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Let P(L(ω)⊂D) is the probability that a random segment of length l in Rn

having a common point with body D entirely lies in D. In the paper, using a
relationship between P(L(ω) ⊂ D) and covariogram of D the explicit form of
P(L(ω)⊂ D) for arbitrary triangle on the plane is obtained.
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Introduction. Let Rn (n ≥ 2) be the n-dimensional Euclidean space, D ⊂ Rn

be a bounded convex body with inner points, and Vn be the n-dimensional Lebesgue
measure in Rn.

Consider the set of the segments of a constant length that are contained in D.
The measure evaluation problem of such segment sets no simple solution and depends
on the shape of D. It is known the explicit form for the kinematic measures of the
disk, the rectangle, if the length of the segment is less than the smaller side of the
rectangle (see [1, 2]), the equilateral triangle, the rectangle and the regular pentagon
(for an arbitrary length of the segment) [3].

D e f i n i t i o n 1. (see [2]). The function

C(D,h) =Vn(D∩ (D+h)), h ∈ Rn,

is called the covariogram of the body D. Here D+h = {x+h, x ∈ D}.
Let Sn−1 denote the (n− 1)-dimensional unit sphere in Rn centered at the

origin. We consider a random line, which is parallel to u ∈ Sn−1 and intersects D,
that is, an element from the set:

Ω1(u) = {lines, which are parallel to u and intersect D}.

Let Πru⊥D be the orthogonal projection of D onto the hyperplane u⊥ (here u⊥ stands
for the hyperplane with normal u and passing through the origin).
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A random line, which is parallel to u and intersects D, has an intersection
point (denoted by x) with Πru⊥D. We can identify the points of Πru⊥D and the lines,
which intersect D and are parallel to u, meaning that we can identify the sets Ω1(u)
and Πru⊥D. Assuming that the intersection point x is uniformly distributed over the
convex body Πru⊥D, we can define the following distribution function.

D e f i n i t i o n 2. The function

F(u, t) =
Vn−1{x ∈Πru⊥D : V1(g(u,x)∩D)< t)}

bD(u)
is called orientation-dependent chord length distribution function of D in direction u
at a point t ∈R1, where g(u,x) is the line, which is parallel to u and intersects Πru⊥D
at the point x and bD(u) =Vn−1(Πru⊥D).

Observe that each vector h ∈ Rn can be represented in the form h = (u, t),
where u is the direction of h, and t is the length of h.

Let L(ω) be a random segment of length l > 0, which is parallel to a given
fixed direction u ∈ Sn−1 and intersects D. Consider the random variable
|L|(ω) := V1(L(ω) ∩ D), where L(ω) ∈ Ω2(u), and the set Ω2(u) is defined
as follows:

Ω2(u) = {segments of lengths l , which are parallel to u and intersect D}.
Observe that each random segment L(ω) lying on a line g(u,x) can be specified by
the coordinates (g(u,x),y), where y is the one-dimensional coordinate of the center
of L(ω) on the line g(u,x). As the origin on the line g(u,x) we take one of the
intersection points of the line g(u,x) with the boundary of domain D. Using the
above notation, we can identify Ω2(u) with the following set:

Ω2(u) =
{
(x,y) : x ∈Πru⊥D, y ∈

[
− l

2
,χ(u,x)+

l
2

]}
,

where χ(u,x) = V1(g(u,x)∩D). Note that the set Ω2(u) does not depend on the
choice of the origin of the line g(u,x), and the choice of the positive direction follows
from the explicit form of the range of y. Further, we set

Bu,t
D =

{
(x,y) ∈Ω2(u) : |L|(x,y)< t

}
, t ∈ R1,

and observe that the sets Ω2(u) and Bu,t
D are measurable subsets of Rn.

D e f i n i t i o n 3. The function

F|L|(u, t) =
Vn(B

u,t
D )

Vn(Ω2(u))
=

1
Vn(Ω2(u))

∫
Bu,t

D

dxdy

is called orientation-dependent distribution function of the length of a random
segment L in direction u ∈ Sn−1.

Let Gn be the space of all lines g in Rn. A line g ∈ Gn can be specified by
its direction u ∈ Sn−1 and its intersection point x in the hyperplane u⊥. The density
du⊥ is the volume element du of the unit sphere Sn−1, and dx is the volume element
on u⊥ at x. Let µ(·) be a locally finite measure on Gn, invariant under the group of
Euclidian motions. It is well known that the element of µ(·) up to a constant factor
has the following form (see [1]):

µ(dg) = dg = dudx.
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Denote by On−1 = σn−1(Sn−1) the surface area of the unit sphere in Rn. For each
bounded convex body D, we denote the set of lines that intersect D by

[D] = {g ∈ Gn, g∩D 6= /0}.
We have (see [1])

µ([D]) =
On−2Vn−1(∂D)

2(n−1)
.

A random line in [D] is the one with distribution proportional to the restriction of µ

to [D]. Therefore, for any t ∈ R1 we have

F(t) =
µ({g ∈ [D], V1(g∩D)< t})

µ([D])
,

which is called the chord length distribution function of D. Let L be a random seg-
ment of length l in Rn and let K(·) be the kinematic measure of L [1]. If g ∈Gn is the
line containing L and y is the one-dimensional coordinate of the center of L on the
line g, then the element of the kinematic measure up to a constant factor is given by

dK = dgdydK[1],

where dy is the one-dimensional Lebesgue measure on g and dK[1] is a motion
element in Rn that leaves g unchanged (see [1, 4–7]).

Note that in the case, where the segment is orientated, the constant factor is
equal to 1, while for the unoriented segment it is equal to 1/2. In this paper we
consider only the case of unoriented segments. The length |L| of a random segment
L, provided that it hits the body D, has the following distribution function:

F|L|(t) =
K(L : L∩D 6= /0,V1(L∩D)< t)

K(L : L∩D 6= /0)
, t ∈ R1.

Denote by P(L(ω)⊂ D) probability, that random segment of length l in Rn having a
common point with body D entirely lying in body D (in this case the direction of the
segment L(ω) is arbitrary).

P r o p o s i t i o n (see [7]). Probability P(L(ω)⊂D) in terms of chord length
distribution function F(t) has the following form:

P(L(ω)⊂ D) =

On−2Vn−1(∂D)

(∫ l

0
F(z)dz− l

)
+(n−1)On−1Vn(D)

(n−1)On−1Vn(D)+ lOn−2Vn−1(∂D)
.

Case of a Triangle. For any body D of the Rn we have (see [7])

P(L(ω)⊂ D) =
1

On−1

∫
Sn−1

C(D,u, l)
Vn(D)+ l ·bD(u)

du,

while the kinematic measure of the segments entire lying in D is calculated by the
following formula:

K(L(ω)⊂ D) =
∫

Sn−1
C(D,u, l)du.

For any planar bounded convex domain we have

P(L(ω)⊂ D) =
1

πS(D)+ l|∂D|

∫
π

0
C(D,u, l)du. (1)
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Denote by ∆ a triangle in the plane. The main result of the present paper is the
following statement.

T h e o r e m . Probability P(L(ω) ⊂ ∆) for arbitrary triangle has the explicit
forms (2)–(8) depending on the value of l.

P r o o f . Without loss of the generality we assume, that AB≡ a is the longest
side of 4ABC, ∠CAB ≡ α is the smallest angle, and ∠ABC ≡ β . Thus, we have

BC =
asinα

sin(α +β )
, CA =

asinβ

sin(α +β )
, ∠BCA = π− (α +β ). Since AB is the largest

side, then ∠BCA is the biggest angle. Therefore α ≤ β ≤ π− (α +β ).
Covariogram of a triangle ∆ with side a has the form (see [3]):

C(∆,u, l)=



(asinβ − t sin(u+β ))2 sinα

2sinβ sin(α +β )
, u ∈ [0,α], t ∈ [0,

asinβ

sin(u+β )
],

(asinα sinβ − t sinu sin(α +β ))2

2sinα sinβ sin(α +β )
, u ∈ [α,π−β ],

t ∈ [0,
asinα sinβ

sin(α +β )sinu
],

(asinα− t sin(u−α))2 sinβ

2sinα sin(α +β )
, u ∈ [π−β ,π], t ∈ [0,

asinα

sin(u−α)
],

(asinβ + t sin(u+β ))2 sinα

2sinβ sin(α +β )
, u ∈ [π,π +α], t ∈ [0,− asinβ

sin(u+β )
],

(asinα sinβ + t sinu sin(α +β ))2

2sinα sinβ sin(α +β )
, u ∈ [π +α,2π−β ],

t ∈ [0,− asinα sinβ

sin(α +β )sinu
],

(asinα + t sin(u−α))2 sinβ

2sinα sin(α +β )
, u ∈ [2π−β ,2π], t ∈ [0,− asinα

sin(u−α)
].

Let consider the following cases

a) 0≤ l ≤ asinα sinβ

sin(α +β )
.

Using (1), we get

P(L(ω)⊂ ∆) =
1

πS(∆)+ l|∂∆|

π∫
0

C(∆,u, l)du =

2sin(α +β )

πa2 sinα sinβ +2al(sinα + sinβ + sin(α +β ))
×

×
( α∫

0

(asinβ − l sin(u+β ))2 sinα

2sinβ sin(α +β )
du+

+

π−β∫
α

(asinα sinβ − l sinu sin(α +β ))2

2sinα sinβ sin(α +β )
du+

π∫
π−β

(asinα− l sin(u−α))2 sinβ

2sinα sin(α +β )
du
)
.
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We set

f1(x,y)≡
sinα

sinβ

y∫
x

(asinβ − l sin(u+β ))2du = a2 sinα sinβ (y− x)−

−4al sinα sin
(

y+ x
2

+β

)
sin
(

y− x
2

)
+

l2 sinα

2sinβ
((y−x)−sin(y−x)cos(y+x+2β )),

f2(x,y)≡
1

sinα sinβ

y∫
x

(asinα sinβ − l sinu sin(α +β ))2du= a2 sinα sinβ (y−x)−

4al sin(α+β )sin
(

y+ x
2

)
sin
(

y− x
2

)
+

l2 sin2(α +β )

2sinα sinβ
((y−x)−sin(y−x)cos(y+x)),

f3(x,y)≡
sinβ

sinα

y∫
x

(asinα− l sin(u−α))2du = a2 sinα sinβ (y− x)−

−4al sinβ sin
(

y+ x
2
−α

)
sin
(

y− x
2

)
+

l2 sinβ

2sinα
((y−x)−sin(y−x)cos(y+x−2α)).

Hence, for 0≤ l ≤ asinα sinβ

sin(α +β )
we get

P(L(ω)⊂ ∆) =
f1(0,α)+ f2(α,π−β )+ f3(π−β ,π)

πa2 sinα sinβ +2al(sinα + sinβ + sin(α +β ))
. (2)

b)
asinα sinβ

sin(α +β )
≤ l ≤ asinα . We have

P(L(ω)⊂ ∆) =
f1(0,α)+ f2(α,α +ϕ1)+ f2(π−β −φ1,π−β )+ f3(π−β ,π)

πa2 sinα sinβ +2al(sinα + sinβ + sin(α +β ))
,

(3)

where ϕ1 = arcsin
asinα sinβ

l sin(α +β )
−α , φ1 = arcsin

asinα sinβ

l sin(α +β )
−β .

c) asinα ≤ l ≤min
{

asinα

sin(α +β )
,asinβ

}
, for which we have

P(L(ω)⊂ ∆) =
1

πa2 sinα sinβ +2al(sinα + sinβ + sin(α +β ))
×

× ( f1(0,α)+ f2(α,α +ϕ1)+ (4)

+ f2(π−β −φ1,π−β )+ f3(π−β ,π−β +ϕ2)+ f3(π−φ2,π)),

where ϕ2 = α +β −π + arcsin
asinα

l
, φ2 = arcsin

asinα

l
−α :

c1) if sinβ ≤ sinα

sin(α +β )
,we consider asinβ ≤ l ≤ asinα

sin(α +β )
, so
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P(L(ω)⊂ ∆) =
1

πa2 sinα sinβ +2al(sinα + sinβ + sin(α +β ))
×

× ( f1(0,ϕ3)+ f1(α−φ3,α)+ f2(α,α +ϕ1)+ f2(π−β −φ1,π−β )+ (5)

+ f3(π−β ,π−β +ϕ2)+ f3(π−φ2,π)),

where ϕ3 = arcsin
asinβ

l
−β , φ3 = α +β −π + arcsin

asinβ

l
;

c2) if
sinα

sin(α +β )
≤ sinβ , we consider

asinα

sin(α +β )
≤ l ≤ asinβ , then

P(L(ω)⊂ ∆) =
f1(0,α)+ f2(α,α +ϕ1)+ f3(π−φ2,π)

πa2 sinα sinβ +2al(sinα + sinβ + sin(α +β ))
. (6)

d) max
{

asinα

sin(α +β )
,asinβ

}
≤ l ≤ asinβ

sin(α +β )
,

P(L(ω)⊂ ∆) =
f1(0,ϕ3)+ f1(α−φ3,α)+ f2(α,α +ϕ1)+ f3(π−φ2,π)

πa2 sinα sinβ +2al(sinα + sinβ + sin(α +β ))
. (7)

e)
asinβ

sin(α +β )
≤ l ≤ a we have

P(L(ω)⊂ ∆) =
f1(0,ϕ3)+ f3(π−φ2,π)

πa2 sinα sinβ +2al(sinα + sinβ + sin(α +β ))
. (8)

Obviously, if l > a, the probability P(L(ω)⊂ ∆) is zero. �
Particularly, for regular triangle with a side a and α = β = 60◦, among all 5

subcases a)–e) there are only two cases, namely
0≤ l ≤ sinα and sinα ≤ l ≤ a

and result of Theorem coincides with the result of [7] (Eqs. (4.3), (4.4)) for a regular
triangle.
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