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DEFICIENCY OF OUTERPLANAR GRAPHS
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An edge-coloring of a graph G with colors 1,2, . . . , t is an interval t-coloring, if all
colors are used, and the colors of edges incident to each vertex of G are distinct and form
an interval of integers. A graph G is interval colorable, if it has an interval t-coloring
for some positive integer t. def(G) denotes the minimum number of pendant edges that
should be attached to G to make it interval colorable. In this paper we study interval
colorings of outerplanar graphs. In particular, we show that if G is an outerplanar graph,
then def(G)≤ (|V (G)|−2)/(og(G)−2), where og(G) is the length of the shortest cycle
with odd number of edges in G.

MSC2010: Primary 05C15; Secondary 05C10.

Keywords: graph theory, interval edge-coloring, deficiency, outerplanar graph.

Introduction. All graphs in this paper are finite, undirected, connected, have no loops
or multiple edges. Let V (G) and E(G) denote the sets of vertices and edges of a graph G,
respectively. For a graph G, ∆(G) denotes the maximum degree of vertices in G. By og(G)
we denote the length of the shortest cycle with odd number of edges in G. The set of integers
{a,a+1, . . . ,b}, a≤ b, is denoted by [a,b]. The terms, notations and concepts that we do not
define can be found in [1].

A proper edge-coloring of graph G is a coloring of the edges of G such that no two
adjacent edges receive the same color. The chromatic index χ ′(G) of a graph G is the mini-
mum number of colors used in a proper edge-coloring of G. Vizing’s theorem says that χ ′(G)
is either ∆(G) or ∆(G)+ 1 [2]. If α is a (partial) proper edge-coloring of G and v ∈ V (G),
then the spectrum of a vertex v, denoted by S(v,α), is the set of colors of edges incident to v.
By S(v,α) and S(v,α) we denote the smallest and largest colors of the spectrum respectively.

A proper edge-coloring of a graph G with colors 1,2, . . . , t is an interval
t-coloring, if all colors are used and for any vertex v of G the set S(v,α) is an interval of
integers [3, 4]. A graph G is interval colorable, if it has an interval t-coloring for some posi-
tive integer t. The set of interval colorable graphs is denoted by N. Trees, complete bipartite
graphs, complete graphs with even number of vertices, n-dimensional cubes, various graph
products are known to be interval colorable [5–9]. The following necessary condition was
proved in [3, 4, 10].

T h e o r e m A 1 . If G is interval colorable, then χ ′(G) = ∆(G).
There exist many graphs that are not interval colorable. The simplest example is K3.

If G is not interval colorable, then one can define a measure that determines how “far” the
graph G is from being interval colorable. The most studied such measure is called a deficiency
of the graph, first defined in [11].
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D e f i n i t i o n 1. If α is a proper coloring of graph G, then deficiency of a vertex
v ∈V (G) is defined as def(v,α) = S(v,α)−S(v,α)−|S(v,α)|+1.

D e f i n i t i o n 2. Deficiency of a proper coloring α of graph G is defined as

def(α) = ∑
v∈V (G)

def(v,α).

D e f i n i t i o n 3. Deficiency of a graph G is defined as def(G) = min
α

def(α), where
minimum is taken over all proper colorings of G.

It easy to see that def(G) is the minimum number of pendant edges that need to be
attached to G to make it interval colorable. Deficiency is studied for bipartite graphs,complete
graphs, wheels, regular graphs, Hertz graphs and few other classes of graphs [11–14].

Another measure of “distance” of a graph from interval colorability is called
gap number.

D e f i n i t i o n 4. If α is a proper coloring of G, then its gap number is defined as
gn(α) = max

v∈V (G)
def(v,α).

D e f i n i t i o n 5. Gap number of a graph G is defined as gn(G) =min
α

gn(α), where
minimum is taken over all proper colorings of G.

The concept of gap number is directly related to interval (t,h)-colorings of graphs,
that were introduced in [15] and studied in [16].

D e f i n i t i o n 6. α : E(G) → {1, . . . , t} proper coloring is called an interval
(t,h)-coloring of graph G, if all colors are used and for each vertex v ∈V (G) def(v,α)≤ h.

We denote by Nh
t the set of all graphs that have interval (t,h)-colorings.

Nh =
⋃

t≥1N
h
t . It is easy to see that gap number of the graph G is the minimum h, for

which G ∈Nh. If G ∈Nh, then we say that G is interval h-gap-colorable.
The following inequalities are immediately implied from the definitions:

gn(G)≤ def(G)≤ gn(G)|V (G)|.
In [11] it was shown that there exists a sequence of graphs {Gn} such that
lim
n→∞

def(Gn)/|V (Gn)| = 1. On the other hand, no graph is known with deficiency more than
the number of its vertices. One of the key open problems related to graph deficiency is the
following conjecture:

C o n j e c t u r e . For any graph G, def(G)≤ |V (G)|.
The conjecture is obviously true for interval 1-gap-colorable graphs. On the other

hand, it is known that for every h there exists a graph, which is not interval h-gap-colorable
[17]. In this paper we prove the conjecture for outerplanar graphs.

Related Work on Outerplanar Graphs. Graph G is called outerplanar if it can be
drawn on the plane without crossings in such a way that all of its vertices belong to unbounded
face of the drawing. Fiorini found the chromatic index of all outerplanar graphs [18].

 
 
 
 
 

Fig. 1.  An example of outerplanar  
triangulation that is not interval colorable. 
The coloring presented in the drawing  
has deficiency 1. 

T h e o r e m A 2 . If G is an outerplanar graph, then χ ′(G) = ∆(G)+1 if and only if
G is an odd cycle.
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Theorem immediately implies that odd cycles are not interval colorable. But there
are many other outerplanar graphs that have positive deficiency. For example, the graph from
Fig. 1 is Eulerian, has an odd number of edges and, according to Theorem 2 from [19], it
cannot have an interval coloring. On the other hand, it is easy to see that this graph has a
coloring with 1 deficiency.

Several subclasses of outerplanar graphs are known to have interval colorings. An
outerplanar graph is called outerplanar triangulation, if every bounded face is a triangle.
Triangular face of an outerplanar graph is called a separating triangle, if none of its edges
belong to the unbounded face.

T h e o r e m A 3 . [20]. If G is an outerplanar triangulation with more than three
vertices and without separating triangles, then it is interval colorable.

The graph from Fig. 1. is an outerplanar triangluation containing a separating triangle,
and it is not interval colorable.

T h e o r e m A 4 . [21]. If G is a bipartite outerplanar graph, then it is interval
colorable.

T h e o r e m A 5 . [22]. If G is a subcubic outerplanar graph other than an odd cycle,
then it is interval colorable.

Main Results. In this section we investigate the deficiency of all outerplanar graphs
and generalize Theorem A2. Let fi(G) denote the number of faces having i edges in the
outerplanar graph G, i = 3,4, . . . , |V (G)|.

L e m m a . Let G be a Hamiltonian outerplanar graph and let w0 ∈ V (G) be some
fixed vertex. There exists a proper coloring α of G such that:

◦ def(w0,α) = 0;
◦ def(α) = ∑

i≥3,i odd
fi(G);

◦ gn(α)≤ f3(G)+ sgn ∑
i≥5,i odd

fi(G).

P r o o f . We extend the method developed in [21, 23] to prove this Lemma. Let
|V (G)|= n. We construct the coloring α by simultaneously coloring and labeling the edges of
G. We denote the labeling function by λ : λ : E(G)→{lll,uuu,mmm}. The algorithm visits one face
of G at each step and given the color and the label of one edge of the face uniquely determines
the colors and the labels of the other edges. The order of visiting the faces is determined
according to the so called weak dual graph T of G. The vertices of T correspond to the finite
faces of G and two vertices are joined with an edge, if the corresponding faces share an edge
in G. It is known that the weak dual graph of an outerplanar graph is a forest [24]. In our
case G is Hamiltonian, hence 2-connected, so the weak dual graph is a tree. The algorithm
for constructing α and λ is described below.

1. Draw the graph G on a plane without crossings in a way that all its vertices are on the
unbounded face. The edges of the unbounded face form a Hamiltonian cycle. Denote
the vertices along that cycle starting from the w0 vertex by w0,w1, . . . ,wn−1 in the
clockwise direction.

2. Compute the weak dual tree T of G.

3. Take the face of G that contains the edge w0wn−1. Let t0 ∈ V (T ) be the vertex
corresponding to that face. Note that this face is uniquely determined (otherwise,
the edge w0wn−1 would not be on the outer face). Let the vertices of that face be
w0 = v1,v2, . . . ,vr = wn−1 (in the clockwise direction).

4. Set α(v1vr) = 1 and λ (v1vr) = uuu.
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5. Traverse the tree T using breadth-first search, starting from the vertex t0. Let F be the
face of G corresponding to the current vertex t ∈V (T ). The algorithm guarantees that
one of the edges of F is already colored and labeled. Let V (F) = {v1,v2, . . . ,vr} (in
the clockwise direction), where v1vr is the labeled edge and α(v1vr) = k. The colors
and labels of the remaining edges are determined depending on r and the label λ (v1vr)
(Fig. 2):

(a) If λ (v1vr) = lll, then the algorithm guarantees that S(v1,α) = S(vr,α) = k, so if
we use smaller colors on the new edges, the coloring will remain proper.

i. If r = 3, then set α(v1v2) = k−1, α(v2v3) = k−2, λ (v1v2) = mmm and
λ (v2v3) = lll. Note that the color k−1 will be missing in the spectrum of v3
and it will not be filled in the later steps of the algorithm.

ii. If r = 2s, s ≥ 2, then color the edges v1v2,v2v3, ...,v2s−1v2s by alternating
k−1 and k, and label them by alternating lll and uuu.

iii. If r = 2s+1, s≥ 2, then set α(v1v2) = k−1, α(v2v3) = k−2, λ (v1v2) = mmm,
λ (v2v3) = lll, color the edges v3v4,v4v5, ...,v2sv2s+1 by alternating k and k−1,
and label them by alternating uuu and lll. Note that the color k− 1 is missing
from the spectrum of v3.

(b) If λ (v1vr) = uuu, then the algorithm guarantees that S(v1,α) = S(vr,α) = k, so if
we use larger colors on the new edges, the coloring will remain proper.

i. If r = 3, then set α(v1v2) = k + 1, α(v2v3) = k + 2, λ (v1v2) = mmm and
λ (v2v3) = uuu. Note that the color k+1 is missing in the spectrum of v3.

ii. If r = 2s, s ≥ 2, then color the edges v1v2,v2v3, ...,v2s−1v2s by alternating
k−1 and k, and label them by alternating uuu and lll.

iii. If r = 2s+1, s≥ 2, then set α(v1v2) = k+1, α(v2v3) = k+2, λ (v1v2) = mmm,
λ (v2v3)= uuu, color the edges v3v4,v4v5, ...,v2sv2s+1 by alternating k and k+1,
and label them by alternating lll and uuu. Note that the color k+ 1 is missing
from the spectrum of v3.

(c) If λ (v1vr) = mmm, then the algorithm guarantees that either S(v1,α) = S(vr,α) = k
or S(v1,α) = S(vr,α) = k.

i. If S(v1,α) = S(vr,α) = k, then rename the vertices of F in the counter-
clockwise direction, so we guarantee that S(v1,α) = S(vr,α) = k.

ii. If r = 3, then set α(v1v2) = k + 1, α(v2v3) = k − 1, λ (v1v2) = uuu and
λ (v2v3) = lll. Note that the color k will be missing in the spectrum of v2.

iii. If r = 2s, s ≥ 2, then set α(v1v2) = k + 1, α(v2v3) = k, λ (v1v2) = uuu and
λ (v2v3) = mmm. Then color the edges v3v4,v4v5, ...,v2s−1v2s by alternating
k−1 and k, and label them by alternating uuu and lll.

iv. If r = 2s+ 1, s ≥ 2, then set α(v1v2) = k+ 1, λ (v1v2) = uuu, color the edges
v2v3,v3v4, ...,v2sv2s+1 by alternating k− 1 and k, and label them by alter-
nating lll and uuu.

6. If min
e∈E(G)

α(e) = c0 6= 1, then adjust the colors on all edges by the formula

α(e) = α(e)− c0 +1 for all e ∈ E(G).

To complete the proof we have to check the three statements of the Lemma. First, note that
the algorithm introduces exactly one missing color in the spectrum of one of the vertices of
every face with odd number of edges (steps 5(a) i, 5(b) i, 5(c) ii, 5(a) iii, 5(b) iii and 5(c) iv).
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Moreover, the algorithm doesn’t introduce any missing colors in the vertices of the faces
with even number of edges (steps 5(a) ii, 5(b) ii, 5(c) iii). This implies that the total number
of missing colors in the spectrums equals the number of faces with odd number of edges:
def(α) = ∑

i≥3,i odd
fi(G).
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Fig. 2. Description of the step 5 of 
the algorithm described in the 
proof of Lemma. 
  

Rows correspond to the label 
of the precolored edge v1vr. 

Columns correspond to the 
number of edges of the current 
face F.  

Vertices denoted by circles 
(instead of disks) indicate that one 
more color will miss from their 
spectrum after the current iteration 
of the algorithm. 

Next, it is important to note that the deficiency of any vertex can be more than one
only in the case when the algorithm introduces a missing color several times while processing
different faces containing that vertex. When r ≥ 5 (steps 5(a) iii, 5(b) iii and 5(c) iv) or when
r = 3 and λ (v1v3) = mmm (step 5(d) ii) the missing color is introduced to a vertex that was never
visited before. So the deficiency can become larger than one only during the steps 5(a) i
and 5(b) i (r = 3 and λ (v1vr) = lll or λ (v1vr) = uuu). Thus the deficiency of any vertex cannot
be more than the number of triangles in G plus one, in that case it also belongs to a larger
odd cycle. Therefore, gn(α) = max

v∈V (G)
{def(v,α)} ≤ f3(G)+ sgn ∑

i≥5,i odd
fi(G). Equality is

achieved in the case the graph G is a fan.
Finally, we need to show that def(w0,α) = 0. Suppose it belongs to k ≥ 1 different

faces. These faces are visited in the order defined by the traversal of the tree T (which is a
breadth-first search). After the step 4 each time one of these k faces is visited. The vertex
w0 will belong to the edge that is already colored and labeled. It will be denoted by v1.
The only exception is in the step 5(c)i, when λ (v1vr) = mmm and w0 might be denoted by vr.
Note that regardless of the length of the face r and the initial label λ (v1vr), no missing colors
are introduced at the vertex v1. �

To prove the next theorem we need the concept of block-cut-vertex tree. Block is
defined as a maximal 2-connected subgraph. Cut vertex is a vertex whose removal increases
the number of connected components of the graph. For a given graph G let B denote the set



Khachatrian H. H. Deficiency of Outerplanar Graphs. 27

of blocks and C denote the set of cut vertices. Note that every cut vertex belongs to at least
two blocks. We can construct a graph bc(G) in the following way: V (bc(G)) = B∪C and
the vertices b ∈ B and c ∈C are joined with an edge if and only if the vertex c belongs to the
block b. It is easy to see that bc(G) is a tree [25] and is called a block-cut-vertex tree of G.

T h e o r e m 1 . If G is an outerplanar graph, then
def(G)≤ ∑

i≥3,i odd
fi(G) and gn(G)≤ f3(G)+ sgn ∑

i≥5,i odd
fi(G).

P r o o f . Let bc(G) denote the block-cut-vertex tree of G. Denote the blocks of G by
B1,B2, . . . ,Bm, m ≥ 1, and cut vertices by c1, . . .cn, n ≥ 0. The blocks are either isomorphic
to K2 or are Hamiltonian outerplanar graphs. We construct a coloring β of the graph G based
on the colorings of blocks. We start from the vertex B1 and color the corresponding block. If
B1 is isomorphic to K2, we color its only edge by 1. If it is a Hamiltonian outerplanar graph,
we set β (e) = α1(e) for every e ∈ E(B1), where α1 is the coloring of B1 from Lemma.

Next, we traverse the tree bc(G) using breadth-first search. Suppose the block
Bi ∈V (bc(G)) is reached. Its parent in bc(G) is some cut vertex ck whose parent is another,
already colored, block B j. Suppose that at this stage we have S(ck,β ) = t. We construct a
coloring αi of the block Bi. If Bi is isomorphic to K2, we color its only edge by 1. Otherwise,
αi is the coloring of Bi from Lemma by setting w0 = ck, so that def(ck,αi) = 0. We color the
corresponding edges in G by setting β (e) = αi(e)+ t for all e ∈ E(Bi). So the equality of
def(ck,β ) and def(ck,α j) after coloring Bi is guaranteed.

It is easy to see that def(β ) = ∑
k

de f (αk) = ∑
k

∑
i≥3
i odd

fi(Bk) = ∑
i≥3
i odd

fi(G),

gn(β ) = max
k

gn(αk)≤max
k

{
f3(Bk)+ sgn ∑

i≥5
i odd

fi(Bk)

}
≤ f3(G)+ sgn ∑

i≥5
i odd

fi(G). �

C o r o l l a r y 1. If G is a bipartite outerplanar graph, then it is interval colorable.
C o r o l l a r y 2. If G is a triangle free outerplanar graph, then it is interval

1-gap-colorable.
C o r o l l a r y 3. If G is an outerplanar graph, then

de f (G)≤ (|V (G)|−2)/(og(G)−2).
P r o o f . Every Hamiltonian outerplanar graph can be constructed by starting from

K2 and iteratively adding bounded faces. Every new bounded face with m edges adds exactly
m−2 vertices. So, if G is Hamiltonian, we get |V (G)| = 2+ ∑

i≥3
fi(G)(i−2). In the general

case, when B1, . . . ,Bk, k ≥ 1, are the Hamiltonian blocks of G, we have

|V (G)| ≥ 1+
k

∑
j=1

(|V (B j)|−1)≥ 1+
k

∑
j=1

(
2+∑

i≥3
fi(B j)(i−2)−1

)
≥ 2+∑

i≥3
fi(G)(i−2)≥ 2+ ∑

i≥3,i odd
fi(G)(i−2)≥ 2+ ∑

i≥3,i odd
fi(G)(og(G)−2).

The last inequality holds, because of the definition of og(G). Due to Theorem 6, we

obtain: def(G)≤ ∑
i≥3,i odd

fi(G)≤ |V (G)|−2
og(G)−2

. �

This means that the outerplanar graphs satisfy Conjecture.

The author would like to thank P. A. Petrosyan, V. V. Mkrtchyan and A. R. Davtyan
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