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ANALYTICAL DESCRIPTION OF PLASMON REFLECTION FROM
THE FREE EDGES OF METAL SLIT STRUCTURES

Kh. S. SAHAKYAN ∗

Chair of the Microwave Radiophysics and Telecommunications YSU, Armenia

In this paper we consider gap surface plasmon (GSP) propagation properties
in slit milled in metal. Developed theoretical model allows to derive equations
describing the reflection and transmission of the GSP from the free edge of
semi-infinite slit or periodic array of semi-infinite slits in metallic host, analyti-
cally. Using these equations we calculate the transmitted power efficiency from
the slit and from the array of slits. For the conditions when slit width (d) is
very small compared to incident wavelength, the transmitted power efficiency
is increased proportional with d3/2, otherwise the dependence is linear. The
relation of transmitted power through periodic array of slits to the transmitted
power from single slit depends on slit period for the fixed wavelength. The de-
rived equations give mathematical mechanism to calculate theoretical resonant
length, losses and Q-factor of plasmon gap microresonator structures and can
be used as a preliminary guideline upon designing plasmon gap microresonator.
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Introduction. Surface Plasmon Polaritons (SPP) allows to confine the field
in small sizes far below the wavelength. Gap plasmon microresonators have sig-
nificantly small mode volume, which highlights the role of subwavelength slit SPP
in creating of active nanophotonic devices. These structures prove their usefulness
in many applications such as single molecule imaging [1] spectroscopy [2], optical
tweezers [3], enhanced surface reactions [4], SPP modulators and detectors [5–7],
SPP sources [6]. The high intensity of the light in the dielectric regions makes the
system very suitable for creating the base components of plasmonics. The simple
structure simplifies the production of the system. All the advantages above with the
opportunity to use the metals as an electric contacts make this structure very suitable
for optoelectronic applications [7–10].

In the slits the SPP reflects from the free edges of the slit. Multiple reflections
can cause Fabri-Perot type of resonance. The Q-factor of such a system is defined by
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the reflection ratio and loses along the resonator. Resonant length (Lres) of the system
depends on the wavelength of the SPP in slit (λSPP) and the phase shift upon the

reflection process. The famous
mλ

2
resonant length equation for the standard parallel

plate resonator cannot be applied here as the reflection phase shift significantly differs
from π [11, 12].

From the aforementioned it is clear that it is necessary to know the
amplitude and phase changes upon reflection from the free edge to calculate the
Q factor and radiated power from the slit edge. There is significant work done in
this field. Analytically was described the reflections from metallic and dielectric
gaps [13, 14]. Investigated the SPP reflection from the dielectric-metal-dielectric
structure edges using Finite Elements Method (FEM) [15]. Some analytic equations
were written in plasmon slit structure that describe SPP reflection and propagation
for lossless and dispersion free media [16].

In this letter we present analytically written equations that describe the reflec-
tion of the SPP from the free space edge of the slit or periodic array of slits. Equations
describe the phase, amplitude changes upon reflection, as well as the ratio of trans-
mitted through the slit (periodic array of slits) intensity to incident intensity.

The SPP Modes of the Slit Structure. Firstly, we examine the reflection of the
SPP from the one dimensional single subwavelength slit. A slit of width d is drilled
in the y < 0 half plane on the metal with εm complex permittivity (Fig. 1). The y > 0
half plane and the slit are filled with a dielectric medium with εd permittivity.

It is assumed, that the already excited SPP directed along with y-axis and
having wave vector of

−→
kin falls on the free edge of the slit (y = 0). Reflected SPP

having wave vector of
−→
kr lays in the y < 0 half plane.

Fig. 1. The structure of the system under study.

In the half plane of y < 0 SPP mostly concentrated in the [−d/2, d/2] zone,
where for the incident SPP we can write:

E in
x = Bcoshκinxei(kiny−ωt), E in

y =
iκin

kin
Bsinhκinxei(kiny−ωt), (1)

H in
z =−

√
εdk0

kin
Bcoshκinxei(kiny−ωt), (2)

where k0 =
√

εd
ω

c
, k2

in−κ2
in = εd

ω2

c2 and c is the speed of light at free space.
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When d� λ (i.e. |κind| � 1). The following can be obtained

kin ≈ k0

√
1+

2
k0d

√
εd

|ε ′m|
e

iε
′′
m

2|ε ′m| . (3)

Assign:

µ =
2

k0d

√
εd

|ε ′m|
. (4)

The complex valued wave number kin can be written as kin = k
′
+ ik

′′
, where

k
′
= k0

√
1+µ, k

′′
= k0√1+µ

· ε
′′
m

2 |ε ′m|
. (5)

From the wave equation we have k2
in−κ2

in = εd
ω2

c2 , where κin is complex valued
as well:

κ′ = k0
√

µ, κ′′ = k0
√

µ
ε
′′
m

2 |ε ′m|
, (6)

these relations can be easily checked by Maxwell’s equations.
Reflection of the SPP from the Edge of Slit. For the reflected wave we have:

Er
x =C coshκrxe−i(kry+ωt), Er

y =−
iκr

kr
C sinhκrxe−i(kry+ωt), (7)

Hr
z =

√
εdk0

kr
C coshκrxe−i(kry+ωt), (8)

k = kr = k
′
+ ik

′′
= kin and κ = κr = κ′+ iκ′′ = κin.

The field upper from the slit edge (y > 0) can be calculated using quasi-static
approximation when λ � d. We assume that in the region of ρ�λ (ρ =

√
x2 + y2)

the tangential component of electric field is equal to zero at the surface of the metal
and has constant value of A at the edge of the slit (Fig. 4):

Ex (x, y = 0) = Aϑ (d/2−|x|) . (9)

It is easy to find a solution for the Poisson equation for the upper half plane,
which will satisfy the boundary condition written above

E(+)
x (x, y) =

Ad
2π

e−iωt
∫

∞

−∞

sin(kd/2)
(kd/2)

eikx−|k|ydk. (10)

After integration for the Ex component we will have:

Ex =
A
π

arctan

 2
(

2y
d

)
(

2y
d

)2
+
(2x

d

)2−1

+πϑ

(
1−
(

2y
d

)2

−
(

2x
d

)2
)e−iωt .

(11)
The Ey component can be found from the equation div

−→
E = 0,

Ey =−
A

2π
ln


(

2y
d

)2
+
(
1+ 2x

d

)2(
2y
d

)2
+
(
1− 2x

d

)2

e−iωt and Ez = 0. (12)
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In the region close to the slit (y ≈ 0), the fields can be approximated as

Ex = Ae−iωt and Ey =−
A
π
· 4x

d
.

Using the continuity of the Ex and Ey components of the electric field at
the edge of the slit from (1), (7), (11) and (12), we will have:

C =

1− 2+µ

π
√

1+µ
· ε

′′
m√
|ε ′m|εd

− 4i
π
·
√

1+µ

2

√
|ε ′m|
εd

1+ 2+µ

π
√

1+µ
· ε

′′
m√
|ε ′m|εd

+ 4i
π
·
√

1+µ

2

√
|ε ′m|
εd

B, (13)

A =
2

1+ 2+µ

π
√

1+µ
· ε

′′
m√
|ε ′m|εd

+ 4i
π
·
√

1+µ

2

√
|ε ′m|
εd

B. (14)

So, we derived equations that describe the amplitude and the phase of the reflected
and transmitted wave. To calculate the ratio of radiated power from the slit to the
incident power we write the far field equations (ρ � d) for the y > 0 half plane in
spherical coordinate system:

Eϕ =
iπd
λ

AH(2)
1 (kρ)e−iωt , Hz =

πd
λ

A
√

εdH(2)
0 (kρ)e−iωt , E(+,−)

ρ = 0, (15)

where H(2)
n is Hankel function of the second kind and for kρ � 1, can be

approximated as:

H(2,1)
n (kρ)≈

√
2

πkρ
e∓i(kρ−nπ/2−π/4). (16)

The radiation from the slit for the single length is determined by the Pointing vector

Pe =

√
εdcd2

4λ
A2. (17)

The incident power to the slit edge is determined from the (1) and (2) and equals to

P0 =
c
√

εdd
2λ |kin|

B2. (18)

Finally, for the transmitted power we have:

T21 =
Pe

P0
=

π2√εd

8
· κ

4d2

ks
. (19)

In the Fig. 2 dependence of the
Pe

P0
from the width of the slit (d) is

presented. When
√

εd

|ε ′m|
· λ

d
� 1 (which means that in the same conditions d� λ )

Pe/P0 ∼ (d/λ )3/2, otherwise Pe/P0 ∼ d/λ .
To validate derived equations using finite element method simulation it is

expedient to have a finite system. We consider on finite length slit with the length
of h. For such a system the plasmon reflects from the upper and lower edges and
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can build up Fabry-Perot type of resonator. The resonant length of the resonator is
calculated using the equation: k

′
h = ϕ, where ϕ is the angle of complex valued C/B

reflection function in the complex plane. ϕ = arctan
ℑ(C/B)
ℜ(C/B)

. Loses along the slit

length are defined by the term of e−2k
′′

h.

Fig. 2. The dependence
of the T21 from resonator d
width.

Fig. 3. The dependence
of the normalized Ex field
from the resonator h length
in FEM simulation.

The ratio of the transmitted power through the slit resonator to the incident
power can be written in the following form

T =
(1−R21)

2e−2k
′′

h

1−2R21e−2k′′h cos(k′h−ϕ)+R21
2e−4k′′h

, (20)

where R21 = 1− T21. As the e−2k
′′

h � 1 the (20) can be represented as power
series. We keep up to second term of the series and for the resonant length (k

′
h = ϕ)

rewrite (20) as

Tmax =

(
1−R21

)2(1−2k
′′
h
)

(1−R21 +2k′′hR21)
2 . (21)

To validate derived expressions we take silver as a metal, which has complex
permittivity ε

′
m = −49.47, ε

′′
m = 3.6236 for the wavelength of 1100 nm. As a

dielectric medium we take an air (εd = 1). So, the C/B = 0.981507e−2.81647i, which
means that SPP changes the phase by 2.81647 upon reflecting from the edge of the
slit. For the resonance length of the system the principal role plays the phase shift
upon reflection. Hence, k

′
h = 2.81647 and for resonant length we derive h = 329 nm.

The absorption of the wave is determined by the equation e−2k
′′

h = 0.881375, so, the
0.118625 part of the wave is absorbed during one resonant cycle. To check the result
the model with the same parameters is designed using COMSOL Multiphysics as a
finite element method software.

The x and y components of the electric field are presented in the Fig. 4. During
the simulation we parametrically sweep the length of the slit to get the field inten-
sity dependence curve from the resonator h length. In the Fig. 3 the dependence of
the electric field Ex component from the resonator length is shown. It is obvious
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that the resonant length is on hres = 297nm (derived equation were foreseen hres =
= 329nm). We repeated the simulation for the wavelength of 1500 nm and recorded
hres = 375 nm for the resonant length (derived equation foreseen hres = 413 nm). In
both cases the deviation from the equations is less than 10%. We also found the
main origin of the deviation, which is the approximation done for the electric field
component Ex = Ae−iωt when y≈ 0, to keep equations simple.

Fig. 4. The Ex (left) and Ey (right) components of the field for the single finite length slit.
Width of the slit is 310 nm, d = 40 nm and the wavelength is equal to 1100 nm.

Periodic Array of Slits. Now we analyze periodic array of slits drilled in the
metal of half plane y < 0. The structure of the system is presented in the Fig. 5. We
expend the assumptions we done for single slit structure on the periodic array of slits
structure. As for the single slit case SPP propagates through the nth slit in y direction
and reflects from the y = 0 plane. Fields for the incident SPP will be written:

E in
xn = Bcoshκin(x−np)ei(kiny−ωt), E in

y =
iκin

kin
Bsinhκin(x−np)ei(kiny−ωt), (22)

H in
z =−

√
εdk0

kin
Bcoshκin(x−np)ei(kiny−ωt). (23)

For the reflected wave we have

Er
xn =C coshκin(x−np)e−i(kiny+ωt), Er

y =
iκin

kin
C sinhκin(x−np)e−i(kiny+ωt), (24)

Hr
z =−

√
εdk0

kin
C coshκin(x−np)e−i(kiny+ωt). (25)

Like in the single slit case, we assume that in the region of ρ � λ (ρ =
√

x2 + y2)
the tangential component of electromagnetic field is equal to zero at the surface of
the metal and has constant value of A at the edges of the slits (see Fig. 5).

Ex = E0ei(k0y−ωt)+
∞

∑
m=1

bme−ηm cos(mqx)e−iωt , (26)

where bm = 2A
d
p
· sin( πd

p m)
πd
p m

, E0 =
d
p

A, q =
2π

p
and ηm =

√(
2π

p m
)2
− k0

2.

For p� λ : ηm =
2π

p
m

√
1−
( p

mλ

)2
≈ 2π

p
m. In the limits of quasi-static

approximation and for y = 0:

Ey ≈−
A

2π
ln
[

sin2(π/p)(d +2x)
sin2(π/p)(d−2x)

]
e−iωt . (27)
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Fig. 5. The structure of the periodic array of slits (top), the overlook of the electric field Ex
component (left) and zoomed view of the same (right) for the period of 150 nm.

To find C and A terms, we can use the continuity of the fields at the edge of
any slit (for ex. m = 0). Simplifying the expressions when y > 0:

Ex = A, Ey ≈−
4A
π
· x

d
. (28)

Using continuity condition and keeping terms smaller than κ2d2, we will have:

C = e−2iϕB, A =
2B√

1+ tan2 ϕ
e−iϕ , where tanϕ =

4k
πκ2d

,

- for amplitude of the transmitted wave:

E0 =
d
p

A =
2d/p√

1+ tan2 ϕ
e−iϕB,

- for transmitted power from the system of slits:

Str =
4
√

εd(d/p)2B
1+ tan2 ϕ

· 1
4πc

,

- for power of the falling wave:

S0 =
k0

k
B2 d

p
· 1

4πc
,

- for ratio of the transmitted power through the periodic slit array system to the
incident power:

Tperiodic =
4
√

εd(d/p)
1+ tan2 ϕ

· k
k0
, (29)

- for ratio of the transmitted power through periodic array of slits to the transmitted
power from single slit:

T
Tperiodic

= π
p
λ
, (30)

i.e there is a linear dependence between the ratio and the period of the slits for fixed
wavelength.

Conclusion. The derived analytic description of plasmon reflection from
the subwavelength slit (periodic array of slits) edge allows obtaining well matching
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expressions for the intensity transmission efficiency of the slit, resonant length and
losses. Finite element method simulation validates analytical expressions reporting
variance not more than 10%. Small variance introduced during the approximations
of complex expressions because of our intention to keep model as simple as possible.
As a result we have simple to use and yet well enough precise expressions that can
serve as a base to design plasmon slit microsystems or periodic plasmon slit array
systems at desirable wavelength choosing slit width and height as parameters.
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