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The problem of electromagnetic absorption in the electronic gas, which is localized
in asymmetric biconvex thin quantum lens, is discussed. It is shown, that in the case
of thin lens, in the plane of quantum lens electron gas is localized in two-dimensional
parabolic confining potential. Thus, in this system the conditions for the realization of the
generalized Kohn’s theorem are satisfied.
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Introduction. Consideration of the many-particle systems in the nanostructures are
the subject of intense research, since the results may have important application in the design
of nanoelectronic devices of new generation [1]. One of the most beautiful many-particle
effects is the independence of the resonant frequency of the long wave radiation absorption of
the electron gas localized in a parabolic quantum dot (QD) [2–4]. Realization of the confining
parabolic potential may be due to the diffusion of the components of QD and environment [5].
On the other hand, the parabolic confining potential may be due to the specific geometry of
the QD, in particular strongly oblate ellipsoid [6].

In the paper, the possibility of realization of generalized Kohn’s theorem for the case
of the asymmetric biconvex thin quantum lens (ABTQL) containing the electron gas is shown.

Theory. Consider the few-body electron gas localized in ABTQL with impenetrable
walls. Then the confining potential for each particle has the following form [7]:

Ucon f =

{
0, inside ABTQL,
∞, outside ABTQL. (1)

Schrödinger equation for the one electron case in cylindrical coordinate is written as:

− h̄2

2µ

(
1
ρ
· ∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2 ·

∂ 2

ϕ2 +
∂ 2

∂ z2

)
Ψ(ρ,ϕ,z)+Ucon f (ρ, z)Ψ(ρ,ϕ,z) =

= EΨ(ρ,ϕ,z).
(2)

The condition of the thinness of the biconvex lens means, that ρ0� h1 +h2, where h1
and h2 are semi-axes for each convex part of ABTQL and ρ0 is radial semi-axis. Based on
this fact we can solve the problem with the help of adiabatic approximation. The geometrical
specificity of ABTQL is such that the motion of particle along the OZ-axis occurs much faster
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than in the plane perpendicular to it. The wave function of the charge carrier can be presented
in the following form:

Ψ(ρ,ϕ,z) = f (~ρ)χ(z(ρ)). (3)

For a fixed value of ρ along the z-axis, the particle will be localized in the 1D infinitely deep
quantum well with the boundaries

z+ =
√

R2
1−ρ2 +h1−R1, z− =−

√
R2

2−ρ2−h2 +R2. (4)

Here R1 and R2 are the curvature radii of two spheres intersection. Thus, the z(ρ)
changes in the interval

−
√

R2
2−ρ2−h2 +R2 ≤ z≤

√
R2

1−ρ2 +h1−R1. (5)

Therefore, at the fixed value of the coordinate ρ the motion of each particle is
localized in 1D potential well with the effective width

a(ρ) =
√

R2
1−ρ2 +

√
R2

2−ρ2 +(h1 +h2)− (R1 +R2). (6)

For the axial part of the wave function and energy we have

χ(z(ρ)) = (2/a(ρ))1/2 sin
πn

a(ρ)

(
z+
√

R2
2−ρ2 +h2−R2

)
,

E(z)
n =

π2h̄2n2

2µa2(ρ)
≡Ue f f

n (ρ).

(7)

As the number of the electrons N is small and the size-quantization in the Z-direction is
sufficiently strong, the majority of the electrons will be localized in the geometrical center
of ABTQL. The condition of the electron localization in the QD center is mathematically
expressed by the relation ρ � ρ0. Than the effective potential energy for the slow motion
can be expanded into series by the small parameter ρ/ρ0. So:

Ue f f
n =

π2h̄2n2

2µ(h1 +h2)2

(
1+

R1 +R2

h1 +h2
·ρ2R1R2

)
=

π2h̄2n2

2µ(h1 +h2)2 +
µΩ2

nρ2

2
, (8)

where Ω
2
n =

π2h̄2(R1 +R2)

µ2(h1 +h2)3R1R2
n2.

If we have few-body gas with the pair interaction:

Vint(~r1, . . . , ~rN) =
1
2

N

∑
i, j i6= j

v
(∣∣~ri−~r j

∣∣) , (9)

then the Hamiltonian of the system will have the following form:

Ĥ(1, . . . ,N) =
1

2µ

N

∑
j=1

P̂j
2
+

N

∑
j=1

Ucon f (~r j)+Vint(~r1, . . . , ~rN). (10)

We assume that the interaction of particles with ABTQL walls along the OZ-axis is so strong
that one can neglect the interparticle interaction in this direction. Therefore, the operator of
interaction between electrons Vint is a function of coordinates in XOY plane:

Vint ≡Vint(~ρ1, ~ρ2, · · · , ~ρN) =
1
2

N

∑
i, j i6= j

v
(∣∣~ρi− ~ρ j

∣∣) . (11)

Taking into account (3) the wave function of the system can be presented as:

Ψ(~r1, . . . , ~rN) = χn1,...,nN (z1(ρ1), . . . ,zN(ρN))F(~ρ1, . . . , ~ρN), (12)
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where

χn1,...,nN (z1(ρ1), . . . ,zN(ρN)) =
N

∏
j=1

√
2/a(ρ j)sin

πn j

a(ρ j)

(
z j +

√
R2

2−ρ2
j +h2−R2

)
. (13)

Respectively for the energy spectra, we have:

E(z)
n1,...,nN =

N

∑
j=1

π2h̄2n2
j

2µa2(ρ j)
. (14)

After substituting the expression for the wave function in the Schrödinger equation
and taking into account (14) for the energy, we will come to the equation for F(~ρ1, . . . , ~ρN){

N

∑
j=1

(
P̂2

x j + P̂2
y j

2µ

)
+

N

∑
j=1

π2h̄2n2
j

2µa2(ρ j)
+

N

∑
i, j=1;i 6= j

v
(∣∣~ρi− ~ρ j

∣∣)
2

}
×

×F(~ρ1, . . . , ~ρN) = EF(~ρ1, . . . , ~ρN).

(15)

As we mention above, the second term in the Eq. (15) plays the role of effective potential
energy for the “slow” subsystem. Expanding the expression under the sum by the small
parameter ρ/ρ0 and after some transformations, we get:{
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2
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2
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∣∣)}×
×F(~ρ1, . . . , ~ρN) =

(
E−S(0)N

)
F(~ρ1, . . . , ~ρN); where S(0)N =

N

∑
j=1

π2h̄2n2
j

2µ(h1 +h2)2 .

(16)

As the gas is few-body, we assume that the strong vertical quantization brings gas to
the states with quantum numbers n1 = n2 = . . .= nN = 1. In this case for the {Ω1,Ω2, . . .ΩN}
we have

Ω1 = Ω2 = · · ·= ΩN =
π h̄
µ

(
R1 +R2

R1R2(h1 +h2)3

)1/2

. (17)

Finally, we come to the 2D Hamiltonian:

Ĥ2D =
1

2µ

N

∑
j=1

(
P̂2

x j + P̂2
y j
)
+

µΩ

2

N

∑
j=1

(x2
j + y2

j)+
N

∑
i, j=1;i6= j

v
(∣∣~ρi− ~ρ j

∣∣)
2

. (18)

Then, following [4] we carry out the change of variables in (18) as follows:

R =
N

∑
j=1

~ρ j√
N

; ~x1 =
~ρ1− ~ρ2√

1 ·2
; ~x2 =

~ρ1 + ~ρ2−2~ρ3√
2 ·3

; ~xN−1 =
~ρ1 + ~ρ2 + · · ·− (N−1)~ρN√

(N−1) ·N
. (19)

After the transition to the new variables, the initial Hamiltonian Ĥ2D is divided into two

independent parts: Ĥ1(~R) = −
h̄2

2µ
· d2

dR2 +
µΩ2R2

2
depends only on the coordinate of the

center of mass, and Ĥ2(~x1, . . . , ~xN) depends only on relative coordinates.
We suppose that the long-wave radiation incident on the system. For the perturbation

operator in the long-wave approximation, we can write:
Ĥ ′ = e~E(t)∑

j
~ρ j =

√
Ne~E(t)~R. (20)

As it follows from (20), Ĥ ′ does not contain relative coordinates {~x1~x2 . . . ~xN}. Consequently,
absorption occurs as in the single-particle case under the influence of field with amplitude√

NE0. In other words, in many-particle system the one-particle transitions are realized [8].



112 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2017, 51(1), p. 109–112.

Conclusion. So, within the framework of adiabatic approximation we have shown that
in the case of ABTQL for the relatively low levels of the few-body electron gas for confining
potential the parabolic confinement is realized. In such a system the conditions are fulfilled
for the realization of the generalized Kohn’s theorem.
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