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In the present paper a special class of infinite nonlinear system of algebraic
equations with Teoplitz—Hankel matrices is studied. Above mentioned class of
equations has direct applications in radiative transfer theory. Existence com-
ponentwise positive solutions for the system in space /; are proved and some
examples for mentioned equations, representing separate interest are given.
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Introduction and Statement of the Basic Results. The paper studies issues
on solvability in space /; infinite nonlinear algebraic system of equations

Xn =Y an_jhj(x;)+ Y ani i} (x;), n=0,1,2..., (1)
j=0 j=1
with respect to the unknown infinite vector x = (xo,xy,...X,,. .. )T (T 1is the sign of
transposition).
The Teoplitz A = (an—),;;—o and the Hankel B = (an4), ;—, matrices
satisfy the conditions

a_j=a;, VjeNU{0},a,>0,VneZ, 2)
Y a=1, Y jfaj <+, (3)
i=—co j=0
dns1 < an, VneNU{0}. 4)

The system (I) arises in discrete problems of radiative transfer theory
(see [1,/2]). Such type of system also arises in kinetic theory of gases and p-adic
string theory (see [3-3]).
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The papers [6H9] studied system of equations (1) with the conditions (3),()
and v(A)= Y ja; <O for the different restrictions on {/;(u) }7_o and {/}(u)}7_,.

In the]present paper we will construct componentwise positive /; solution for
nonlinear system (1)) in the symmetric case (see condition (2))) .

The basic result of present note is the following:

Theorem 1. (Basic). Let conditions (2)-() are satisfied and there exist
numbers o € (0,1/2] and ) € (0,1) such that:

a) for each fixed j € NU{0} the functions /;(u) and h}(u) are increasing on the
interval [7,(n). 1]

Pi(m=n Y aw jeNU{0} (5)

m=j+1
b)hjvhjec[P](n)vl]v j:071727'-- 5

c) the following inequalities are satisfied
0<hju)<1—(1—w)?*, uelPi(n),1], j=0,1,2,...; (6)
P =0, K1) <1, j=0,1.2,... ™

Then system has componentwise positive solution in space /;, i.e there exists
x = (X0,X1,%2,...%y,...)", satisfying (I). Moreover x; > 0, Vj € NU {0}, and
Y x j < oo
j=0

Auxiliary Facts. Together with equation (I) we consider the following
nonlinear auxiliary system:

oo

Sp = Z(an_j —anﬂ)sf‘, n € NU{0}, 3]
=0

with respect to the unknown infinite vector S = (5o, 81, ..., Sn, ...)T, where the sequence
{an}::,w satisfies conditions (2)—(#). We consider the following iteration:

P+ _ NV (g gy (P
Sn j;o(an j al’l-i-j) (SJ ) 5 ©)

S’(10) =1, n=0,1,2..., p=0,1,2,...
Using (2)—()), one can easily verify by induction that

P >0, n=0,1,2,..., p=0,1,2,..., (10)
sV inp, n=0,1,2,..., (11)

i.e.
YneNU{0}, 0<s¥ ™V <sP p=o012,... (12)

Below we prove by induction that
1-sPer, p=0,1,2,..., (13)
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where 1= (1,1,..., 1,...)2 §P) = (s(()p),sgp),...,s,sp),...)T. For p =0, inclusion (13)
immediately follows from 1—S© = (0,0,...,0,... )T. Let (13) takes place for some
natural p. Then, taking into account (2)—@) and (10)—(11)), from (9] we obtain

0<1—sftY Za"1+za"+1 Zan]<s,p> +Za”+f( )
Zan ,<l—< ) )+ Z am+zam§):an,(1—s )+2 Z am + an.

m=n+1

Accordmg to induction assumption (2), (3)), from the obtained estimation we get
Z( p+1)<2(l—s )+22mam+2an<—|—oo
n=0
Therefore, 1 — S+ € [;. Thus the inclusion (T3) is proved.
Now consider the following auxiliary infinite linear homogeneous algebraic
system of equations:
2 oo
i—n—jtn)Tj =0,1,2,... 14
1+a0j;n(a] n a]+n) Al n s Ly &y ) ( )

Tn =

with respect to the unknown infinite vector T = (7o, T1,..., Ty, ... )T, where sequence
{a;};__ satisfies conditions (2)-(@). We prove below that system besides of
trivial solution (0,0,...,0,... )T, provides also a componentwise non-negative non-
trivial solution in the space of bounded sequences. First we consider following non-
homogeneous system:

oo

p”+1_|_a Z(aj*n_aﬂrn)qj', n=0,1,2,..., (15)
with respect to the infinite VeCtorq:(qonIv---,Qn,-..)T,where
2 (o=}
= =0,1,2,... 16
P e By, "0 (16)

Direct verification shows, that the vector 1 = (I,1,...,1,... )T satisfies (15). Now
we verify that system (T3)), besides of the trivial solution 1 also has a positive solution
in space /;.

We consider the following “rnajoranting” linear system

Oy = pn + Za] W0, n=0,1,2,. (17)

1+ag ap
with respect to the vector & = (0o, O, - .., Oy, - .. )T . From @2)—-(@) it follows that

2 oo

e A (1)
VP = n;onp"_lJra Z m; - 1+a Z ;)n: (19)
- y = T
_l—i—aomz::()m (m+1)an %, P =(p0,P1s-sPny---)" -
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Therefore, from results of work [10] it follows that system has a positive
solution in /;. We consider the following iteration:

oo

(m+1) 2 (m)
n =pPn+ Aj—pn—Aajyn)q;
q P IHOJ;( jon—@jn)q; 00

¢ =pp, m=0,1,2,..., n=0,12,...

By induction in m it can be proved that for each n € NU {0} the following relations
hold:

"> m=0,12,..., @1)

dm <o, m=0,1,2,..., (22)

dm <1, m=0,1,2,... (23)

From (2I)-(23), taking into account Weierstrass theorem, it follows that

the sequence of vectors ¢ = (q(()m),qgm),...,qg,m) ;.07 has  limit:
lim ¢ = g = (g0.q1,-.-1qn,..)” , and moreover

m—yoo

Prn < qn < Oy, %Sla n=0,1,2... (24)

From (23), (2) and @) it follows that the limit vector satisfies system (I5). Thus

system (T3) besides of the trivial solution 1= (1,1,...,1,...)" also has a component-

wise positive solution ¢ = (0,41, - --,qn,--.)" € I}, moreover the components of the

vector ¢ satisfy inequalities (24). Direct checking shows that the vector T =1—g¢g
satisfies the system (14). From (24) it follows that

Tnz()? Tn;—éov Tngla n:071727"'7 (25)

since g € [;. Fixing this solution, we consider the following iteration:

2 (oo}
) — o Y (@jn—ajm)n", 20 =1, m=0,1,2,..., n=0,1,2,... (26)

j=n
By induction by m we can check the accuracy of the following statements:

g <M s o =0,1,2,..., m=0,1,2,... 27)
Rewriting iteration (26)) in the form

n 1 + ap ig()al n+i 1 + a0 jgnajJrn j o ootn , m , 1,2, s n ,1,2,

and using (2)) and (), it can be verified that for each m € NU {0} we have:

>4, n=0,1,2,... (28)
From and it follows that sequence of vector (") = ( ém) , Tl(m) i, L
m=0,1,2,.... has a limit as m — co that is lim ) = ¢ n=0,1,2,...
m-—oo
In addition the limit vector T = (13, 7},...,7},...)" satisfies system (T4) and
satisfies the following properties:
L<T <1, n=0,12,..., (29)

To1 >0, n=0,12,... (30)
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Since 1, > 0, 7, # 0, we have 7, > 0, 7, # 0. Therefore, there exists number ny € N
such that 7, > 0. From (30) it follows for n > ny that

T, > T, >0. (31)

Return to the sequence of vectors {S(P)}::O . Using the sequence approximation
method, we prove that

1
* 1 a
P> *<+“°> C n=012..., p=012.. (32
sup T, 2
neNU{0}

In the case p = 0 the inequality (32)) follows from the following chain of inequalities:

. e
Tn 1+aop HXS 1 +ao lfaglzs,ﬁo).
sup T 2 2

neNU{0}

Let inequality (32) holds for some natural p. Then from (9), taking into

account (2)—(d) and (14)), we get

o
p+l > . T; I+ap\ '™« >
Z ; an—j an+] sup T < ) =
neNU{0}
14ap) e e
ap\ x x
S(5) (s w ) R anm)
neNU{0} j=n
1+ap\ 7@ T
ap —o %
> < 5 ) < sup T:) Z(an—j_anﬂ)fj =
neNU{0} j=n
_ (1+ag ' 14+ag T _(1+ao T T
2 2 sup T2\ 2 sup T
neNU{0} neNU{0}

From and it follows that sequence of vectors S(?) = (s((f7 ),s(lp s )7,
p=0,1,2,... hasalimitas p — oo, i.e. lim S®) =S = (s0,51,...,5n,...)", then the

p—reo

limit vector S satisfies (8) and the inequality

1 LR
< +“°> T <5, <1, neNU{ol. (33)
2 sup T
neNU{0}
From (33) and (31I)) for n > ny it also follows that
1
l+ap\ ™ 1T,
> 0. 34
sn_< 2) sup ‘L',;‘> (54)
neNU{0}

Thus proves the following:
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Theorem 2. Let the sequence {a;}: satisfy condition (2)-@), and

j=—o00
1 . . .
o€ (0, 2} Then the system has a componentwise non-negative solution
S = (50,51,--,51,...)" in space of bounded sequences. Moreover each component

of the vector S satisfies inequalities (33) and (34).
In the following theorem we will additionally prove that

1-Sel. (35)

Theorem 3. Let the conditions of the Theorem 2 are satisfied. Then the
constructed solution S satisfies additional property (35).
Proof. Firstnote that from (2)—(@) follows that

ny
y= Y ai <l (36)

Jj=—0o0

Using inclusion (T3] below, by induction we prove that

oo

Y (1-sP) < <2imam+ian> (1—e)7", (37)
m=1 n=0

n=0
where |
1
l14+a)\ ™ Ty
€= =11 0 ) 38
max(rp). p= |1+ |(F50) e 68)
neNU{0}

In the case p =0 the inequality obviously follows from (9)). Let holds for

some p € N. We prove in the case p + 1. Taking into account (2)-@), (34),
from (9), we obtain:

n=0 n=0 j=0 m=1 n=0
=2 Z mam—l—Zan—i—Z (l — (ssp)>°‘> Zan_] <
m=1 n=0 j=0 n=0
0o ) o J
SZZmam—t—Zan—FZ(l— s(p)> Z ay =
m=1 n=0 j=0 m=—oo
- S /) v
—ZZmam+Zan+Z<l— sjp> Y, aw+
m=1 n=0 = m=—oo
oo j oo oo
+ Z <l—\/s§7)> Z am§22mam+Zan+}/§ (1—\/s§p)>+
Jj=ng+1 m=—oo m=1 n=0 j=0
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§2n§’1mam+ian+8<g)(l—s )+ Z (l—s ))S

n=0 J=no+1

§22mam+2an+82( pH) =

:'Z( p+1) (22mam+2an> (1-2)"

Thus inequality (37) is proved. Tending p to infinity in (37) completes the
Proof of Theorem. 0

Remark. It we note that the Theorems 2 and 3 are the discrete analogues
of the results obtained earlier in [[11]].

Proof of the Basic Results. Examples of Functions {/;}7_, and {n}}7,
Consider the following iteration for the basic system ()

et Zan ; ( Sp)) +;an+]~h’j <x§p))7

(39)
0 = l—s,,, p=0,12,..., n=01.2,...,
where S = (50,81,---,8,--- )T are the solution of the system and satisfies
properties (33)—(33). By induction we will prove that for each n € NU{0}:
P Linp, (40)
P >Pm), p=0,1,2,. (41)

where P,(n) is given by formula (3. First we verify that x,(, ) <xVand x> P, (n),
n=0,1,2,... Indeed, from (@ taking into account (2)— (E]) we have

xn l—sn—Zan j N+ Z aj—i—Zanﬂs >

j=n+1
> Z aj>m Z aj=F(n), xﬁo) <l
Jj=n+1 j=n+1
Using conditions (6), (7)), taking into account (2)—), from we get

x,(zl) < Zan_j <1 — (1 —xg-o))a) + Z anﬂ-h;f (xﬁ-o)) <
Jj=0 =1
< Z ap—j (1 _57) + ZanJrj =1~ Zanfjs? + Zan+js? - ZanJrjs? =
=0 j=0 j=0 j=0

j=1

oo

ZI—Z(an = nyj)s Zan+]s <l-
j=0

Assuming that x,(l ?) <x,(1 D and x,(1 2 >P,(n), n=0,1,2,..., for some p € N and
taking into account the monotonicity 4;(u), j=0,1,2,..., h}‘-(u), j=1,2,...,0n
u, from we obtain

RARES Wy (") + Y. an it () =,
=0 =1
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i =Y @ () + X an il (P()) >
j=1

j=0

2 ) anesh )20 Y ans = B(0).

: ] 1
From and (1)) we obtain that the sequence of vectors
x\P) = (x(()p),xgp),...,xﬁlp),...)T, p=0,1,2 ... hasalimit as p — oo:

lim x?) = x = (xo,x1,..., Xp,... )"

p—reo
From (0) and @) it also follows that

P(n)<x,<1-s,, n=0,12,... (42)

Since 1 — S € [, then from (@2) we obtain that x € ;. Now we verify that
vector x satisfies system (I)). First we note that the sum of series

Z an—jhj(x;) + Z “nﬂ ()
j=0

j=
is bounded uniformly in n. Using @2)), (6), (7) and @2)-H)), we get

Zan—j Zanﬂ (x7) <Zan J= (1 =x;)%)+
jry

Za,w <Za,,,+2anﬂ_1<+oo
J=0 J=

On the other hand, h;, i; € C[P;(n),1], j=0,1,... Hence, we can pass to the limit in

the summation sign as p — o. Indeed in (39) passing to the limit, taking into account
above mentioned Remark, we obtain

= hrnx(pH) —plglgo (Zan j J( Ep)) +jilan+jh; (%p))) =
o 0 4)) + St (56
_Zan j <11mx )—i—Zanﬂ <11mx ) Zan ihj(x; +Zan+] (xj)-

Thus the Theorem 1 is proved.
At the end of the work we list some examples of functions {/;} 0 {h*
satisfying all conditions of Basic Theorem 1:

j=1

hj(u) = ( —(1—u) )cj,whereoc€<0,ﬂ,O<cj§1,j:O,1,2,...,
€ [pi(m),1],

( )= Mv ne©1), ueclpi(n),1, j=123,..;
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2. hj(u)=In(2—(1—u)¥) d;(u), ac (o,;],o<dj(u)§1, uelPi(n),1],
dj(u) Tinuon([Pj(n),1],d;jeC[P;(n),1] ,j= 0,1,2,...,

* — u Pj(l_n) r . . .

hj(u)—M+Pj(1_n)+1+Pj(l_n)u,r>1,uE[R,(n),l],]—l,2,3,...,
I—(1—w)*+In(2—(1—u)® .

O P Gt L Gl Ut IV SRS A R N S R

2
2 r+1 %
u u P (1—n)
i (u) = 3 1
i <<1+Pj(1—n)> +<u+P,-<1—n>><1+Pj<1—n>>> e
ue[Pj(n)71]7j:172737"'
The examples of sequences {d;(u)}

1. dj (u) =1- 5]'67”;

;.OZO can serve the following functions:

O;
2 aw= 2 0<s <t =0

Discuss same the details of Example 2.
Since dj (u) tinu on [P;(n),1], j=0,1,2,..., and

%(ln(Z—(l_u)“) ) = 2_(1_14)"‘(1_(;6 —>0,,/=0,1,2,...,
uc [P](n),l],hj(u)zd](u)lnl =0,

il KQom)  rh(om) e >0, j=12,...,uc[P;(n),1],
du (M+Pj(]_r,))2 1+Pi(1—n)
condition a) of Theorem 1 is satisfied. The condition b) is also satisfied, since the
given functions are continuous on [0,1] D [P;(n),1], V j=0,1,2,... We cheek the
condition c¢). Taking into account In(1+x) <x, x>0, we have
hj(u)y=In(1+1—(1—u)*)dj(u) <In(1+1—(1—-u)*) <1—(1—-u)*,
hj(u) >dj(u)lnl =0,
i (1) Pi(l-m) ,

. P (n) >
Pj(n)"'Pj(l—n) 1+Pj(1—71) )=z

=1.

T 1+p(1-n)  1+P(1-7n)

This work was supported by the SCS of MES of RA in the frame of project
Ne J6YR-1A002.

Received 11.04.2017



Khachatryan Kh.A., Avetisyan M.H. On Solvability of an Infinite Nonlinear System... 167

10.

11.

REFERENCES

. Engibaryan N.B. A Nonlinear Problem of Radiative Transfer. / Astrophysics, 1965,

v. 1, Ne 3, p. 158-159 (in Russian).

Engibaryan N.B. A Discrete Model for Nonlinear Problems of Radiation Trans-
fer: Principle of Invariance and Factorization. / Mathematical Models and Comp.
Simulations, 2015, v. 27, Ne 5, p. 127-136.

. Khachatryan A.Kh., Khachatryan Kh. A. Qualitative Difference between Solutions

for a Model of the Boltzmann Equation in the Linear and Nonlinear Cases. / Theoret.
and Math. Phys., 2012, v. 172, Ne 3, p. 1315-1320 (in Russian).

Vladimirov V.S., Volovich Ya.l. Nonlinear Dynamics Equation in p-Adic String
Theory. // Theoret. and Math. Phys., 2004, v. 138, No 3, p. 297-309.

. Vladimirov V.S. The Equation of the p-Adic Open String for the Scalar Tachyon Field.

/I Izv. Mathematics, 2005, v. 69, Ne 3, p. 487-512.

Khachatryan Kh.A., Broyan ML.F. One-Parameter Family of Positive Solutions for
a Class of Nonlinear Infinite Algebraic System with Teoplitz—Hankel Type Matrices.
/I Journal of Contemporary Mathematical Analysis, 2013, v. 48, Ne 5, p. 189-200.

. Khachatryan A.Kh., Kroyan A.K. On the Positive Solvability of an Infinite System

of Nonlinear Algebraic Equations in /; with Teoplitz Matrices. // Vestnik RAU. Phys.
Math. Science, 2015, Ne 1, p. 16-25 (in Russian).

. Azizyan H.H., Khachatryan Kh.A. One-Parametric Family of Positive Solutions for

a Class of Nonlinear Discrete Hammerstein—Volterra Equations. // Ufa Mathematical
Journal, 2016, v. 8, Ne 1, p. 13-19.

Petrosyan H.S., Kostanyan M.G. On Solvability of an Class of Nonlinear Infinity
Systems of Algebraic Equations with the Teoplitz Matrices. / Mathematics in Higher
School, 2014, v. 10, Ne 1, p. 3540 (in Russian).

Arabadzyan L.G. On Discrete Wiener—Hopf Equations in the Conservative Case.
/I Math. Analysis and Applications (Armenian State Ped. University after Kh. Abovyan),
1980, p. 26-36 (in Russian).

Khachatryan Kh.A. On Nontrivial Solutions of a Class Convolution Type Nonlinear
Integral Equations. VI Russian-Armenian Conferance on Mathematical Physics and
Analitical Mechanics. Rostov-on-Don, 2016, p. 40—41 (in Russian).



