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Introduction. In this paper Noethericity preservation problem and the index of
differential linear operators in anisotropic weighted Sobolev spaces in R™ are studied.

Let us state some known results concerning the Noethericity and index of
differential operators. Noethericity for elliptic operators on smooth compact mani-
folds was proved in [1], and the formula for their indices is in the topological form
(see [2]). For the elliptic operators in unbounded domains Noethericity has been
proved for the special class of operators in weighted Sobolev spaces in R™ (see [3]),
and the Noethericity in terms of limiting operators was studied (see [4]). The class
of Noetherian semi-elliptic operators with constant coefficients in R™ is described
in [5, 6], Noethericity for a class of semi-elliptic operators with variable coefficients
in weighted Sobolev spaces was obtained in [7]. Index invariance on the scale of
anisotropic spaces is studied in [8], where the sufficient condition for it is established.

Basic Concepts and Definitions.

Definition 1. A linear bounded operator A acting from whole a Banach
space X to a Banach space Y is called Noetherian, if the following conditions hold:

1. The image of the operator A is closed (Im(A) = (A)) .
2. The kernel of the operator A is finite dimensional (dimKer(A) < o).
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3. The cokernel of the operator A is finite dimensional
(dimcoker(A) = dimY /Im(A) < o0).
The difference between the dimension of the kernel and the cokernel is called
index of the operator:
ind(A) = dimKer(A) — dimcoker(A).

Definition 2. A linear bounded operator A from a Banach space X to
a Banach space Y is called normally solvable, if the image of operator A is closed
(Im (A) = W) .

Let X;,Y; (i = 1,2) be Banach spaces such that X, is dense in X, Y» is dense
in Y1, and the embedding operators X, C X;,Y> C Y| are bounded.

Let A; : X; — Y; be bounded linear operators such that Dom (A;) |x, = Xi|,_; »
and Ajx = Apx, Vx € Xp. The operators A} : (¥;)* — (X;)* are corresponding adjoiﬁt
operators. Suppose that A; : X; — Y; (i = 1,2) are Noetherian operators. Notice that
Ker (Ay) C Ker(A1),Ker((A1)*) C Ker((Az)*). From Noethericity of A; it follows
that dimcoker(A;) = dimKer ((A;)*) (see [9]). So the following inequalities hold:

dimKer (A;) > dimKer (Az), dimcoker(A;) > dimcoker(Ay). (1)

From (1) it follows that ind (A;) > ind(A;). So ind(A;) = ind (A;) holds if and
only if

dimKer (A;) = dimKer (A;), dimcoker(A;) = dimcoker(Ay). (2)

Letm € N, Z, N, R™ be sets of m-dimensional: multi-indices, multi-indices
with natural components and Euclidean space respectively.
Set

0= {g(x) eC”(R™) :g(x) >0,vx € R™; M =0

g(x) x| —so0”

VBeZ, B# 0}.
For k € Z, and v € N denote

CcY (R™) = {a(x) : DPa(x) e C(R™), seuﬂgn IDPa(x)| < oo,

VBeZ, st (B:v) §k}.

Definition 3. For k € Z,,v € N denote by H*Y(R™) the space of
measurable functions {u} equipped with a norm

1/2
ully, = ( Z /!Dau(x)|2dx> < oo,
(a:v)<k
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Definition 4. ForkeZ,, v € N"and for a positive function g(x) denote
by H;"V(Rm) the space of measurable functions {u} equipped with a norm

1/2
2
H”‘k.v.q:< Z /’Dau(x)q(x)(k*(azv)) dx> < oo,
o (a:v)<k

Definition 5. For k€ Z,,v € N" and u € Q denote by I-NI,]j’V(Rm)
the space of functions u with gu € H*Y(R™) with a norm

el 0 = l1uel, < oo
Consider k,s € Nand k£ > s.

Let
P(x,D)= ) aa(x)D 3)
(a:v)<s
(04] (0.
where m € Nja € Z2%; v e N, (o :v) = —+ ...+ —; s € N,
Vi Vin
d
D*=D}...D%"; D; = —ix; x=(X1,...,%n) €ER™; ag(x) € CF5V(R™).
J
Denote the principal part of P (x,ID) and its symbol by
P (x,D) = Z aq(x)D%, Pi(x,&) = Z ag(x)E*. 4)
(a:v)=s (a:v)=s

With certain conditions on the coefficients of differential form P (x,DD) it
defines a linear bounded operator acting from whole H*Y(R™) to HK=*V(R™).
Denote this operatorby (P;H k=") .

The differential form P (x,D) defines a bounded linear operator acting from

whole H,;" (R™) to Hy " (R™). Denote it by (P;ﬁﬁ"/).
1
For a function g(x) with — = 0
q(x)
defines a bounded linear operator acting from whole HZ]"V(R”’) to H;C_S’V(Rm).
Denote this operator by (P;Hg ’v).

Definition 6. The differential expression P(x,D) of the form (3) is

called semi-elliptic at a point x = xo, if the following is satisfied:
Py (x0,8) #0; V& € R™; |E] #0.

Definition 7. The differential expression P(x,D) of the form (3) is
called semi-elliptic in R™ or just semi-elliptic, if it is semi-elliptic at each point
xeR™

Main Results.

Lemma 1. The operator (P;H*") is a Noetherian operator if and only if

(P;ﬁﬁv) is Noetherian, and the following equalities hold:

, the differential form P (x,DD)

x| —ee

dim Ker (P;Hk’v> = dim Ker (P;ﬁﬁ’v) ,
dimcoker (P;Hk’v) = dim coker (P;Flﬁ’v) ,

ind (P 1" ) = ind (PSHSY ).
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Proof. Let My be the operator of multiplication by p(x) :

My :ﬁﬁ’v(Rm) — HYY(R™), Myu(x) = p(x)u(x), Vu € I-Nlﬁ’v(]R’”);
M, HYY(R™) —>ITIﬁ7V(Rm), My v(x) = v(x)/u(x), Yv € HSY (R™).
Consider the following operator: Pu= M, PM,;".

It is a linear bounded operator acting from H*Y(R™) to H*=*Y(R™). Then for
u € HAY (R™) we have Pu = MuPMglu = Pu+ Tu, where

Tu = g (x Cg X Dﬁ L O‘*ﬁu x).
(ag;'gs | )ﬁ<oc2,;'%7éo - (“(x)> )

The operator T : H*Y (R™) — H*=%V(R™) is linear bounded with lower order
1
terms, and for each 0 # 8 € Z" we have p(x)DP <) =0

1 (x) e
Taking into account the above remarks and conditions on the coefficients of

the operator, it can be checked that for each € > 0 there exists ¢¢(x) € C7 (R™) such
that T = T, 4+ T, , where T, = (1 — ¢¢)T satisfies
I Tetllsv < elully, Vi € B (R™),

and T; = ¢, T is a compact operator acting from H®Y (R™) to H¥=V (R™).

So, applying the Theorem 8.3.2 from [10], we get that T : H*V(R™) —
H*=5V(R™) is a compact operator.

This implies that P(x,D) : H*Y(R™) — H*%Y(R™) is Noetherian operator if
and only if P(x,) : HY(R™) — H*%Y(R™) is Noetherian with index equality

ind (P;Hk’v> —ind (P;Hk’v> (see [10], 8.5.20).

Consider u € Ker (P;H"Y). Then it is easy to see that v = Mﬁlu € ﬁﬁ’v(Rm)
and Pv = 0. On the other hand, for v € Ker <P;P~Iﬁ’v> we have u = Myv € H*V(R™)

and Pu = 0. Considering similar correspondence for adjoint operator’s kernel
elements, we get that there are bijections between bases of kernels and adjoint

operator’s kernels for (IS;H/“V) and (P;flﬁ’v>, SO,
dimKer (P;f]ﬁ"’) — dimKer (P;Hk=v) , (5)
dimKer (P;I-Nlﬁ’v) = dimKer (F;H“’) ) (6)
If P(x,D) is Noetherian, then from its normal solvability we get
Im (P;H*Y) =+ (Ker (I3;H"7V)*> (see [9]), where - (Ker (F’;Hk’v)*) is the set of

elements from H*~*¥(R™), which are orthogonal to Ker (P; H*V) " . Using this, it can

be shown that for (P;ﬁﬁ’v) holds Im (P;ﬁﬁ’v> =1 (Ker <P;I-Iﬁ’v) ) It implies
that <P; ﬁﬁv> is also normally solvable <Im (P;PNIﬁ’V> =Im (P;Flfl’v)) Similarly

it can be shown, that if (P;ﬁ ﬁv) is Noetherian, then from its normal solvability fol-

lows the normal solvability of (13;H k?"). And taking into account (5),(6), we obtain
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that from Noethericity of (P; H*") it follows that (P;ﬁf;v) is Noetherian and vice
versa. From (5),(6) for indexes we get ind (P; H*V) = ind (P;flﬁ"'). So it is proved
that (P;H k’v) is a Noetherian operator if and only if (P;I—NI,{‘L’V) is Noetherian, and we
have ind (P;H*") = ind (P;I-Nlﬁ’v) From (2) it follows that
dim Ker (P; H“) = dimKer (P3H" ),
dim coker (P;Hk*") = dim coker (P;f]ﬁ’v) . O

Let

1
Lemma 2. Let g(x) € Q be a function satisfying — =2 0

q(x)

(P;Hk*") be a Noetherian operator and (P;HZ](’V> be normally solvable. Then

NE™

(P ;Héc ’v) is also Noetherian with
dim Ker (P;Hg’v> = dimKer (P;Hk,v) :
dimcoker (P;Hg"v> — dimcoker (P;Hk"’) :
ind (P3H{ ") = ind (P;HEY)

Proof. Consider u(x) = (q(x))* € Q. Then we will have the following

embeddings: _
Hﬁ’v(Rm) N Hg’v(Rm) N HkN(Rm).

Considering also the embeddings for adjoint spaces, from Lemma 1 we get

dim Ker (P;ﬁ,’jv> — dimKer (P;HZI"V) — dimKer (P;H"’V> <o, (7)
dimKer (P;ﬁf;v) — dimKer <P;H§7"> — dimKer <P;Hk’v> <o (8)

Since (P;Hg’v) is normally solvable and dim Ker (P;Hg"v> < o0, we obtain
dim coker (P;HZI"V> — dimKer (P;HZI"V) < oo (see [9]).
From this and (7), (8) it follows that (P;H[];’V) is also Noetherian and

ind (P;HY) = ind (P;H,™ ) 0
Let
Ly(D)= Y aqD% 9)

(a:v)=s

where the coefficients a,, are real numbers and suppose the the same relations after
Eq. (3) are satisfied.
Denote by
T(x,D)= Y ba(x)D* (10)
(a:v)<s
the lower order terms of differential form, where the same notations are used as for
Eq. (3) and bg(x) € CK—5Y (R™).
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1
For a function ¢(x) satisfying e =0 x| seo it can be checked that T (x,D)
q(x

gives a linear bounded operator, acting from Hé"v(R’") to HZfS’V(R’"). Applying
Theorem 8.3.2. from [10] for (T;HC]; ¥, following lemma can be obtained.

1
Lemma 3. Let function g(x) satisfy ) = 0|‘wa. Then the operator
q(x

(T;HC]; "Y) is a compact operator.
Consider the operator L(x,D) = Ly(D) + T (x,D). It generates a linear bounded
operator acting from H*V(R™) to H*=5V(R™) (it is denoted by (L;H'“")) and for

function g(x), which satisfies 1/g(x) = O}‘x‘ _..» Originates linear bounded operator

acting from " (R") to Hi ™" (") (denoted by(L; Hj"))

1
Theorem. Letg(x) € Q be a function, with — =20

q(x)
be a semi-elliptic Noetherian operator and (L;Hg’v) be normally solvable. Then
ind (L; H*Y) = 0.

. Let (L;Hk"’)

e[ —eo

Proof. Appling Lemma 2, we conclude that (L;Hg 7V) is also Noetherian

and ind (L; H*¥) =ind (L;HLI;’V) . Then due to semi-ellipticity of L(x,ID) and the fact
that coefficients a,, of its principal part are reals, there exists co such that L(x,D) can
be represented as

L(x,D) = L'(D) + L?(x,D),
where L (D) = Ly(D) +co, L'(E) #0, VE € R™ and L?(x,D) = T (x,D) — cy.
From Lemma 3 we get that (LQ;H(I; ’v> is a compact operator. It follows that
(LI;HL/;’V) is Noetherian and ind (L;Hg’v) =ind (Ll;H[f’v> (see [10], 8.5.20). In
[5] it is proved that L!'(D) : H*V(R™) — H*=%V(R™) is a Noetherian operator and

ind (L';H*) = 0. Lemma 2 can be applied for L' (D) and we get
ind (L' S ) = ind (L' HEY) = 0.
So, ind (L;Hk"’) =ind (L;Hg’v> =ind <L1;H§’v) =ind (Ll;Hkvv) =0. O
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