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In the article the questions of solvability and construction of the solution of
nonlocal mixed value problem for a homogeneous mixed type differential equa-
tion are considered. The spectral method based on the separation of variables
is used. A criterion for a single-valued solvability of the considered problem
is installed. Under this criterion the single-valued solvability of the problem is
proved. The existence of problem solutions in the case of uniqueness failure is
studied, also.
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Problem Statement. The partial differential equations of third and fourth
order are important in the physical applications [1–5]. Boussinesq type differential
equations have many applications in mathematical physics [6].

Various direct and inverse problems for partial differential equations of third
and fourth order are studied in a large number of works (see, for examples, [7–13]).

When the boundary of the physical process is not available for measurement,
as an additional information for the unique solvability of the problem, it can be used
the nonlocal conditions in the integral form [14].

The problems, where the type of differential equation is changed in the con-
sidering domain, have important applications [15–17]. The mixed type differential
equations have been studied by many authors, in particular in [18–25].

In the present paper a single-valued solvability of nonlocal problem for a mixed
type differential equation with an integral condition is established. So, in a rectangu-
lar domain Ω = {(t,x)|−α < t < β ; 0 < x < 1}, where α and β are given positive
real numbers, consider the following mixed type equation

ℑU ≡

{
Ut −Utxx−Uxx = 0, t > 0,

Utt −Uttxx−Uxx = 0, t < 0.
(1)
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The first equation of (1) is from the class of Boussinesq type equation [6], as
the second one is from class of pseudoparabolic type equations.

Problem. Find a function U(t,x) in the domain Ω, satisfying the following
conditions:
U(t,x) ∈C

(
Ω
)
∩C1(

Ω∪{x = 0}∪{x = 1}
)
∩C2(

Ω−
)
∩C1,2

t,x
(
Ω+∪{t = β}

)
, (2)

ℑU(t,x)≡ 0, (t,x) ∈Ω−∪Ω+∪{t = β}, (3)

U(t,0) =U(t,1), Ux(t,0) =Ux(t,1), −α ≤ t ≤ β , (4)
0∫

−α

U(t,x)tdt = ψ(x), 0≤ x≤ 1, (5)

where ψ(x) is a given sufficiently smooth function, ψ(0) = ψ(1), ψ ′(0) = ψ ′(1),
Ω− = {(t,x)|−α < t < 0, 0 < x < 1}, Ω+ = {(t,x)|0 < t < β , 0 < x < 1}.

Particular Solutions. The nontrivial partial solutions of the Eq. (1) in the
domain Ω we find in form U(t,x) = T (t) ·X(x). In accordance to Eq. (1){

T ′(t) ·X(x)−T ′(t) ·X ′′(x) = T (t) ·X ′′(x), t > 0,

T ′′(t) ·X(x)−T ′′(t) ·X ′′(x) = T (t) ·X ′′(x), t < 0.

Dividing by T (t) ·X(x) and then setting
X ′′(x)
X(x)

=−µ 2, we get:

T ′(t)
T (t)

− X ′′(x)
X(x)

· T
′(t)

T (t)
=−µ

2 as t > 0,
T ′′(t)
T (t)

− X ′′(x)
X(x)

· T
′′(t)

T (t)
=−µ

2 as t < 0,

where µ 2 is the separation permanent, 0 < µ .
Hence, taking into account the boundary conditions (4), we derive

X ′′(x)+µ
2X(x) = 0, 0 < x < 1, X(0) = X(0), X ′(0) = X ′(1), (6)

T ′(t)+λ
2T (t) = 0, 0 < t < β , T ′′(t)+λ

2T (t) = 0, −α < t < 0, (7)

where λ 2 = µ2/(1+µ2).
The spectral problem (6) has the solution

X0(x) = 1, Xn(x) =
{

cos µnx; sin µnx
}
, µn = 2πn, n = 1,2, . . . (8)

The general solution of differential Eqs. (7) has the form with an,bn,cn arbitrary
constants:

Tn(t) =

{
cne−λ 2

n t, t > 0,

an cosλnt +bn sinλnt, t < 0.
(9)

The solutions Un(t,x) = Tn(t) · Xn(x) must satisfy the conditions (2), so,
constants an, bn and cn will be chosen to satisfy the following conditions:

Tn(0+0) = Tn(0−0), T ′n(0+0) = T ′n(0−0). (10)
From (9), taking into account the conditions (10), we obtain an = cn and

bn =−λncn. Then the functions (9) take the form

Tn(t) =

{
cne−λ 2

n t, t > 0,

cn cosλnt−λncn sinλnt, t < 0.
(11)
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Let present solution of the problem (2)–(5) in the domain Ω according to the
Fourier method and taking into account (8) in the following form:

U(t,x) =
ϑ0(t)

2
+

∞

∑
n=1

[
ϑn(t) · cos µnx+un(t)sin µnx

]
,

where the Fourier coefficients

un(t) = 2
1∫

0

U(t,x)sin µnxdx, n = 1,2, . . . , (12)

ϑn(t) = 2
1∫

0

U(t,x)cos µnxdx, n = 0,1,2, . . . (13)

Determination of the Fourier Coefficients. We show that functions (12),
(13) satisfy the Eq. (7) in the corresponding intervals as well as the condition (10).
Differentiation of Eqs. (12), (13) with respect to t (once in the case t > 0, and twice
as t < 0), taking into account Eq. (1), implies

u′n(t) = 2
1∫

0

Ut sin µnxdx = 2
1∫

0

(
Utxx +Uxx

)
sin µnxdx, (14)

u′′n(t) = 2
1∫

0

Utt sin µnxdx = 2
1∫

0

(
Uttxx +Uxx

)
sin µnxdx, (15)

ϑ
′
n(t) = 2

1∫
0

Ut cos µnxdx = 2
1∫

0

(
Utxx +Uxx

)
cos µnxdx, (16)

ϑ
′′
n(t) = 2

1∫
0

Utt cos µnxdx = 2
1∫

0

(
Uttxx +Uxx

)
cos µnxdx. (17)

Integrating by parts twice in the integrals (14)–(17), taking into account (4),
the following equations are derived (as before λ 2

n = µ 2
n/(1+µ 2

n )):

u′n(t)+λ
2
n un(t) = 0, t > 0, (18)

u′′n(t)+λ
2
n un(t) = 0, t < 0, (19)

ϑ
′
n(t)+λ

2
n ϑn(t) = 0, t > 0, (20)

ϑ
′′
n(t)+λ

2
n ϑn(t) = 0, t < 0. (21)

The differential Eqs. (18), (19) and (20), (21) for λ = λn coincide with the left
and right differential equations from (7) respectively. Further, taking the conditions
(2), from (12) and (13), we get

un(0+0) = 2
1∫

0

U(0+0,x)sin µnxdx = 2
1∫

0

U(0−0,x)sin µnxdx = un(0−0), (22)
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ϑn(0+0)= 2
1∫

0

U(0+0,x)cos µnxdx= 2
1∫

0

U(0−0,x)cos µnxdx=ϑn(0−0). (23)

Differentiating (12), (13) with respect to t by virtue of conditions (2), we obtain:

u′n(0+0) = 2
1∫

0

Ut(0+0,x)sin µnxdx = 2
1∫

0

Ut(0−0,x)sin µnxdx = u′n(0−0), (24)

ϑ
′
n(0+0) = 2

1∫
0

Ut(0+0,x)cos µnxdx = 2
1∫

0

Ut(0−0,x)cos µnxdx = ϑ
′
n(0−0). (25)

Eqs. (22), (23) and (24), (25) coincide with conditions (10). Then for problems
(18)–(25) analogously to (11) we obtain

un(t) =

{
cne−λ 2

n t, t > 0,

cn cosλnt−λncn sinλnt, t < 0,
(26)

ϑn(t) =

{
c̃ne−λ 2

n t, t > 0,

c̃n cosλnt−λnc̃n sinλnt, t < 0.
(27)

To find constants cn and c̃n, integral condition (5) and Eqs. (12), (13) are used:

0∫
−α

un(t)tdt = 2
1∫

0

0∫
−α

U(t,x)tdt sin µnxdx = 2
1∫

0

ψ(x)sin µnxdx = ψn, (28)

0∫
−α

ϑn(t)tdt = 2
1∫

0

0∫
−α

U(t,x)tdt cos µnxdx = 2
1∫

0

ψ(x)cos µnxdx = ψ̃n. (29)

Then, since t < 0, from (26) and (28) we obtain

ψn =

0∫
−α

un(t)tdt = cn

0∫
−α

(cosλnt−λn sinλnt) tdt =

= cn

[
1

λ 2
n
−
( 1

λ 2
n
−α

)
cosλnα− 1+α

λn
sinλnα

]
,

i.e.
cn∆n(α) = ψn, (30)

where ∆n(α) =
1

λ 2
n
−
( 1

λ 2
n
−α

)
cosλnα− 1+α

λn
sinλnα.

Analogously, from (27) and (29) we obtain

c̃n∆n(α) = ψ̃n. (31)
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Suppose, that
∆n(α) 6= 0. (32)

Taking into account(32), from (30), (31) we obtain cn =
ψn

∆n(α)
, c̃n =

ψ̃n

∆n(α)
.

Substituting cn and c̃n into (26) and (27), we derive

un(t) =

 Anψne−λ 2
n t, t > 0,

An

(
cosλnt−λncn sinλnt

)
·ψn, t < 0,

(33)

ϑn(t) =

 Anψ̃ne−λ 2
n t, t > 0,

An

(
cosλnt−λncn sinλnt

)
· ψ̃n, t < 0,

(34)

where An = 1/∆n(α).
Supposing ψ(x)≡ 0, and ψn = ψ̃n ≡ 0, from (12), (13) and (33), (34) we get

l∫
0

U(t,x) · sin µnxdx = 0, n = 1,2, . . . ,
l∫

0

U(t,x) · cos µnxdx = 0, n = 0,1,2, . . .

Hence, by the completeness of the system of eigenfunctions
{

1, cos µnx, sin µnx
}

in the space L2[0,1], we deduce that U(t,x)≡ 0 for all x ∈ [0,1] and t ∈ [−α,β ].
We consider the case of failure of the condition (32). Let ∆n(α)= 0 for some α

and n = m. Then homogeneous problem (2)–(5) as ψ(x)≡ 0 has a nontrivial solution

Um(t,x) = Tm(t) ·Xm(x), (35)

where Xm(x):
{

1, cos µnx, sin µnx
}

,

Tm(t) =

{
e−λ 2

mt, t > 0,

cosλmt−λm sinλmt, t < 0.

The condition ∆n(α) = 0 is equivalent to the equality(
1−λ

2
n α
)

cosλnα +λn(α +1)sinλnα = 1, (36)

where λn =

√
µ 2

n

1+µ 2
n

, µn = 2πn. Here 0 < λn < 1, λn→ 1 as n→ ∞.

From Eq. (36) the following is obtained:

sin
(
λnα +ϕn

)
=

1√
λ 2

n γ +
(
1−λ 2

n α
)2
, (37)

where γ = (α +1)2, ϕn = arcsin λn(α+1)√
λ 2

n γ+
(

1−λ 2
n α

)2
.
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Observe that the condition 0 < 1√
λ 2

n γ+
(

1−λ 2
n α

)2
< 1 is satisfied for any

0 < α and n. Indeed, from
√

λ 2
n γ +

(
1−λ 2

n α
)2

> 1 we get (α +1)2λ 2
n +λ 4

n α 2 > 0.
Hence, the Eq. (37) has the following solution:

αk =
θn−ϕn

λn
+

πk
λn

, k = 1,2,3, . . . ,

where θn = (−1)k arcsin 1√
λ 2

n γ+
(

1−λ 2
n α

)2
.

Recall other values of α , for which condition (32) holds, regular values.
We show that there exists a constant C0 > 0 such that for a sufficiently large n

the estimate holds
inf

n

∣∣∆n(α)
∣∣≥C0. (38)

Suppose there exists a constant C0 > 0 such that for a sufficiently large n we
have the estimate (38). Then from (32), taking into account 0 < λn < 1 and λn→ 1
as n→ ∞, we obtain∣∣∣1−√2(1+α 2)sin(α +ϕ)

∣∣∣≥C0, where ϕ = arcsin
(α +1)√
2(1+α 2)

.

The last inequality holds if
∣∣∣1−√2(1+α 2)sin(α +ϕ)

∣∣∣> 0.
This inequality is equivalent to the aggregate of the following two inequalities:

sin(α +ϕ)<
1√

2(1+α 2)
, sin(α +ϕ)>

1√
2(1+α 2)

. (39)

Since
√

2(1+α 2) > 1, the trigonometric inequalities (39) have a solution.
Consequently, the estimate (38) is true for a sufficiently large n and for any 0 < α ,
satisfying to one of two inequalities (39).

Existence of Solution. For the regular values of α the formulas (33) and
(34) are satisfied. Therefore, under (32) and (38), taking into account the particular
solutions (8), (33) and (34), the solution of the problem (2)–(5) in the domain Ω can
be represent by series

U(t,x) =
ϑ0(t)

2
+

∞

∑
n=1

[
ϑn(t)cos µnx+un(t)sin µnx

]
. (40)

We show that the sum U(t,x) of the series (40) under certain conditions on the
function ψ(x) satisfies to the conditions (2).

It is easy to check, for a sufficiently large n there the following estimates hold:∣∣un(t)
∣∣≤C

∣∣ψn
∣∣, ∣∣ϑn(t)

∣∣≤C
∣∣ψ̃n
∣∣, (41)∣∣u′n(t)∣∣≤C

∣∣ψn
∣∣, ∣∣ϑ ′n(t)∣∣≤C

∣∣ψ̃n
∣∣, (42)
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∣∣ψn
∣∣, ∣∣ϑ ′′n(t)∣∣≤C

∣∣ψ̃n
∣∣, (43)

where 0 <C =const.
Indeed, according to (33), (34) and taking into account (38), we find

∣∣∣un(t)
∣∣∣=


1
C0

∣∣∣ψn

∣∣∣, t > 0,

2
C0

∣∣∣ψn

∣∣∣, t < 0,

∣∣∣ϑn(t)
∣∣∣=


1
C0

∣∣∣ψ̃n

∣∣∣, t > 0,

2
C0

∣∣∣ψ̃n

∣∣∣, t < 0.

Hence, we get the estimate (41), if we set C = 2/C0.
After the differentiating (33) and (34), we obtain

∣∣∣u′n(t)∣∣∣=


1
C0

∣∣∣ψn

∣∣∣, t > 0,

2
C0

∣∣∣ψn

∣∣∣, t < 0,

∣∣∣ϑ ′n(t)∣∣∣=


1
C0

∣∣∣ψ̃n

∣∣∣, t > 0,

2
C0

∣∣∣ψ̃n

∣∣∣, t < 0,

and so the estimate (42). Here we take C = 2/C0.
Differentiating (33) and (34) twice for t < 0, we obtain∣∣∣u′′n(t)∣∣∣= 2

C0

∣∣∣ψn

∣∣∣, ∣∣∣ϑ ′′n(t)∣∣∣= 2
C0

∣∣∣ψ̃n

∣∣∣,
and hence the estimate (43) for C = 2/C0.

Since the function ψ(x) ∈ C3[0,1] has piecewise continuous derivative of
fourth order in the segment [0,1] and ψ(0) = ψ(1), ψ ′(0) = ψ ′(1), ψ ′′(0) = ψ ′′(1),
ψ ′′′(0) = ψ ′′′(1), then following estimates hold:

ψn =−
(

1
π

)4 pn

n4 ,
∞

∑
n=1

p2
n ≤ 4

1∫
0

[
ψ

IV (x)
]2

dx,

ψ̃n =−
(

1
π

)4 qn

n4 ,
∞

∑
n=1

q2
n ≤ 4

1∫
0

[
ψ

IV (x)
]2

dx.

Using these estimates, it is not difficult to see that the series (40) and the series
of first order terms of the series converge uniformly in the domain Ω.

Let ∆n(α) = 0 for some α , n = k1, . . . ,ks, where 1 ≤ k1 < k2 < · · · < ks and
s is a fixed natural number. Then for the solvability of Eqs. (30) and (31) it is neces-
sary and sufficient the orthogonality conditions

ψn = 2
1∫

0

ψ(x)sin2πnxdx = 0, n = k1, . . . ,ks, (44)

ψ̃n = 2
1∫

0

ψ(x)cos2πnxdx = 0, n = k1, . . . ,ks. (45)
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In this case the solution of the problem (2)–(5) is defined as the sum of the
series

U(t,x) =
ϑ0(t)

2
+

(
k1−1
∑

n=1
+

k2−1
∑

n=k1+1
+ · · ·+

∞

∑
n=ks+1

)
un(t)sin µnx+

+

(
k1−1
∑

n=1
+

k2−1
∑

n=k1+1
+ · · ·+

∞

∑
n=ks+1

)
ϑn(t)cos µnx+∑

m
CmUm(t,x),

(46)

where m takes values k,k1, . . . ,ks, Cm are arbitrary constants and functions Um(t,x)
are defined in (35).

Thus, the following Theorem is proved.
T h e o r e m . Let the function ψ(x) ∈ C3[0,1] has piecewise continuous

derivative of fourth order in the segment [0,1] and ψ(0) = ψ(1), ψ ′(0) = ψ ′(1),
ψ ′′(0) = ψ ′′(1), ψ ′′′(0) = ψ ′′′(1). Then the problem (2)–(5) in the domain Ω is
uniquely solvable, whenever conditions (32), (38) are satisfied. This solution is deter-
mined by the series (40). Let ∆n(α) = 0 for some α, n = k1, . . . ,ks and the condition
(38) is satisfied. Then the problem (2)–(5) is solvable if the orthogonality conditions
(44) and (45) hold. This solution is defined by the series (46).
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