PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2017, **51**(3), p. 211–216

Mathematics

GEOMETRIC PROBABILITY CALCULATION FOR A TRIANGLE

N. G. AHARONYAN * H. O. HARUTYUNYAN **

Chair of the Theory of Probability and Mathematical Statistics YSU, Armenia

Let $P(L(\omega) \subset \mathbf{D})$ is the probability that a random segment of length l in \mathbb{R}^n having a common point with body \mathbf{D} entirely lies in \mathbf{D} . In the paper, using a relationship between $P(L(\omega) \subset \mathbf{D})$ and covariogram of \mathbf{D} the explicit form of $P(L(\omega) \subset \mathbf{D})$ for arbitrary triangle on the plane is obtained.

MSC2010: Primary 60D05; Secondary 52A22, 53C65.

Keywords: covariogram, kinematic measure, orientation-dependent chord length distribution, convex body, triangle.

Introduction. Let \mathbb{R}^n $(n \ge 2)$ be the *n*-dimensional Euclidean space, $\mathbf{D} \subset \mathbb{R}^n$ be a bounded convex body with inner points, and V_n be the *n*-dimensional Lebesgue measure in \mathbb{R}^n .

Consider the set of the segments of a constant length that are contained in **D**. The measure evaluation problem of such segment sets no simple solution and depends on the shape of **D**. It is known the explicit form for the kinematic measures of the disk, the rectangle, if the length of the segment is less than the smaller side of the rectangle (see [1, 2]), the equilateral triangle, the rectangle and the regular pentagon (for an arbitrary length of the segment) [3].

Definition 1. (see [2]). The function

$$C(\mathbf{D},h) = V_n(\mathbf{D} \cap (\mathbf{D}+h)), \quad h \in \mathbb{R}^n,$$

is called the covariogram of the body **D**. Here $\mathbf{D} + h = \{x + h, x \in \mathbf{D}\}$.

Let S^{n-1} denote the (n-1)-dimensional unit sphere in \mathbb{R}^n centered at the origin. We consider a random line, which is parallel to $\mathbf{u} \in S^{n-1}$ and intersects \mathbf{D} , that is, an element from the set:

 $\Omega_1(\mathbf{u}) = \{$ lines, which are parallel to \mathbf{u} and intersect $\mathbf{D}\}$.

Let $\prod r_{\mathbf{u}^{\perp}} \mathbf{D}$ be the orthogonal projection of \mathbf{D} onto the hyperplane \mathbf{u}^{\perp} (here \mathbf{u}^{\perp} stands for the hyperplane with normal \mathbf{u} and passing through the origin).

**E-mail: harutyunyan.hripsime@ysu.am

^{*} E-mail: narine78@ysu.am

A random line, which is parallel to **u** and intersects **D**, has an intersection point (denoted by *x*) with $\Pi r_{\mathbf{u}\perp} \mathbf{D}$. We can identify the points of $\Pi r_{\mathbf{u}\perp} \mathbf{D}$ and the lines, which intersect **D** and are parallel to **u**, meaning that we can identify the sets $\Omega_1(\mathbf{u})$ and $\Pi r_{\mathbf{u}\perp} \mathbf{D}$. Assuming that the intersection point *x* is uniformly distributed over the convex body $\Pi r_{\mathbf{u}\perp} \mathbf{D}$, we can define the following distribution function.

Definition 2. The function

212

$$F(\mathbf{u},t) = \frac{V_{n-1}\{x \in \Pi r_{\mathbf{u}^{\perp}} \mathbf{D} : V_1(g(\mathbf{u},x) \cap \mathbf{D}) < t\}}{b_{\mathbf{D}}(\mathbf{u})}$$

is called orientation-dependent chord length distribution function of **D** in direction **u** at a point $t \in \mathbb{R}^1$, where $g(\mathbf{u}, x)$ is the line, which is parallel to **u** and intersects $\prod r_{\mathbf{u}^{\perp}} \mathbf{D}$ at the point *x* and $b_{\mathbf{D}}(\mathbf{u}) = V_{n-1}(\prod r_{\mathbf{u}^{\perp}} \mathbf{D})$.

Observe that each vector $h \in \mathbb{R}^n$ can be represented in the form $h = (\mathbf{u}, t)$, where **u** is the direction of *h*, and *t* is the length of *h*.

Let $L(\boldsymbol{\omega})$ be a random segment of length l > 0, which is parallel to a given fixed direction $\mathbf{u} \in S^{n-1}$ and intersects **D**. Consider the random variable $|L|(\boldsymbol{\omega}) := V_1(L(\boldsymbol{\omega}) \cap \mathbf{D})$, where $L(\boldsymbol{\omega}) \in \Omega_2(\mathbf{u})$, and the set $\Omega_2(\mathbf{u})$ is defined as follows:

 $\Omega_2(\mathbf{u}) = \{\text{segments of lengths } l, \text{ which are parallel to } \mathbf{u} \text{ and intersect } \mathbf{D}\}.$ Observe that each random segment $L(\omega)$ lying on a line $g(\mathbf{u}, x)$ can be specified by the coordinates $(g(\mathbf{u}, x), y)$, where y is the one-dimensional coordinate of the center of $L(\omega)$ on the line $g(\mathbf{u}, x)$. As the origin on the line $g(\mathbf{u}, x)$ we take one of the intersection points of the line $g(\mathbf{u}, x)$ with the boundary of domain \mathbf{D} . Using the above notation, we can identify $\Omega_2(\mathbf{u})$ with the following set:

$$\Omega_2(\mathbf{u}) = \left\{ (x, y) : x \in \Pi r_{\mathbf{u}^{\perp}} \mathbf{D}, \quad y \in \left[-\frac{l}{2}, \boldsymbol{\chi}(\mathbf{u}, x) + \frac{l}{2} \right] \right\},$$

where $\chi(\mathbf{u}, x) = V_1(g(\mathbf{u}, x) \cap \mathbf{D})$. Note that the set $\Omega_2(\mathbf{u})$ does not depend on the choice of the origin of the line $g(\mathbf{u}, x)$, and the choice of the positive direction follows from the explicit form of the range of *y*. Further, we set

$$B_{\mathbf{D}}^{\mathbf{u},t} = \left\{ (x,y) \in \Omega_2(\mathbf{u}) : |L|(x,y) < t \right\}, \quad t \in \mathbb{R}^1,$$

and observe that the sets $\Omega_2(\mathbf{u})$ and $B_{\mathbf{D}}^{\mathbf{u},t}$ are measurable subsets of \mathbb{R}^n .

Definition 3. The function

$$F_{|L|}(\mathbf{u},t) = \frac{V_n(B_{\mathbf{D}}^{\mathbf{u},t})}{V_n(\Omega_2(\mathbf{u}))} = \frac{1}{V_n(\Omega_2(\mathbf{u}))} \int_{B_{\mathbf{D}}^{u,t}} dx \, dy$$

is called orientation-dependent distribution function of the length of a random segment *L* in direction $\mathbf{u} \in S^{n-1}$.

Let G_n be the space of all lines g in \mathbb{R}^n . A line $g \in G_n$ can be specified by its direction $\mathbf{u} \in S^{n-1}$ and its intersection point x in the hyperplane \mathbf{u}^{\perp} . The density $d\mathbf{u}^{\perp}$ is the volume element $d\mathbf{u}$ of the unit sphere S^{n-1} , and dx is the volume element on \mathbf{u}^{\perp} at x. Let $\mu(\cdot)$ be a locally finite measure on G_n , invariant under the group of Euclidian motions. It is well known that the element of $\mu(\cdot)$ up to a constant factor has the following form (see [1]):

$$\mu(dg) = dg = d\mathbf{u}\,dx.$$

Denote by $O_{n-1} = \sigma_{n-1}(S^{n-1})$ the surface area of the unit sphere in \mathbb{R}^n . For each bounded convex body **D**, we denote the set of lines that intersect **D** by

$$[\mathbf{D}] = \{g \in G_n, g \cap \mathbf{D} \neq \emptyset\}.$$

We have (see [1])

$$\mu([\mathbf{D}]) = \frac{O_{n-2}V_{n-1}(\partial\mathbf{D})}{2(n-1)}$$

A random line in $[\mathbf{D}]$ is the one with distribution proportional to the restriction of μ to $[\mathbf{D}]$. Therefore, for any $t \in \mathbb{R}^1$ we have

$$F(t) = \frac{\mu(\{g \in [\mathbf{D}], V_1(g \cap \mathbf{D}) < t\})}{\mu([\mathbf{D}])},$$

which is called the chord length distribution function of **D**. Let *L* be a random segment of length *l* in \mathbb{R}^n and let $K(\cdot)$ be the kinematic measure of *L* [1]. If $g \in G_n$ is the line containing *L* and *y* is the one-dimensional coordinate of the center of *L* on the line *g*, then the element of the kinematic measure up to a constant factor is given by

$$dK = dg dy dK_{[1]},$$

where dy is the one-dimensional Lebesgue measure on g and $dK_{[1]}$ is a motion element in \mathbb{R}^n that leaves g unchanged (see [1,4–7]).

Note that in the case, where the segment is orientated, the constant factor is equal to 1, while for the unoriented segment it is equal to 1/2. In this paper we consider only the case of unoriented segments. The length |L| of a random segment L, provided that it hits the body **D**, has the following distribution function:

$$F_{|L|}(t) = \frac{K(L:L \cap \mathbf{D} \neq \emptyset, V_1(L \cap \mathbf{D}) < t)}{K(L:L \cap \mathbf{D} \neq \emptyset)}, \quad t \in \mathbb{R}^1.$$

Denote by $\mathbf{P}(L(\omega) \subset \mathbf{D})$ probability, that random segment of length l in \mathbb{R}^n having a common point with body \mathbf{D} entirely lying in body \mathbf{D} (in this case the direction of the segment $L(\omega)$ is arbitrary).

P r o p o s i t i o n (see [7]). Probability $\mathbf{P}(L(\omega) \subset \mathbf{D})$ in terms of chord length distribution function F(t) has the following form:

$$\mathbf{P}(L(\boldsymbol{\omega}) \subset \mathbf{D}) = \frac{O_{n-2}V_{n-1}(\partial \mathbf{D})\left(\int_{0}^{l} F(z)dz - l\right) + (n-1)O_{n-1}V_{n}(\mathbf{D})}{(n-1)O_{n-1}V_{n}(\mathbf{D}) + lO_{n-2}V_{n-1}(\partial \mathbf{D})}.$$

Case of a Triangle. For any body **D** of the \mathbb{R}^n we have (see [7])

$$\mathbf{P}(L(\boldsymbol{\omega}) \subset \mathbf{D}) = \frac{1}{O_{n-1}} \int_{S^{n-1}} \frac{C(\mathbf{D}, \mathbf{u}, l)}{V_n(D) + l \cdot b_D(\mathbf{u})} d\mathbf{u}$$

while the kinematic measure of the segments entire lying in D is calculated by the following formula:

$$K(L(\boldsymbol{\omega}) \subset \mathbf{D}) = \int_{S^{n-1}} C(\mathbf{D}, \mathbf{u}, l) d\mathbf{u}.$$

For any planar bounded convex domain we have

$$\mathbf{P}(L(\boldsymbol{\omega}) \subset \mathbf{D}) = \frac{1}{\pi S(D) + l |\partial D|} \int_0^{\pi} C(D, u, l) \, du. \tag{1}$$

Denote by Δ a triangle in the plane. The main result of the present paper is the following statement.

Theorem. Probability $\mathbf{P}(L(\omega) \subset \Delta)$ for arbitrary triangle has the explicit forms (2)–(8) depending on the value of *l*.

P roof. Without loss of the generality we assume, that $AB \equiv a$ is the longest side of $\triangle ABC$, $\angle CAB \equiv \alpha$ is the smallest angle, and $\angle ABC \equiv \beta$. Thus, we have $BC = \frac{a \sin \alpha}{\sin(\alpha + \beta)}$, $CA = \frac{a \sin \beta}{\sin(\alpha + \beta)}$, $\angle BCA = \pi - (\alpha + \beta)$. Since AB is the largest side, then $\angle BCA$ is the biggest angle. Therefore $\alpha \leq \beta \leq \pi - (\alpha + \beta)$.

Covariogram of a triangle Δ with side *a* has the form (see [3]):

$$C(\Delta, u, l) = \begin{cases} \frac{(a\sin\beta - t\sin(u+\beta))^2 \sin\alpha}{2\sin\beta\sin(\alpha+\beta)}, & u \in [0, \alpha], t \in [0, \frac{a\sin\beta}{\sin(u+\beta)}], \\ \frac{(a\sin\alpha\sin\beta - t\sin u\sin(\alpha+\beta))^2}{2\sin\alpha\sin\beta\sin(\alpha+\beta)}, & u \in [\alpha, \pi-\beta], \\ t \in [0, \frac{a\sin\alpha\sin\beta}{\sin(\alpha+\beta)\sinu}], \\ \frac{(a\sin\alpha - t\sin(u-\alpha))^2 \sin\beta}{2\sin\alpha\sin(\alpha+\beta)}, & u \in [\pi-\beta, \pi], t \in [0, \frac{a\sin\alpha}{\sin(u-\alpha)}], \\ \frac{(a\sin\beta + t\sin(u+\beta))^2 \sin\alpha}{2\sin\beta\sin(\alpha+\beta)}, & u \in [\pi, \pi+\alpha], t \in [0, -\frac{a\sin\beta}{\sin(u+\beta)}], \\ \frac{(a\sin\alpha\sin\beta + t\sin u\sin(\alpha+\beta))^2}{2\sin\alpha\sin\beta\sin(\alpha+\beta)}, & u \in [\pi+\alpha, 2\pi-\beta], \\ \frac{(a\sin\alpha + t\sin(u-\alpha))^2 \sin\beta}{2\sin\alpha\sin(\alpha+\beta)}, & u \in [2\pi-\beta, 2\pi], t \in [0, -\frac{a\sin\alpha}{\sin(u-\alpha)}]. \end{cases}$$

Let consider the following cases

a) $0 \le l \le \frac{a \sin \alpha \sin \beta}{\sin(\alpha + \beta)}$. Using (1), we get

$$\mathbf{P}(L(\boldsymbol{\omega}) \subset \Delta) = \frac{1}{\pi S(\Delta) + l |\partial \Delta|} \int_{0}^{\mu} C(\Delta, u, l) \, du =$$

$$\frac{2\sin(\alpha+\beta)}{\pi a^{2}\sin\alpha\sin\beta+2al(\sin\alpha+\sin\beta+\sin(\alpha+\beta))} \times \\ \times \left(\int_{0}^{\alpha} \frac{(a\sin\beta-l\sin(u+\beta))^{2}\sin\alpha}{2\sin\beta\sin(\alpha+\beta)}du + \int_{\alpha}^{\alpha} \frac{(a\sin\alpha-l\sin(u+\beta))^{2}\sin\alpha}{2\sin\alpha\sin(\alpha+\beta)}du + \int_{\pi-\beta}^{\pi} \frac{(a\sin\alpha-l\sin(u-\alpha))^{2}\sin\beta}{2\sin\alpha\sin(\alpha+\beta)}du\right).$$

We set

$$f_1(x,y) \equiv \frac{\sin\alpha}{\sin\beta} \int_x^y (a\sin\beta - l\sin(u+\beta))^2 du = a^2 \sin\alpha \sin\beta (y-x) - b^2 du = a^2 da du = a^$$

$$-4al\sin\alpha\sin\left(\frac{y+x}{2}+\beta\right)\sin\left(\frac{y-x}{2}\right)+\frac{l^2\sin\alpha}{2\sin\beta}((y-x)-\sin(y-x)\cos(y+x+2\beta)),$$

$$f_2(x,y) \equiv \frac{1}{\sin\alpha\sin\beta} \int_x^y (a\sin\alpha\sin\beta - l\sin u\sin(\alpha+\beta))^2 du = a^2\sin\alpha\sin\beta(y-x) - b^2 du = a^2 d$$

$$-4al\sin\beta\sin\left(\frac{y+x}{2}-\alpha\right)\sin\left(\frac{y-x}{2}\right)+\frac{l^2\sin\beta}{2\sin\alpha}((y-x)-\sin(y-x)\cos(y+x-2\alpha)).$$

Hence, for
$$0 \le l \le \frac{a \sin \alpha \sin \beta}{\sin(\alpha + \beta)}$$
 we get

$$\mathbf{P}(L(\boldsymbol{\omega}) \subset \Delta) = \frac{f_1(0, \alpha) + f_2(\alpha, \pi - \beta) + f_3(\pi - \beta, \pi)}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))}.$$
(2)

b)
$$\frac{a\sin\alpha\sin\beta}{\sin(\alpha+\beta)} \le l \le a\sin\alpha. \text{ We have}$$
$$\mathbf{P}(L(\omega) \subset \Delta) = \frac{f_1(0,\alpha) + f_2(\alpha,\alpha+\varphi_1) + f_2(\pi-\beta-\phi_1,\pi-\beta) + f_3(\pi-\beta,\pi)}{\pi a^2 \sin\alpha\sin\beta + 2al(\sin\alpha+\sin\beta+\sin(\alpha+\beta))},$$
(3)
where $\varphi_1 = \arcsin\frac{a\sin\alpha\sin\beta}{l\sin(\alpha+\beta)} - \alpha, \phi_1 = \arcsin\frac{a\sin\alpha\sin\beta}{l\sin(\alpha+\beta)} - \beta.$ (3)
c) $a\sin\alpha \le l \le \min\left\{\frac{a\sin\alpha}{\sin(\alpha+\beta)}, a\sin\beta\right\}, \text{ for which we have}$

$$\mathbf{P}(L(\boldsymbol{\omega}) \subset \Delta) = \frac{1}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))} \times (f_1(0, \alpha) + f_2(\alpha, \alpha + \varphi_1) + (4))$$

$$+f_{2}(\pi-\beta-\phi_{1},\pi-\beta)+f_{3}(\pi-\beta,\pi-\beta+\phi_{2})+f_{3}(\pi-\phi_{2},\pi)),$$

where $\varphi_{2} = \alpha+\beta-\pi+\arcsin\frac{a\sin\alpha}{l}, \ \phi_{2} = \arcsin\frac{a\sin\alpha}{l}-\alpha$:
c1) if $\sin\beta \le \frac{\sin\alpha}{\sin(\alpha+\beta)}$, we consider $a\sin\beta \le l \le \frac{a\sin\alpha}{\sin(\alpha+\beta)}$, so

$$\mathbf{P}(L(\boldsymbol{\omega}) \subset \Delta) = \frac{1}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))} \times (f_1(0, \varphi_3) + f_1(\alpha - \varphi_3, \alpha) + f_2(\alpha, \alpha + \varphi_1) + f_2(\pi - \beta - \varphi_1, \pi - \beta) + (f_3(\pi - \beta, \pi - \beta + \varphi_2) + f_3(\pi - \varphi_2, \pi)),$$
(5)

where $\varphi_3 = \arcsin \frac{a \sin \beta}{l} - \beta$, $\phi_3 = \alpha + \beta - \pi + \arcsin \frac{a \sin \beta}{l}$; c2) if $\frac{\sin \alpha}{\sin(\alpha + \beta)} \le \sin \beta$, we consider $\frac{a \sin \alpha}{\sin(\alpha + \beta)} \le l \le a \sin \beta$, then $\mathbf{P}(L(\omega) \subset \Delta) = \frac{f_1(0, \alpha) + f_2(\alpha, \alpha + \varphi_1) + f_3(\pi - \phi_2, \pi)}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))}.$ (6)

d)
$$\max\left\{\frac{a\sin\alpha}{\sin(\alpha+\beta)}, a\sin\beta\right\} \le l \le \frac{a\sin\beta}{\sin(\alpha+\beta)},$$

$$\mathbf{P}(L(\omega) \subset \Delta) = \frac{f_1(0,\varphi_3) + f_1(\alpha-\phi_3,\alpha) + f_2(\alpha,\alpha+\varphi_1) + f_3(\pi-\phi_2,\pi)}{\pi a^2 \sin\alpha \sin\beta + 2al(\sin\alpha+\sin\beta+\sin(\alpha+\beta))}.$$
 (7)
e)
$$\frac{a\sin\beta}{\sin(\alpha+\beta)} \le l \le a \text{ we have}$$

$$\mathbf{P}(L(\omega) \subset \Delta) = \frac{f_1(0, \varphi_3) + f_3(\pi - \varphi_2, \pi)}{\pi a^2 \sin \alpha \sin \beta + 2al(\sin \alpha + \sin \beta + \sin(\alpha + \beta))}.$$
(8)
Obviously, if $l > a$, the probability $\mathbf{P}(L(\omega) \subset \Delta)$ is zero.

Particularly, for regular triangle with a side *a* and $\alpha = \beta = 60^{\circ}$, among all 5 subcases a)–e) there are only two cases, namely

$$0 < l < \sin \alpha$$
 and $\sin \alpha < l < a$

and result of Theorem coincides with the result of [7] (Eqs. (4.3), (4.4)) for a regular triangle.

Received 14.07.2017

REFERENCES

- 1. Santalo L.A. Integral Geometry and Geometric Probability. Addision-Wesley, 2004.
- 2. Schneider R., Weil W. Stochastic and Integral Geometry. Springer, 2008.
- Gasparyan A.G., Ohanyan V.K. Recognition of Triangles by Covariogram. // J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2013, v. 48, № 3, p. 110–122.
- Harutyunyan H.S., Ohanyan V.K. Orientation-Dependent Section Distributions for Convex Bodies. // J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2014, v. 49, № 3, p. 139–156.
- Gasparyan A.G., Ohanyan V.K. Orientation-Dependent Distribution of the Length of a Random Segment and Covariogram. // Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2015, v. 50, № 2, p. 90–97.
- Aharonyan N.G., Ohanyan V.K. Kinematic Measure of Intervals Lying in Domains.
 // J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2011, v. 46, № 5, p. 280–288.
- Aharonyan N.G., Ohanyan V.K. Calculation of Geometric Probabilities Using Covariogram of Convex Bodies. // Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2018, v. 53, № 3.