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In the paper typed and untyped λ -terms are considered. Typed λ -terms use variables
of any order and constants of order ≤ 1. Constants of order 1 are strong computable
functions with indeterminate values of arguments and every function has an untyped
λ -term that λ -defines it. The so-called canonical notion of δ -reduction is introduced.
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λ -terms into untyped λ -terms is studied.
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Typed λ -terms, Canonical Notion of δ -Reduction. The definitions of this section
can be found in [1–3]. A partially ordered set is said to be complete, if each of its linear
ordered subsets has the least upper bound. It is easy to see that every complete set has a least
element. Let A,B be nonempty partially ordered sets. A mapping ϕ : A→ B is said to be
monotonic, if a⊆ b implies ϕ(a)⊆ ϕ(b) for all a,b ∈ A (⊆ is the symbol for partial ordering
relation).

Let M be a partially ordered set, which has an element ⊥, which corresponds to the
indeterminate value. Each element of M is comparable with itself and with ⊥, which is the
least element of M. Let us define the set of types (denoted by Types).

1. M ∈ Types.
2. If β ,α1, . . . ,αk ∈ Types (k > 0), then the set of all monotonic mappings

from α1× . . .×αk into β (denoted by [α1× . . .×αk→ β ]) belongs to Types.
If α ∈ Types, then the order of type α (denoted by ord(α)) will be a natural

number, which is defined in the following way: if α = M, then ord(α) = 0,
if α = [α1 × ... × αk → β ], where β ,α1, ...αk ∈ Types, k > 0, then
ord(α) = 1+max(ord(α1), . . . ,ord(αk),ord(β )), if x is a variable of type α and a constant
c ∈ α , then ord(x) = ord(c) = ord(α). Every type α ∈ Types is a complete set (see [1]).

Let α ∈ Types and V T
α be a countable set of variables of type α , then V T =

⋃
α∈Types

V T
α

is the set of all variables. The set of all terms, denoted by ΛT =
⋃

α∈Types

Λ
T
α , where ΛT

α is

the set of terms of type α , is defined in the following way:
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1. If c ∈ α , α ∈ Types, then c ∈ ΛT
α ;

2. If x ∈V T
α ,α ∈ Types, then x ∈ ΛT

α ;
3. If τ ∈ ΛT

[α1×...×αk→β ], ti ∈ ΛT
αi

, where β , αi ∈ Types, i = 1, . . . ,k, k ≥ 1, then
τ(t1, . . . , tk) ∈ ΛT

β
(the operation of application);

4. If τ ∈ ΛT
β
,xi ∈V T

αi
, where β ,αi ∈ Types, i 6= j⇒ xi 6= x j, i, j = 1, . . . ,k, k≥ 1, then

λx1 . . .xk[τ] ∈ ΛT
[α1×...×αk→β ] (the operation of abstraction).

The notions of free and bound occurrences of variables in terms as well as the notion
of a free variable are introduced in the ordinary way. The set of all free variables of a term t is
denoted by FV (t). A term which doesn’t contain free variables is called a closed term. Terms
t1 and t2 are said to be congruent (which is denoted by t1 ≡ t2), if one term can be obtained
from the other by renaming bound variables. In what follows congruent terms are considered
identical.

Let t ∈ ΛT
α , α ∈ Types and FV (t) ⊂ {y1, . . . ,yn}, ȳ0 = 〈y0

1, . . . ,y
0
n〉, where

yi ∈V T
βi
, y0

i ∈ βi, βi ∈ Types, i = 1, . . . ,n, n≥ 0. The value of the term t for the values of the
variables y1, . . . ,yn equal to ȳ0 = 〈y0

1, . . . ,y
0
n〉 is denoted by Valȳ0(t) and defined as follows:

1. If t ≡ c and c ∈ α , then Valȳ0(c) = c;
2. If t ≡ x, x ∈V T

α , then Valȳ0(x) = y0
i , where FV (x) = {x} ⊂ {y1, . . . ,yn} and x≡ yi,

i = 1, . . . ,n, n≥ 1;
3. If t ≡ τ(t1, ..., tk) ∈ ΛT

α , where τ ∈ ΛT
[α1×...×αk→α], ti ∈ ΛT

αi
,αi ∈ Types, i = 1, . . . ,k,

k ≥ 1, then Valȳ0(τ(t1, . . . , tk)) =Valȳ0(τ)(Valȳ0(t1), . . . ,Valȳ0(tk));
4. If t ≡ λx1 . . .xk[τ] ∈ ΛT

α , where α = [α1 × . . .×αk → β ], τ ∈ ΛT
β
, xi ∈ V T

αi
,

β ,αi ∈ Types, i = 1, . . . ,k, k ≥ 1, then Valȳ0(λx1 . . .xk[τ]) ∈ [α1× . . .×αk → β ] and is de-
fined as follows: let {y1, . . . ,yn}\{x1, . . . ,xk}= {y j1 , . . . ,y js}, s≥ 0, and z̄0 = 〈y0

j1 , . . . ,y
0
js〉,

then for any x̄0 = 〈x0
1, . . . ,x

0
k〉, where x0

i ∈ αi, i = 1, . . . ,k, Valȳ0(λx1 . . .xk[τ])(x0
1, . . . ,x

0
k) =

=Valx̄0,z̄0(τ), where x̄0, z̄0 = 〈x0
1, . . . ,x

0
k ,y

0
j1 , . . . ,y

0
js〉.

It follows from [1], that for any ȳ0 = 〈y0
1, . . . ,y

0
n〉 and ȳ1 = 〈y1

1, . . . ,y
1
n〉 such that ȳ0⊆ ȳ1,

where y0
i ,y

1
i ∈ βi (1≤ i≤ n), we have the following:

1. Valȳ0(t) ∈ α;
2. Valȳ0(t)⊆Valȳ1(t).

Let terms t1, t2 ∈ ΛT
α , α ∈ Types, FV (t1) ∪ FV (t2) = {y1, . . . ,yn}, yi ∈ V T

βi
,

βi ∈ Types, i = 1, . . . ,n, n ≥ 0, then terms t1 and t2 are called equivalent (denoted by
t1 ∼ t2), if for any ȳ0 =< y0

1, . . . ,y
0
n >, where y0

i ∈ βi, i = 1, . . . ,n, we have the following:
Valȳ0(t1) =Valȳ0(t2). A term t ∈ ΛT

α , α ∈ Types, is called a constant term with value a ∈ α,
if t ∼ a.

L e m m a 1. Let t ∈ΛT
M, FV (t) = {y1, . . . ,yn}, yi ∈V T

βi
, βi ∈ Types, i = 1, . . . ,n,

n≥ 0, and for every m ∈M \{⊥}, t 6∼m, then Val
Ω̄
(t) =⊥, where Ω̄ = 〈Ω1, . . . ,Ωn〉, Ωi is

the least element of the type βi, i = 1, . . . ,n.
P r o o f . If t ∼ ⊥, then it is obvious that Val

Ω̄
(t) = ⊥. If t 6∼ ⊥, then there exists

such m ∈M \{⊥} and ȳ0 = 〈y0
1, . . . ,y

0
n〉, where y0

i ∈ βi, i = 1, . . . ,n, that Valȳ0(t) = m. Since
Ω̄⊆ ȳ0, we have Val

Ω̄
(t)⊆Valȳ0(t) and from t 6∼m it follows that Val

Ω̄
(t) 6= m. Thus we get

Val
Ω̄
(t) =⊥. �

Further, is assumed that M is a recursive set and considered terms use variables of
any order and constants of order ≤ 1, where the constants of order 1 are strong computable,
monotonic functions with indeterminate values of arguments. A function f : Mk→M, k≥ 1,
with indeterminate values of arguments is said to be strong computable, if there exists an
algorithm, which stops with value f (m1, . . . ,mk) for all m1, . . . ,mk ∈M (see [2]). We suppose
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that each strong computable function with indeterminate values of arguments is given by its
algorithm. We denote all such terms by ΛT and denote all such terms of type α by ΛT

α .
The notation t[t1, ..., tk] is used to show mutually different variables of interest x1, ...,xk,

k ≥ 1, of a term t. The notation t[t1, . . . , tk] denotes the term obtained by the simultaneous
substitution of the terms t1, . . . , tk for all free occurrences of variables x1, . . . ,xk respectively,
where xi ∈V T

αi
, i 6= j⇒ xi 6≡ x j, ti ∈ ΛT

αi
, αi ∈ Types, i, j = 1, . . . ,k, k ≥ 1. A substitution

is said to be admissible, if all free variables of the term being substituted remain free after the
substitution. We will consider only admissible substitutions.

A term t ∈ ΛT with a fixed occurrence of a subterm τ1 ∈ ΛT
α , where α ∈ Types,

is denoted by tτ1 and a term with this occurrence of τ1 replaced by τ2, where τ2 ∈ ΛT
α

is denoted by tτ2 .
A term of the form λx1 . . .xk[τ[x1, . . . ,xk]](t1, . . . , tk), where xi ∈ V T

αi
,

i 6= j⇒ xi 6≡ x j, τ ∈ ΛT , ti ∈ ΛT
αi
, αi ∈ Types, i, j = 1, . . . ,k, k ≥ 1, is called a β -redex,

its convolution is the term τ[t1, . . . , tk]. The set of all pairs (τ0,τ1), where τ0 is a β -redex and
τ1 is its convolution, is called a notion of β -reduction and is denoted by β .

A term t1 is said to be obtained from a term t0 by one-step β -reduction (denoted
by t0 →β t1 ), if t0 ≡ tτ0 , t1 ≡ tτ1 ,τ0 is a β -redex and τ1 is its convolution. A term t is
said to be obtained from a term t0 by β -reduction (denoted by t0 →→β t ), if there exists
a finite sequence of terms t1, . . . , tn (n ≥ 1) such that t1 ≡ t0, tn ≡ t and ti →β ti+1, where
i = 1, . . . ,n−1.

A term containing no β -redexes is called a β -normal form. The set of all
β -normal forms is denoted by β−NFT . It follows from [4] that every term t ∈ΛT is strongly
β -normalized, i.e. every β -reduction chain for the term t has a finite length. Therefore, for
every term t ∈ ΛT there exists a term τ ∈ β −NFT such that t→→β τ .

δ -redex has a form f (t1, . . . , tk), where f ∈ [Mk → M], ti ∈ ΛT
M, i = 1, . . . ,k,

k ≥ 1, its convolution is either m ∈ M and in this case f (t1, . . . , tk) ∼ m or a subterm ti and
in this case f (t1, . . . , tk) ∼ ti, i = 1, . . . ,k. A fixed set of term pairs (τ0,τ1), where τ0 is a
δ -redex and τ1 is its convolution, is called a notion of δ -reduction and is denoted by δ .

A term t1 is said to be obtained from a term t0 by one-step δ -reduction (denoted by
t0→δ t1), if t0 ≡ tτ0 , t1 ≡ tτ1 ,τ0 is a δ -redex and τ1 is its convolution. A term t is said to be
obtained from a term t0 by δ -reduction (denoted by t0→→δ t), if there exists a finite sequence
of terms t1, . . . , tn (n≥ 1) such that t1 ≡ t0, tn ≡ t and ti→δ ti+1, where i = 1, . . . ,n−1.

A term containing no δ -redexes is called a δ -normal form. The set of all
δ -normal forms is denoted by δ−NFT . It follows from [4], that every term t ∈ΛT is strongly
δ -normalized, i.e. every δ -reduction chain for the term t has a finite length. Therefore, for
every term t ∈ ΛT there exists a term τ ∈ δ −NFT such that t→→δ τ .

A term t1 is said to be obtained from a term t0 by one-step βδ -reduction (denoted by
t0 →βδ t1 ), if either t0 →β t1 or t0 →δ t1. A term t is said to be obtained from a term t0
by βδ -reduction (denoted by t0→→βδ t ), if there exists a finite sequence of terms t1, . . . , tn
(n≥ 1) such that t1 ≡ t0, tn ≡ t and ti→βδ ti+1, where i = 1, . . . ,n−1.

A term containing no βδ -redexes is called a normal form. The set of all normal forms
is denoted by NFT . Due to [4] every term t ∈ ΛT is strongly βδ -normalized, i.e. every
βδ -reduction chain for the term t has a finite length. Therefore, for every term t ∈ ΛT there
exists a term τ ∈ NFT such that t→→βδ τ .

Note, that if t1→→βδ t2, then t1 ∼ t2, where t1, t2 ∈ ΛT
α , α ∈ Types [4].

A notion of δ -reduction is called a single-valued notion of δ -reduction if δ is a single-
valued relation, i.e. if 〈τ0,τ1〉 ∈ δ and 〈τ0,τ2〉 ∈ δ , then τ1 ≡ τ2, where τ0,τ1,τ2 ∈ ΛT

M .
A notion of δ -reduction is called an effective notion of δ -reduction, if there
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exists an algorithm, which gives its convolution, if f (t1, . . . , tk) is a δ -redex and stops with a
negative answer otherwise for any term f (t1, . . . , tk), where f ∈ [Mk → M], ti ∈ ΛT

M,
i = 1, . . . ,k, k ≥ 1.

D e f i n i t i o n 1. An effective, single-valued notion of δ -reduction is called
a canonical notion of δ -reduction, if:

1. t ∈ β −NFT , t ∼ m, m ∈M \{⊥}⇒ t→→δ m;
2. t ∈ β −NFT , FV (t) = /0, t ∼⊥⇒ t→→δ ⊥.

If t ∈ β − NFT , t ∼ m, m ∈ M \ {⊥}, then t ≡ m or t ≡ f (t1, . . . , tk), where
ti ∈ ΛT

M, ti ∈ β −NFT , f ∈ [Mk → M], i = 1, . . . ,k, k ≥ 1. We introduce the notion of
rank for such terms: rank(m) = 0, rank( f (t1, . . . , tk)) = 1+max(rank(t j1), . . . ,rank(t js)),
where t jr(1≤ r ≤ s,s≥ 0) is a constant term with value belonging to M \{⊥} and t j1 , . . . , t js
is the maximal subsequence (of such terms) for the sequence t1, . . . , tk.

T h e o r e m 1 . On Canonical Notion of δ -Reduction. For every recursive set of
strong computable, monotonic functions with indeterminate values of arguments there exists
a canonical notion of δ -reduction.

P r o o f . Let C be a recursive set of strong computable, monotonic functions with
indeterminate values of arguments. Now we define the notion of δ -reduction for the set C.
For every function f ∈C, where f : Mk→M,k ≥ 1, we have:

if f (m1, . . . ,mk) = m, where m,m1, . . . ,mk ∈M, m 6=⊥, then 〈 f (µ1, . . . ,µk), m〉 ∈ δ ,
where µi = mi if mi 6=⊥, and µi ≡ ti, ti ∈ ΛT

M if mi =⊥, i = 1, . . . ,k, k ≥ 1;
if f (m1, . . . ,mk) =⊥, where m1, . . . ,mk ∈M, then 〈 f (m1, . . . ,mk),⊥〉 ∈ δ .
Let us show that δ is a canonical notion of δ -reduction. It is easy to see that δ is an

effective, single-valued notion of δ -reduction.
1. Let t ∈ β −NFT , t ∼m, m ∈M \{⊥}. Let us show that t→→δ m. If rank(t) = 0,

then t ≡ m, and t →→δ m. Let rank(t) = n > 0, then t ≡ f (t1, . . . , tk), where f ∈ C and
ti ∈ ΛT

M, ti ∈ β −NFT , i = 1, . . . ,k, k ≥ 1, and we suppose that Def. 1 (p. 1) holds for the
terms of a rank < n. If ti ∼ mi,mi ∈M \{⊥}, then by the induction hypothesis, ti→→δ mi,
i= 1, . . . ,k. Therefore f (t1, . . . , tk)→→δ f (τ1, . . . ,τk), where τi =mi if ti∼mi, mi ∈M\{⊥},
and τi ≡ ti, otherwise, i = 1, . . . ,k. According to the Lemma 1 we have f (µ1, . . . ,µk) = m,
where µi ≡ τi if τi = mi, mi ∈M \{⊥} and µi = ⊥ otherwise. Thus, 〈 f (τ1, . . . ,τk),m〉 ∈ δ ,
f (t1, . . . , tk)→→δ f (τ1, . . . ,τk)→δ m and t→→δ m.

2. Let t ∈ β −NFT , FV (t) = /0, t ∼⊥. It is easy to see that in this case t→→δ ⊥.�
T h e o r e m 2 . Let δ be a canonical notion of δ -reduction, then:
1. t ∈ ΛT

M, t ∼ m, m ∈M \{⊥}⇒ t→→βδ m;
2. t ∈ ΛT

M, FV (t) = /0, t ∼⊥⇒ t→→βδ ⊥.
P r o o f .
1) Let t ∈ ΛT

M, t ∼ m, m ∈ M \ {⊥}, then, according to [4], there exists a term
τ ∈ β −NFT such that t →→β τ and τ ∼ m. Therefore, according to the Def. 1 (p. 1)
we have τ →→δ m, and t→→βδ m.

2) If t ∈ ΛT
M, FV (t) = /0, t ∼ ⊥, then, according to [4], there exists a term

τ ∈ β −NFT , FV (τ) = /0 such that t →→β τ and τ ∼ ⊥. Therefore, according to the
Def. 1 (p. 2) we have τ →→δ ⊥, and t→→βδ ⊥. �

L e m m a 2. Let δ be a canonical notion of δ -reduction, let t[x] ∈ ΛT
M, x ∈ V T

α ,
α ∈ Types and t[x]→→βδ m, m ∈M \{⊥}. Then for any τ ∈ ΛT

α we have t[τ]→→βδ m.

P r o o f . λx [t[x]] (τ)→→βδ λx[m](τ)→β m, therefore, according to [4] we have
λx [t[x]] (τ)∼m. On the other hand, λx [t[x]] (τ)→β t[τ] and according to [4] t[τ]∼m and so
from the p. 1 of Theorem 2, we get t[τ]→→βδ m. �
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Untyped λ -Terms. The definitions of this section can be found in [3, 5]. Let us fix a
countable set of variables V . The set of terms Λ is defined as follows:

1. if x ∈V , then x ∈ Λ;
2. if t1, t2 ∈ Λ, then (t1t2) ∈ Λ (the operation of application);
3. if x ∈V and t ∈ Λ, then (λxt) ∈ Λ (the operation of abstraction).
Let us introduce the following shorthand notations: a term (. . .(t1t2) . . . tk), where

ti ∈ Λ, i = 1, . . . ,k, k > 1, is denoted by t1t2 . . . tk and a term (λx1 (λx2(. . .(λxnt) . . .))),
where x j ∈V, j = 1, . . . ,n, n > 0, t ∈ Λ, is denoted by λx1x2 . . .xn.t.

The notions of free and bound occurrences of variables in terms as well as the notion
of free variable are introduced in the conventional way. The set of all free variables of a term
t is denoted by FV (t). A term, which doesn’t contain free variables, is called a closed term.
Terms t1 and t2 are said to be congruent (which is denoted by t1 ≡ t2), if one term can be
obtained from the other by renaming bound variables. In what follows congruent terms are
considered identical.

The notation t[x1, . . . ,xk] is used to show mutually different variables of interest
x1, . . . ,xk, k ≥ 1, of a term t. The notation t[t1, . . . , tk] denotes the term obtained by the
simultaneous substitution of the terms t1, . . . , tk for all free occurrences of variables x1, . . . ,xk
respectively, i 6= j⇒ xi 6≡ x j, i, j = 1, . . . ,k, k ≥ 1. A substitution is said to be admissible,
if all free variables of the term being substituted remain free after the substitution. We will
consider only admissible substitutions.

A term t with a fixed occurrence of a subterm τ1 is denoted by tτ1 , and a term with this
occurrence of τ1 replaced by a term τ2 is denoted by tτ2 .

A term of the form (λx.t[x])τ is called a β -redex and the term t[τ] is called its
convolution. The set of all term pairs (τ0,τ1), where τ0 is a β -redex and τ1 is its convo-
lution, is called a notion of β -reduction and is denoted by β .

A term t1 is said to be obtained from a term t0 by one-step β -reduction (denoted
by t0 →β t1) if t0 ≡ tτ0 , t1 ≡ tτ1 , τ0 is a β -redex and τ1 is its convolution. A term t is
said to be obtained from a term t0 by β -reduction (denoted by t0 →→β t), if there exists
a finite sequence of terms t1, . . . , tn (n ≥ 1) such that t1 ≡ t0, tn ≡ t and ti →β ti+1, where
i = 1, . . . ,n−1.

A term containing no β -redexes is called a normal form. The set of all normal forms
is denoted by NF and the set of all closed normal forms is denoted by NF0. A term t
is said to have a normal form, if there exists a term τ such that τ ∈ NF and t →→β τ .
From the Church–Rosser theorem [5] it follows, that if t →→β τ1, t →→β τ2, τ1,τ2 ∈ NF ,
then τ1 ≡ τ2.

If a term has a form λx1 . . .xk.xt1 . . . tn, where x1, . . . ,xk, x ∈V, t1, . . . , tn ∈ Λ, k,n≥ 0,
it is called a head normal form and x is called its head variable. The set of all head normal
forms is denoted by HNF . A term t is said to have a head normal form, if there exists a term
τ such that τ ∈ HNF and t→→β τ . It is known that NF ⊂ HNF , but HNF 6⊂ NF (see [5]).

Let λx1 . . .xk.((λx.t)τ)t1 . . . tn be a term, where x1, . . . ,xk, x ∈ V, t1, . . . , tn,
τ ∈ Λ, k,n ≥ 0, then the β -redex (λx.t)τ is called a head β -redex. Obviously, every head
β -redex of the term is its left β -redex, but not every left β -redex of the term is its head redex.
Recall that if a term has a head normal form, then the reducing chain, where always the head
β -redex is chosen, leads to a head normal form and if a term has a normal form, then the
reducing chain, where always the leftmost β -redex is chosen, leads to the normal form [5].

L e m m a 3. [3]. Let tµ be a term with a fixed occurrence of a term µ , which
doesn’t have a head normal form, and let ν be any term, then:

1. tµ →→β τ , where τ ∈ NF ⇒ tν →→β τ;
2. tµ has a head normal form⇒ tν has a head normal form.
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Translation. Let M be a recursive, partially ordered set, which has a least element ⊥
and every element of M is comparable with itself and with ⊥. Every m ∈M is mapped to an
untyped term in the following way:

if m ∈M \{⊥}, then m′ ∈ NF0 and for any m1,m2 ∈M \{⊥},m1 6= m2⇒m1
′ 6≡m2

′;
if m≡⊥, then m′ ≡Ω≡ (λx.xx)(λx.xx), x ∈V.
We say that a term Φ λ -defines (see [2]) the function f : Mk → M, k ≥ 1, with

indeterminate values of arguments, if for any m1, . . . ,mk ∈M we have:
f (m1, . . . ,mk) = m 6=⊥⇒Φm1

′ . . .mk
′→→β m′;

f (m1, . . . ,mk) =⊥⇒Φm1
′ . . .mk

′doesn’t have a head normal form.
We consider typed terms using functions from a recursive set C. Every f ∈ C is a

strong computable function with intermediate values of arguments, which has an untyped
λ -term that λ -defines it. From [2] it follows that every f ∈C is a strong computable, mono-
tonic function with indeterminate values of arguments. Thus, according to the Theorem 1,
there exists a canonical notion of δ -reduction for the set C. Let us consider the algorithm of
translation of any typed term t to untyped term t ′ studied in [3]:

if t ≡ m ∈M, then t ′ ≡ m′;
if t ∈C, then FV (t ′) = /0 and t ′ λ -defines t;
if t ≡ x ∈V T , then x′ ∈V and for any x1,x2 ∈V T , x1 6≡ x2⇒ x1

′ 6≡ x2
′;

if t ≡ τ(t1, . . . , tk), k ≥ 1, then t ′ ≡ τ ′t1′ . . . tk ′;
if t ≡ λx1 . . .xn[τ], n≥ 1, then t ′ ≡ λx1

′ . . .xn
′.τ ′.

L e m m a 4 . [3]. t,τ ∈ ΛT , t→→β τ ⇒ t ′→→β τ ′.

L e m m a 5 . Let δ be a canonical notion of δ -reduction, then:
1. t ∈ β −NFT , t→→δ m, m ∈M \{⊥}⇒ t ′→→β m′,
2. t ∈ β −NFT ,FV (t) = /0, t→→δ ⊥⇒ t ′ does not have a head normal form.
P r o o f .
1) Let t ∈ β −NFT , t→→δ m, m ∈M \{⊥}. We have two cases: 1a) FV (t) = /0, and

1b) FV (t) 6= /0.
1a) Let t ∈ β −NFT , FV (t) = /0, t →→δ m, m ∈ M \ {⊥}. We will show that

t ′ →→β m′. Let t →δ t1 →δ . . . →δ tn ≡ m, where ti ∈ β − NFT , FV (ti) = /0,
i = 1, . . . ,n, n ≥ 0. If n = 0, then t ≡ m, t ′ ≡ m′ and t ′ →→β m′. Let n > 0
and suppose that (1a) holds for n − 1. Let t ≡ t f (m1,...,mk) →δ tm0 ≡ t1, where
〈 f (m1, . . . ,mk),m0〉 ∈ δ , m0,m1, . . . ,mk ∈M, k ≥ 1.

If m0 6= ⊥, then f (m1, . . . ,mk) = m0 ⇒ f ′m′1 . . .m
′
k →→β m′0 and

t ′ ≡ t ′f ′m′1...m′k
→→β t ′m′0

≡ t ′1. Since t1 →δ . . .→δ tn ≡ m, by induction hypothesis we get

t ′1→→β m′. Therefore, t ′→→β m′.
If m0 =⊥, then t1≡ t⊥ and t ′1≡ t ′

Ω
. Since t1→δ . . .→δ tn≡m, by induction hypothesis

we get, t ′1→→β m′. Therefore according to the p. 1 of Lemma 3, t ′ ≡ t ′f ′m′1...m′k
→→β m′.

1b) Let t ∈ β − NFT , FV (t) 6= /0, t →→δ m, m ∈ M \ {⊥}. We will show that
t ′ →→β m′. Let FV (t) = {x1, . . . ,xs}, xi ∈ Vαi , αi ∈ Types, i = 1, . . . ,s, s ≥ 1.
Let Ωi ∈Λαi be a term that represents the least element of type αi obtained by the operation of
abstraction and term ⊥, i = 1, . . . ,s. One can show that Ω′i does not have a head normal form,
i = 1, . . . ,s. Since t ≡ t[x1, . . . ,xs]→→δ m, then according to [4] t[x1, . . . ,xs]∼ m, therefore,
t[Ω1, . . . ,Ωs] ∼ m and according to the p. 1 of Theorem 2 we get t[Ω1, . . . ,Ωs]→→βδ m.
According to [4] there exists a term τ ∈ β−NFT , FV (τ) = /0, such that t[Ω1, . . . ,Ωs]→→β τ

and τ ∼ m, then by Def. 1 (p. 1), we conclude that τ →→δ m. From Lemma 4 it follows
that, t ′[Ω′1, . . . ,Ω

′
s]→→β τ ′, by the case (1a) we get τ ′→→β m′. So, t ′[Ω′1, . . . ,Ω

′
s]→→β m′

and, according to the p. 1 of Lemma 3, t ′ ≡ t ′[x′1, . . . ,x
′
s]→→β m′.
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2) Let t ∈ β −NFT , FV (t) = /0, t→→δ ⊥. We will show that t ′ does not have a head
normal form. Let t →δ t1 →δ . . . →δ tn ≡ ⊥, ti ∈ β − NFT , FV (ti) = /0,
i = 1, . . . ,n, n ≥ 0. If n = 0, then t ≡ ⊥, t ′ ≡ Ω and t ′ does not have a head normal form.
Let n > 0 and suppose that (2) holds for n− 1. Let t ≡ t f (m1,...,mk) →δ tm0 ≡ t1, where
〈 f (m1, . . . ,mk),m0〉 ∈ δ , m0,m1, . . . ,mk ∈M, k ≥ 1.

If m0 6= ⊥, then f (m1, . . . ,mk) = m0 ⇒ f ′m′1 . . .m
′
k →→β m′0,

t ′ ≡ t ′f ′m′1...m′k
→→β t ′m′0

≡ t ′1. Since t1 →δ . . . →δ tn ≡ ⊥, by the induction hypothesis

t ′1 does not have a head normal form. Therefore, t ′ does not have a head normal form too.
If m0 = ⊥, then t1 ≡ t⊥ and t ′1 ≡ t ′

Ω
. Since t1 →δ . . . →δ tn ≡ ⊥, by induction

hypothesis t ′1 does not have a head normal form. Since f (m1, . . . ,mk) = ⊥, f ′m′1 . . .m
′
k does

not have a head normal form. Therefore according to p. 2 of Lemma 3, t ′ ≡ t ′f ′m′1...m′k
does

not have a head normal form too. �
Now we give an example of canonical notion of δ -reduction and a term t such that

t ∈ β −NFT , FV (t) 6= /0, t→→δ ⊥ and term t ′ has a head normal form. Let M = N ∪{⊥},
where N = {0,1,2, . . .} and suppose that C = { f}, where f : M→M satisfies f (m) =⊥ for
any m ∈M and so f ∈ [M→M]. Let δ = {〈 f (τ),⊥〉|τ ∈ ΛT

M}, it is easy to see that δ is the
canonical notion of δ -reduction. Let ⊥′ ≡ Ω,0′ ≡ I,(n+1)′ ≡ λx.xFn′, f ′ ≡ λx.xΩ, where
Ω ≡ (λx.xx)(λx.xx), I ≡ λx.x, F ≡ λxy.y, x, y ∈ V. It is easy to see that the term f ′ ∈ Λ

λ -defines the function f . Let t ≡ f (z), where z ∈ V T
M . It is easy to see that

f (z) ∈ β − NFT , FV ( f (z)) = {z} 6= /0, f (z) →δ ⊥, therefore, f (z) →→δ ⊥ and
t ′ ≡ f ′z′ ≡ (λx.xΩ)z′→β z′Ω, where z′ ∈V and z′Ω is a head normal form.

T h e o r e m 3 . On Translation. Let δ be a canonical notion of δ -reduction, then:
1. t ∈ ΛT

M, t→→βδ m, m ∈M \{⊥}⇒ t ′→→β m′;
2. t ∈ ΛT

M, FV (t) = /0, t→→βδ ⊥⇒ t ′ does not have a head normal form.
P r o o f .
1) Let t ∈ ΛT

M, t →→βδ m, m ∈ M \ {⊥}. According to [4], there exists a term
τ ∈ β −NFT such that t →→β τ and τ ∼ m. From Lemma 4 it follows that t ′ →→β τ ′.
By Def. 1 (p. 1), τ →→δ m, and, according to the p. 1 of Lemma 5, we get τ ′ →→β m′.
Therefore t ′→→β m′.

2) Let t ∈ ΛT
M, FV (t) = /0, t →→βδ ⊥. According to [4], there exists a term

τ ∈ β−NFT , FV (τ) = /0 such that t→→β τ and τ ∼⊥. According to Lemma 4, t ′→→β τ ′,
by Def. 1 (p. 2), τ →→δ ⊥, p. 2 of Lemma 5 implies that τ ′ does not have a head normal
form. So, t ′ does not have a head normal form too. �
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