering also the embeddings for adjoint spaces, from Lemma 1 we get

dimKer
(

P; H̃k,ν
µ

)
= dimKer

(
P;Hk,ν

q

)
= dimKer

(
P;Hk,ν

)
< ∞, (7)

dimKer
(

P; H̃k,ν
µ

)∗
= dimKer

(
P;Hk,ν

q

)∗
= dimKer

(
P;Hk,ν

)∗
< ∞. (8)

Since
(

P;Hk,ν
q

)
is normally solvable and dimKer

(
P;Hk,ν

q

)∗
< ∞, we obtain

dimcoker
(

P;Hk,ν
q

)
= dimKer

(
P;Hk,ν

q

)∗
< ∞ (see [9]).

From this and (7), (8) it follows that
(

P;Hk,ν
q

)
is also Noetherian and

ind
(
P;Hk,ν

)
= ind

(
P;Hk,ν

q

)
. �

Let
Ls (D) = ∑

(α:ν)=s
aαDα , (9)

where the coefficients aα are real numbers and suppose the the same relations after
Eq. (3) are satisfied.

Denote by
T (x,D) = ∑

(α:ν)<s
bα(x)Dα (10)

the lower order terms of differential form, where the same notations are used as for
Eq. (3) and bα(x) ∈Ck−s,ν (Rm).
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For a function q(x) satisfying
1

q(x)
⇒ 0

∣∣
|x|→∞

it can be checked that T (x,D)

gives a linear bounded operator, acting from Hk,ν
q (Rm) to Hk−s,ν

q (Rm). Applying
Theorem 8.3.2. from [10] for (T ;Hk,ν

q ), following lemma can be obtained.

L e m m a 3. Let function q(x) satisfy
1

q(x)
⇒ 0

∣∣
|x|→∞

. Then the operator

(T ;Hk,ν
q ) is a compact operator.
Consider the operator L(x,D)= Ls(D)+T (x,D). It generates a linear bounded

operator acting from Hk,ν(Rm) to Hk−s,ν(Rm)
(

it is denoted by
(
L;Hk,ν

))
and for

function q(x), which satisfies 1/q(x) ⇒ 0
∣∣
|x|→∞

, originates linear bounded operator

acting from Hk,ν
q (Rm) to Hk−s,ν

q (Rm)
(

denoted by(L;Hk,ν
q )
)
.

T h e o r e m . Let q(x) ∈Q be a function, with
1

q(x)
⇒ 0

∣∣∣
|x|→∞

. Let
(
L;Hk,ν

)
be a semi-elliptic Noetherian operator and

(
L;Hk,ν

q

)
be normally solvable. Then

ind
(
L;Hk,ν

)
= 0.

P r o o f . Appling Lemma 2, we conclude that
(

L;Hk,ν
q

)
is also Noetherian

and ind
(
L;Hk,ν

)
= ind

(
L;Hk,ν

q

)
. Then due to semi-ellipticity of L(x,D) and the fact

that coefficients aα of its principal part are reals, there exists c0 such that L(x,D) can
be represented as

L(x,D) = L1(D)+L2(x,D),

where L1(D) = Ls(D)+ c0, L1(ξ ) 6= 0, ∀ξ ∈ Rm and L2(x,D) = T (x,D)− c0.

From Lemma 3 we get that
(

L2;Hk,ν
q

)
is a compact operator. It follows that(

L1;Hk,ν
q

)
is Noetherian and ind

(
L;Hk,ν

q

)
= ind

(
L1;Hk,ν

q

)
(see [10], 8.5.20). In

[5] it is proved that L1(D) : Hk,ν(Rm)→ Hk−s,ν(Rm) is a Noetherian operator and
ind
(
L1;Hk,ν

)
= 0. Lemma 2 can be applied for L1(D) and we get

ind
(

L1;Hk,ν
q

)
= ind

(
L1;Hk,ν

)
= 0.

So, ind
(
L;Hk,ν

)
= ind

(
L;Hk,ν

q

)
= ind

(
L1;Hk,ν

q

)
= ind

(
L1;Hk,ν

)
= 0. �
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