PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2017, **51**(2), p. 193-195

Mathematics

HOMOGENEOUS IDEALS AND JACOBSON RADICAL

N. G. NAJARYAN *

Chair of Higher Mathematics of Radiophysics Faculty YSU, Armenia

In this paper the Jacobson radical of an algebra $F\langle X \rangle / H$ is studied, where $F\langle X \rangle$ is a free associative algebra of countable rank over infinite field *F* and *H* is a homogeneous ideal of the algebra $F\langle X \rangle$. The following theorem is proved: the Jacobson radical of an algebra $F\langle X \rangle / H$ is a nil ideal.

MSC2010: Primary 16N40; Secondary 08B20, 16R10.

Keywords: free algebra, Jacobson radical, *T*-ideal, homogeneous ideal, nil ideal.

Introduction. Let *X* be a countable set of absolutely free variables, $\langle X \rangle$ be a free semigroup generated by *X* (monomials), $F \langle X \rangle$ be a free associative algebra of countable rank over infinite field *F* (polynomials).

Further, *N* stands for the set of natural numbers and $N(K) = \{1, 2, ..., n\}; \{p\}$ denotes the set of different variables included in the polynomial $p \in F\langle X \rangle$. Let *P* be the ideal of algebra $F\langle X \rangle$ and $\overline{Q} = Q/P$ be the Jacobson radical (see [1]) of algebra $F\langle X \rangle / P$, where *Q* is the ideal of algebra $F\langle X \rangle$, $P \subset Q$. Element $\overline{p} = p + P \in \overline{Q}$, $p \in Q$, quasi-regularly, i.e. there is an element $\overline{q} = q + P$, $q \in Q$, that $\overline{p} + \overline{q} + \overline{p}\overline{q} = \overline{0}$ or $p + q + pq \in P$. The polynomial *p* is said to be quasi-regular by mod *P*, which will be denoted by (p|mod P); (I|mod P) is an ideal *I* of algebra $F\langle X \rangle$, which polynomials are quasi-regular by mod *P*; Kr(p) is a quasi-regular ideal [1] generated by the polynomial *p* in algebra $F\langle X \rangle$. A polynomial homogeneous in all its variables, included in $p \in F\langle X \rangle$, is called the homogeneous component of *P*.

We study the Jacobson radical of the certain algebras.

Auxiliary Lemmas and Main Theorem. Further, let H be a homogeneous ideal of algebra $F\langle X \rangle$ and $\overline{f} \in \overline{R} = R/H$ be a non-zero element ($\overline{f} = f + H$, $f \in R$, $f \notin H$) of the radical of algebra $F\langle X \rangle/H$. One can represent \overline{f} as a sum of non-zero homogeneous components, i.e. $\overline{f} = \overline{f_1} + \overline{f_2} + \cdots + \overline{f_n}$, where $\overline{f_i} = f_i + H$, $f_i \notin H$, f_i is a homogeneous component of the polynomial f ($i \in N$).

Similar to Lemma 3.3 of paper [2], it is proved

^{*} E-mail: najnel@mail.ru

Lemma 1. [2]. If *H* is homogeneous ideal and $\{f_i\} \cap \{f_j\} = \emptyset$, $i \neq j$, $i, j \in N(n)$, then there exists $m = m(f) \in N$ such that $f^m \in H$.

Lemma 2. [3]. If H is a homogeneous ideal, then R is a homogeneous ideal.

Chose a subsets $X_i \subset X$, $i \in N(n)$, with the conditions:

1) $|\{f_i\}| = |X_i|, i \in N(n);$ 2) $\left(\bigcup_{i=1}^n \{f_i\}\right) \cap \left(\bigcup_{i=1}^n X_i\right) = \emptyset;$

3)
$$X_i \cap X_i = \emptyset, i \neq i; i, i \in N(n).$$

Consider now the following maps σ_i ($i \in N$), σ :

1) $\sigma_i : X \to X$ is a one-to-one map such that $\forall x \in \{f_i\}, \sigma_i(x) = y \in X_i$ besides $\sigma_i(y) = x$, and $\forall z \in (X \setminus (\{f_i\} \bigcup X_i)), \sigma_i(z) = z \ (i \in N(n));$

2) $\sigma : X \to X$ satisfies $\sigma(x) = \sigma_i(x)$ if $x \in X_i$, $i \in N(n)$, and $\sigma(z) = z$ if $z \in \left(X \setminus \left(\bigcup_{i=1}^n\right)\right)$.

The maps σ_i and σ can be extended to the automorphisms σ_i , $i \in N(n)$, and endomorphism σ of the free algebra $F\langle X \rangle$.

By Lemma 2, we have that *R* is a homogeneous ideal, containing the polynomial *f* and therefore $f_i \in R$, where $(f_i | \text{mod } H)$ and $Kr(f_i) | \text{mod } H) \subset (R | \text{mod } H)$, $i \in N(n)$ [1].

For any polynomials $u, v \in F\langle X \rangle$ denote

$$h_i(u,v) = uf_iv + g_i(u,v) + uf_ivg_i(u,v) \in H, \ i \in N(n).$$

Denote by $hc\{f_i, u, v\}$ the set of homogeneous components of the polynomial $h_i(u, v), i \in N(n)$, and

$$HC(f_i) = \bigcup_{u,v \in F\langle X \rangle} hc\{f_i, u, v\}, \quad i \in N(n).$$

Lemma 3. The following equalities are true:

(i)
$$\boldsymbol{\sigma}_i(\boldsymbol{hc}\{f_i, u, v\}) = \boldsymbol{hc}\{\boldsymbol{\sigma}_i(f_i), \boldsymbol{\sigma}_i(u), \boldsymbol{\sigma}_i(v)\};$$

(ii) $\boldsymbol{\sigma}_i(\boldsymbol{HC}\{f_i\}) = \boldsymbol{HC}\{\boldsymbol{\sigma}_i(f_i)\}, i \in N(n).$

Further, let H_i be a homogeneous ideal of the algebra $F\langle X \rangle$ generated by the set $HC\{f_i\}, H_i \subset H, i \in N(n)$.

From the Lemma 3 it follows

Lemma 4. The ideal $\sigma_i(H_i)$ of the algebra $F\langle X \rangle$ is a homogeneous ideal of the algebra $F\langle X \rangle$ generated by the set $HC\{\sigma_i(f_i)\}, i \in N(n)$.

From Lemmas 3, 4 we get an important result.

Lemma 5. The following relations are equivalent:

(i)
$$\boldsymbol{\sigma}(\boldsymbol{HC}\{\boldsymbol{\sigma}_i(f_i)\}) \subset \boldsymbol{HC}\{f_i\}\};$$

(ii)
$$\boldsymbol{\sigma}(\boldsymbol{\sigma}_i(H_i)) \subset H_i, i \in N(n).$$

By the construction of H_i we have $(Kr(f_i)|\text{mod}H_i)$ $(i \in N(n))$ and from Lemma 4 we obtain

Lemma 6. The following relation holds:

 $\boldsymbol{\sigma}_i(\boldsymbol{Kr}(f_i)| \mod H_i) = (\boldsymbol{Kr}(\boldsymbol{\sigma}_i(f_i)| \mod \boldsymbol{\sigma}(H_i))), \quad i \in N(n).$

Consider the algebra $F\langle X \rangle / H^*$, where $H^* = \boldsymbol{\sigma}_1(H_1) + \boldsymbol{\sigma}_2(H_2) + \dots + \boldsymbol{\sigma}_n(H_n)$ is a homogeneous ideal as a sum of homogeneous ideals.

Let $R^* = R^*/H^*$ be a Jacobson radical of the algebra $F\langle X \rangle/H^*$. Since $\sigma_i(H_i) \subset H^*$, by Lemma 6 we get $(Kr(\sigma_i(f_i)) | \text{mod} H^*)$ and consequently

 $(\mathbf{Kr}(\boldsymbol{\sigma}_i(f_i))| \operatorname{mod} H^*) \subset (\mathbf{R}^*| \operatorname{mod} H^*)$

and $\sigma_i(f_i) \in R^*$ $(i \in N(n))$ [1].

Notice that $\boldsymbol{\sigma}_i(f) \notin H^*$, because otherwise $\boldsymbol{\sigma}(\boldsymbol{\sigma}_i(f_i)) \in \boldsymbol{\sigma}(H^*)$, i.e. $f_i \in \boldsymbol{\sigma}(\boldsymbol{\sigma}_1(H_1) + \boldsymbol{\sigma}_2(H_2) + \dots + \boldsymbol{\sigma}_n(H_n))$ or, by Lemma 5, $f_i \in H_1 + H_2 + \dots + H_n \subset H$, which is impossible by assumption $(i \in N(n))$.

Further, $f^* = \boldsymbol{\sigma}_1(f_1) + \boldsymbol{\sigma}_2(f_2) + \dots + \boldsymbol{\sigma}_n(f_n) \in \mathbb{R}^*$, moreover, by the construction of $\boldsymbol{\sigma}_k$ ($k \in N(n)$), we have $\{\boldsymbol{\sigma}_i(f_i)\} \cap \{\boldsymbol{\sigma}_j(f_j)\} = \emptyset$, $i \neq j$, $i, j \in N(n)$.

By Lemma 1, there exists $m = m(f^*) \in N$ such that $(f^*)^m \in H^*$. But from the relation

$$(\boldsymbol{\sigma}_1(f_1) + \boldsymbol{\sigma}_2(f_2) + \dots + \boldsymbol{\sigma}_n(f_n))^m \in \boldsymbol{\sigma}_1(H_1) + \boldsymbol{\sigma}_2(H_2) + \dots + \boldsymbol{\sigma}_n(H_n)$$

it follows that

 $(\boldsymbol{\sigma}_1(f_1) + \boldsymbol{\sigma}_2(f_2) + \dots + \boldsymbol{\sigma}_n(f_n))^m \in \boldsymbol{\sigma}(\boldsymbol{\sigma}_1(H_1) + \boldsymbol{\sigma}_2(H_2) + \dots + \boldsymbol{\sigma}_n(H_n))$ and by Lemma 5 $(f_1 + f_2 + \dots + f_n)^m \in H$, i.e. $f^m \in H$ or $\bar{f}^m = \bar{0}$.

Thus, we have proved the following theorem:

Theorem. The Jacobson radical of the algebra $F\langle X \rangle / H$, where H is a homogeneous ideal, is a nil ideal too.

Finally we note that *T*-ideals [4], *S*-ideals [5] and homotet-ideals [2] are homogeneous ideals. Let $P \subset F\langle X \rangle$ be one of the types of these ideals then

Corollary. [2, 4]. The Jacobson radical of the algebra $F\langle X \rangle / P$ is a nil ideal.

Received 27.02.2017

REFERENCES

- 1. Jacobson N. Structure of Rings. // Amer. Math. Soc. Colloq. Publ., 1964, v. 37.
- 2. **Najaryan N.G.** Combinatorial Relations in Algebras with Polynomial Identities. // Candidat Dissertation. M.: MSU after M.V. Lomonosov, 1985 (in Russian).
- Năstăsescu S., Van Oystaeyen F. Jacobson Radials and Maximal Ideals of Normalizing Extension Applied to z-Graded Ring. // Common. Algebra, 1982, v. 10, № 7, p. 1839–1847.
- Amitsur S.A. The *T*-Ideals of the Free Rings. // Jour. Lond. Math. Soc., 1955, v. 30, p. 470–475.
- 5. Latyshev V.N. Algorithmic Recognition of Polynomial Identies. // Mathematical Problems in Cybernetics, 2002, № 11, p. 5–15 (in Russian).