PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

GEOMETRIC PROBABILITY CALCULATION FOR A TRIANGLE

N. G. AHARONYAN ${ }^{*}$ H. O. HARUTYUNYAN **
Chair of the Theory of Probability and Mathematical Statistics YSU, Armenia

Let $P(L(\omega) \subset \mathbf{D})$ is the probability that a random segment of length l in \mathbb{R}^{n} having a common point with body \mathbf{D} entirely lies in \mathbf{D}. In the paper, using a relationship between $P(L(\omega) \subset \mathbf{D})$ and covariogram of \mathbf{D} the explicit form of $P(L(\omega) \subset \mathbf{D})$ for arbitrary triangle on the plane is obtained.

MSC2010: Primary 60D05; Secondary 52A22, 53C65.
Keywords: covariogram, kinematic measure, orientation-dependent chord length distribution, convex body, triangle.

Introduction. Let $\mathbb{R}^{n}(n \geq 2)$ be the n-dimensional Euclidean space, $\mathbf{D} \subset \mathbb{R}^{n}$ be a bounded convex body with inner points, and V_{n} be the n-dimensional Lebesgue measure in \mathbb{R}^{n}.

Consider the set of the segments of a constant length that are contained in \mathbf{D}. The measure evaluation problem of such segment sets no simple solution and depends on the shape of \mathbf{D}. It is known the explicit form for the kinematic measures of the disk, the rectangle, if the length of the segment is less than the smaller side of the rectangle (see [1,2]), the equilateral triangle, the rectangle and the regular pentagon (for an arbitrary length of the segment) [3].

Definition1. (see [2]). The function

$$
C(\mathbf{D}, h)=V_{n}(\mathbf{D} \cap(\mathbf{D}+h)), \quad h \in \mathbb{R}^{n},
$$

is called the covariogram of the body \mathbf{D}. Here $\mathbf{D}+h=\{x+h, x \in \mathbf{D}\}$.
Let S^{n-1} denote the $(n-1)$-dimensional unit sphere in \mathbb{R}^{n} centered at the origin. We consider a random line, which is parallel to $\mathbf{u} \in S^{n-1}$ and intersects \mathbf{D}, that is, an element from the set:

$$
\Omega_{1}(\mathbf{u})=\{\text { lines, which are parallel to } \mathbf{u} \text { and intersect } \mathbf{D}\} .
$$

Let $\Pi r_{\mathbf{u}^{\perp}} \mathbf{D}$ be the orthogonal projection of \mathbf{D} onto the hyperplane \mathbf{u}^{\perp} (here \mathbf{u}^{\perp} stands for the hyperplane with normal \mathbf{u} and passing through the origin).

[^0]A random line, which is parallel to \mathbf{u} and intersects \mathbf{D}, has an intersection point (denoted by x) with $\Pi r_{\mathbf{u}^{\perp}} \mathbf{D}$. We can identify the points of $\Pi r_{\mathbf{u}^{\perp}} \mathbf{D}$ and the lines, which intersect \mathbf{D} and are parallel to \mathbf{u}, meaning that we can identify the sets $\Omega_{1}(\mathbf{u})$ and $\Pi r_{\mathbf{u}^{\perp}} \mathbf{D}$. Assuming that the intersection point x is uniformly distributed over the convex body $\Pi r_{\mathbf{u}^{\perp}} \mathbf{D}$, we can define the following distribution function.

Definition2. The function

$$
F(\mathbf{u}, t)=\frac{\left.V_{n-1}\left\{x \in \Pi r_{\mathbf{u}^{\perp}} \mathbf{D}: V_{1}(g(\mathbf{u}, x) \cap \mathbf{D})<t\right)\right\}}{b_{\mathbf{D}}(\mathbf{u})}
$$

is called orientation-dependent chord length distribution function of \mathbf{D} in direction \mathbf{u} at a point $t \in \mathbb{R}^{1}$, where $g(\mathbf{u}, x)$ is the line, which is parallel to \mathbf{u} and intersects $\Pi r_{\mathbf{u}^{\perp}} \mathbf{D}$ at the point x and $b_{\mathbf{D}}(\mathbf{u})=V_{n-1}\left(\Pi r_{\mathbf{u}^{\perp}} \mathbf{D}\right)$.

Observe that each vector $h \in \mathbb{R}^{n}$ can be represented in the form $h=(\mathbf{u}, t)$, where \mathbf{u} is the direction of h, and t is the length of h.

Let $L(\omega)$ be a random segment of length $l>0$, which is parallel to a given fixed direction $\mathbf{u} \in S^{n-1}$ and intersects \mathbf{D}. Consider the random variable $|L|(\omega):=V_{1}(L(\omega) \cap \mathbf{D})$, where $L(\omega) \in \Omega_{2}(\mathbf{u})$, and the set $\Omega_{2}(\mathbf{u})$ is defined as follows:
$\Omega_{2}(\mathbf{u})=\{$ segments of lengths l, which are parallel to \mathbf{u} and intersect $\mathbf{D}\}$.
Observe that each random segment $L(\omega)$ lying on a line $g(\mathbf{u}, x)$ can be specified by the coordinates $(g(\mathbf{u}, x), y)$, where y is the one-dimensional coordinate of the center of $L(\omega)$ on the line $g(\mathbf{u}, x)$. As the origin on the line $g(\mathbf{u}, x)$ we take one of the intersection points of the line $g(\mathbf{u}, x)$ with the boundary of domain \mathbf{D}. Using the above notation, we can identify $\Omega_{2}(\mathbf{u})$ with the following set:

$$
\Omega_{2}(\mathbf{u})=\left\{(x, y): x \in \Pi r_{\mathbf{u}^{\perp}} \mathbf{D}, \quad y \in\left[-\frac{l}{2}, \chi(\mathbf{u}, x)+\frac{l}{2}\right]\right\}
$$

where $\chi(\mathbf{u}, x)=V_{1}(g(\mathbf{u}, x) \cap \mathbf{D})$. Note that the set $\Omega_{2}(\mathbf{u})$ does not depend on the choice of the origin of the line $g(\mathbf{u}, x)$, and the choice of the positive direction follows from the explicit form of the range of y. Further, we set

$$
B_{\mathbf{D}}^{\mathbf{u}, t}=\left\{(x, y) \in \Omega_{2}(\mathbf{u}):|L|(x, y)<t\right\}, \quad t \in \mathbb{R}^{1}
$$

and observe that the sets $\Omega_{2}(\mathbf{u})$ and $B_{\mathbf{D}}^{\mathbf{u}, t}$ are measurable subsets of \mathbb{R}^{n}.
Definition 3. The function

$$
F_{|L|}(\mathbf{u}, t)=\frac{V_{n}\left(B_{\mathbf{D}}^{\mathbf{u}, t}\right)}{V_{n}\left(\Omega_{2}(\mathbf{u})\right)}=\frac{1}{V_{n}\left(\Omega_{2}(\mathbf{u})\right)} \int_{B_{\mathbf{D}}^{u, t}} d x d y
$$

is called orientation-dependent distribution function of the length of a random segment L in direction $\mathbf{u} \in S^{n-1}$.

Let G_{n} be the space of all lines g in \mathbb{R}^{n}. A line $g \in G_{n}$ can be specified by its direction $\mathbf{u} \in S^{n-1}$ and its intersection point x in the hyperplane \mathbf{u}^{\perp}. The density $d \mathbf{u}^{\perp}$ is the volume element $d \mathbf{u}$ of the unit sphere S^{n-1}, and $d x$ is the volume element on \mathbf{u}^{\perp} at x. Let $\mu(\cdot)$ be a locally finite measure on G_{n}, invariant under the group of Euclidian motions. It is well known that the element of $\mu(\cdot)$ up to a constant factor has the following form (see [1]):

$$
\mu(d g)=d g=d \mathbf{u} d x
$$

Denote by $O_{n-1}=\sigma_{n-1}\left(S^{n-1}\right)$ the surface area of the unit sphere in \mathbb{R}^{n}. For each bounded convex body \mathbf{D}, we denote the set of lines that intersect \mathbf{D} by

$$
[\mathbf{D}]=\left\{g \in G_{n}, g \cap \mathbf{D} \neq \emptyset\right\} .
$$

We have (see [1])

$$
\mu([\mathbf{D}])=\frac{O_{n-2} V_{n-1}(\partial \mathbf{D})}{2(n-1)}
$$

A random line in $[\mathbf{D}]$ is the one with distribution proportional to the restriction of μ to $[\mathbf{D}]$. Therefore, for any $t \in \mathbb{R}^{1}$ we have

$$
F(t)=\frac{\mu\left(\left\{g \in[\mathbf{D}], V_{1}(g \cap \mathbf{D})<t\right\}\right)}{\mu([\mathbf{D}])}
$$

which is called the chord length distribution function of \mathbf{D}. Let L be a random segment of length l in \mathbb{R}^{n} and let $K(\cdot)$ be the kinematic measure of L [1]. If $g \in G_{n}$ is the line containing L and y is the one-dimensional coordinate of the center of L on the line g, then the element of the kinematic measure up to a constant factor is given by

$$
d K=d g d y d K_{[1]}
$$

where $d y$ is the one-dimensional Lebesgue measure on g and $d K_{[1]}$ is a motion element in \mathbb{R}^{n} that leaves g unchanged (see [1, 4,-7]).

Note that in the case, where the segment is orientated, the constant factor is equal to 1 , while for the unoriented segment it is equal to $1 / 2$. In this paper we consider only the case of unoriented segments. The length $|L|$ of a random segment L, provided that it hits the body \mathbf{D}, has the following distribution function:

$$
F_{|L|}(t)=\frac{K\left(L: L \cap \mathbf{D} \neq \emptyset, V_{1}(L \cap \mathbf{D})<t\right)}{K(L: L \cap \mathbf{D} \neq \emptyset)}, \quad t \in \mathbb{R}^{1}
$$

Denote by $\mathbf{P}(L(\omega) \subset \mathbf{D})$ probability, that random segment of length l in \mathbb{R}^{n} having a common point with body \mathbf{D} entirely lying in body \mathbf{D} (in this case the direction of the segment $L(\omega)$ is arbitrary).

Proposition (see [7]). Probability $\mathbf{P}(L(\omega) \subset \mathbf{D})$ in terms of chord length distribution function $F(t)$ has the following form:

$$
\mathbf{P}(L(\omega) \subset \mathbf{D})=\frac{O_{n-2} V_{n-1}(\partial \mathbf{D})\left(\int_{0}^{l} F(z) d z-l\right)+(n-1) O_{n-1} V_{n}(\mathbf{D})}{(n-1) O_{n-1} V_{n}(\mathbf{D})+l O_{n-2} V_{n-1}(\partial \mathbf{D})}
$$

Case of a Triangle. For any body \mathbf{D} of the \mathbb{R}^{n} we have (see [7])

$$
\mathbf{P}(L(\omega) \subset \mathbf{D})=\frac{1}{O_{n-1}} \int_{S^{n-1}} \frac{C(\mathbf{D}, \mathbf{u}, l)}{V_{n}(D)+l \cdot b_{D}(\mathbf{u})} d \mathbf{u}
$$

while the kinematic measure of the segments entire lying in \mathbf{D} is calculated by the following formula:

$$
K(L(\omega) \subset \mathbf{D})=\int_{S^{n-1}} C(\mathbf{D}, \mathbf{u}, l) d \mathbf{u}
$$

For any planar bounded convex domain we have

$$
\begin{equation*}
\mathbf{P}(L(\omega) \subset \mathbf{D})=\frac{1}{\pi S(D)+l|\partial D|} \int_{0}^{\pi} C(D, u, l) d u \tag{1}
\end{equation*}
$$

Denote by Δ a triangle in the plane. The main result of the present paper is the following statement.

Theorem. Probability $\mathbf{P}(L(\omega) \subset \Delta)$ for arbitrary triangle has the explicit forms (2)-(8) depending on the value of l.

Proof. Without loss of the generality we assume, that $A B \equiv a$ is the longest side of $\triangle A B C, \angle C A B \equiv \alpha$ is the smallest angle, and $\angle A B C \equiv \beta$. Thus, we have $B C=\frac{a \sin \alpha}{\sin (\alpha+\beta)}, C A=\frac{a \sin \beta}{\sin (\alpha+\beta)}, \angle B C A=\pi-(\alpha+\beta)$. Since $A B$ is the largest side, then $\angle B C A$ is the biggest angle. Therefore $\alpha \leq \beta \leq \pi-(\alpha+\beta)$.

Covariogram of a triangle Δ with side a has the form (see [3]):

$$
C(\Delta, u, l)=\left\{\begin{array}{lr}
\frac{(a \sin \beta-t \sin (u+\beta))^{2} \sin \alpha}{2 \sin \beta \sin (\alpha+\beta)}, & u \in[0, \alpha], t \in\left[0, \frac{a \sin \beta}{\sin (u+\beta)}\right] \\
\left.\begin{array}{lr}
\frac{(a \sin \alpha \sin \beta-t \sin u \sin (\alpha+\beta))^{2}}{2 \sin \alpha \sin \beta \sin (\alpha+\beta)}, & u \in[\alpha, \pi-\beta] \\
\frac{(a \sin \alpha-t \sin (u-\alpha))^{2} \sin \beta}{2 \sin \alpha \sin (\alpha+\beta)}, & u \in[\pi-\beta, \pi], t \in\left[0, \frac{a \sin \alpha \sin \beta}{\sin (\alpha+\beta) \sin u}\right] \\
\frac{(a \sin \beta+t \sin (u+\beta))^{2} \sin \alpha}{2 \sin \beta \sin (\alpha+\beta)}, & u \in[\pi, \pi+\alpha], t \in\left[0,-\frac{a \sin \beta}{\sin (u+\beta)}\right] \\
\frac{(a \sin \alpha \sin \beta+t \sin u \sin (\alpha+\beta))^{2}}{2 \sin \alpha \sin \beta \sin (\alpha+\beta)}, & u \in[\pi+\alpha, 2 \pi-\beta] \\
\frac{(a \sin \alpha+t \sin (u-\alpha))^{2} \sin \beta}{2 \sin \alpha \sin (\alpha+\beta)}, & u \in[2 \pi-\beta, 2 \pi], t \in\left[0,-\frac{a \sin \alpha}{\sin (u-\alpha)}\right]
\end{array}\right]
\end{array}\right.
$$

Let consider the following cases
a) $0 \leq l \leq \frac{a \sin \alpha \sin \beta}{\sin (\alpha+\beta)}$.

Using (1), we get

$$
\mathbf{P}(L(\omega) \subset \Delta)=\frac{1}{\pi S(\Delta)+l|\partial \Delta|} \int_{0}^{\pi} C(\Delta, u, l) d u=
$$

$\frac{2 \sin (\alpha+\beta)}{\pi a^{2} \sin \alpha \sin \beta+2 a l(\sin \alpha+\sin \beta+\sin (\alpha+\beta))} \times$ $\times\left(\int_{0}^{\alpha} \frac{(a \sin \beta-l \sin (u+\beta))^{2} \sin \alpha}{2 \sin \beta \sin (\alpha+\beta)} d u+\right.$
$\left.+\int_{\alpha}^{\pi-\beta} \frac{(a \sin \alpha \sin \beta-l \sin u \sin (\alpha+\beta))^{2}}{2 \sin \alpha \sin \beta \sin (\alpha+\beta)} d u+\int_{\pi-\beta}^{\pi} \frac{(a \sin \alpha-l \sin (u-\alpha))^{2} \sin \beta}{2 \sin \alpha \sin (\alpha+\beta)} d u\right)$.

We set

$$
\begin{gathered}
f_{1}(x, y) \equiv \frac{\sin \alpha}{\sin \beta} \int_{x}^{y}(a \sin \beta-l \sin (u+\beta))^{2} d u=a^{2} \sin \alpha \sin \beta(y-x)- \\
-4 a l \sin \alpha \sin \left(\frac{y+x}{2}+\beta\right) \sin \left(\frac{y-x}{2}\right)+\frac{l^{2} \sin \alpha}{2 \sin \beta}((y-x)-\sin (y-x) \cos (y+x+2 \beta)) \\
f_{2}(x, y) \equiv \frac{1}{\sin \alpha \sin \beta} \int_{x}^{y}(a \sin \alpha \sin \beta-l \sin u \sin (\alpha+\beta))^{2} d u=a^{2} \sin \alpha \sin \beta(y-x)- \\
4 a l \sin (\alpha+\beta) \sin \left(\frac{y+x}{2}\right) \sin \left(\frac{y-x}{2}\right)+\frac{l^{2} \sin ^{2}(\alpha+\beta)}{2 \sin \alpha \sin \beta}((y-x)-\sin (y-x) \cos (y+x)) \\
f_{3}(x, y) \equiv \frac{\sin \beta}{\sin \alpha} \int_{x}^{y}(a \sin \alpha-l \sin (u-\alpha))^{2} d u=a^{2} \sin \alpha \sin \beta(y-x)- \\
-4 a l \sin \beta \sin \left(\frac{y+x}{2}-\alpha\right) \sin \left(\frac{y-x}{2}\right)+\frac{l^{2} \sin \beta}{2 \sin \alpha}((y-x)-\sin (y-x) \cos (y+x-2 \alpha))
\end{gathered}
$$

Hence, for $0 \leq l \leq \frac{a \sin \alpha \sin \beta}{\sin (\alpha+\beta)}$ we get

$$
\begin{equation*}
\mathbf{P}(L(\omega) \subset \Delta)=\frac{f_{1}(0, \alpha)+f_{2}(\alpha, \pi-\beta)+f_{3}(\pi-\beta, \pi)}{\pi a^{2} \sin \alpha \sin \beta+2 a l(\sin \alpha+\sin \beta+\sin (\alpha+\beta))} \tag{2}
\end{equation*}
$$

b) $\frac{a \sin \alpha \sin \beta}{\sin (\alpha+\beta)} \leq l \leq a \sin \alpha$. We have

$$
\begin{equation*}
\mathbf{P}(L(\omega) \subset \Delta)=\frac{f_{1}(0, \alpha)+f_{2}\left(\alpha, \alpha+\varphi_{1}\right)+f_{2}\left(\pi-\beta-\phi_{1}, \pi-\beta\right)+f_{3}(\pi-\beta, \pi)}{\pi a^{2} \sin \alpha \sin \beta+2 a l(\sin \alpha+\sin \beta+\sin (\alpha+\beta))} \tag{3}
\end{equation*}
$$

where $\varphi_{1}=\arcsin \frac{a \sin \alpha \sin \beta}{l \sin (\alpha+\beta)}-\alpha, \phi_{1}=\arcsin \frac{a \sin \alpha \sin \beta}{l \sin (\alpha+\beta)}-\beta$.
c) $a \sin \alpha \leq l \leq \min \left\{\frac{a \sin \alpha}{\sin (\alpha+\beta)}, a \sin \beta\right\}$, for which we have

$$
\begin{align*}
\mathbf{P}(L(\omega) \subset \Delta)= & \frac{1}{\pi a^{2} \sin \alpha \sin \beta+2 a l(\sin \alpha+\sin \beta+\sin (\alpha+\beta))} \times \\
& \times\left(f_{1}(0, \alpha)+f_{2}\left(\alpha, \alpha+\varphi_{1}\right)+\right. \tag{4}\\
+f_{2}(\pi- & \left.\left.\beta-\phi_{1}, \pi-\beta\right)+f_{3}\left(\pi-\beta, \pi-\beta+\varphi_{2}\right)+f_{3}\left(\pi-\phi_{2}, \pi\right)\right)
\end{align*}
$$

where $\varphi_{2}=\alpha+\beta-\pi+\arcsin \frac{a \sin \alpha}{l}, \phi_{2}=\arcsin \frac{a \sin \alpha}{l}-\alpha$:
c1) if $\sin \beta \leq \frac{\sin \alpha}{\sin (\alpha+\beta)}$, we consider $a \sin \beta \leq l \leq \frac{a \sin \alpha}{\sin (\alpha+\beta)}$, so

$$
\begin{gather*}
\mathbf{P}(L(\omega) \subset \Delta)=\frac{1}{\pi a^{2} \sin \alpha \sin \beta+2 a l(\sin \alpha+\sin \beta+\sin (\alpha+\beta))} \times \\
\times\left(f_{1}\left(0, \varphi_{3}\right)+f_{1}\left(\alpha-\phi_{3}, \alpha\right)+f_{2}\left(\alpha, \alpha+\varphi_{1}\right)+f_{2}\left(\pi-\beta-\phi_{1}, \pi-\beta\right)+\right. \tag{5}\\
\left.+f_{3}\left(\pi-\beta, \pi-\beta+\varphi_{2}\right)+f_{3}\left(\pi-\phi_{2}, \pi\right)\right)
\end{gather*}
$$

where $\varphi_{3}=\arcsin \frac{a \sin \beta}{l}-\beta, \phi_{3}=\alpha+\beta-\pi+\arcsin \frac{a \sin \beta}{l}$;
c2) if $\frac{\sin \alpha}{\sin (\alpha+\beta)} \leq \sin \beta$, we consider $\frac{a \sin \alpha}{\sin (\alpha+\beta)} \leq l \leq a \sin \beta$, then

$$
\begin{equation*}
\mathbf{P}(L(\omega) \subset \Delta)=\frac{f_{1}(0, \alpha)+f_{2}\left(\alpha, \alpha+\varphi_{1}\right)+f_{3}\left(\pi-\phi_{2}, \pi\right)}{\pi a^{2} \sin \alpha \sin \beta+2 a l(\sin \alpha+\sin \beta+\sin (\alpha+\beta))} \tag{6}
\end{equation*}
$$

d) $\max \left\{\frac{a \sin \alpha}{\sin (\alpha+\beta)}, a \sin \beta\right\} \leq l \leq \frac{a \sin \beta}{\sin (\alpha+\beta)}$,

$$
\begin{equation*}
\mathbf{P}(L(\omega) \subset \Delta)=\frac{f_{1}\left(0, \varphi_{3}\right)+f_{1}\left(\alpha-\phi_{3}, \alpha\right)+f_{2}\left(\alpha, \alpha+\varphi_{1}\right)+f_{3}\left(\pi-\phi_{2}, \pi\right)}{\pi a^{2} \sin \alpha \sin \beta+2 a l(\sin \alpha+\sin \beta+\sin (\alpha+\beta))} \tag{7}
\end{equation*}
$$

e) $\frac{a \sin \beta}{\sin (\alpha+\beta)} \leq l \leq a$ we have

$$
\begin{equation*}
\mathbf{P}(L(\omega) \subset \Delta)=\frac{f_{1}\left(0, \varphi_{3}\right)+f_{3}\left(\pi-\phi_{2}, \pi\right)}{\pi a^{2} \sin \alpha \sin \beta+2 a l(\sin \alpha+\sin \beta+\sin (\alpha+\beta))} \tag{8}
\end{equation*}
$$

Obviously, if $l>a$, the probability $\mathbf{P}(L(\omega) \subset \Delta)$ is zero.
Particularly, for regular triangle with a side a and $\alpha=\beta=60^{\circ}$, among all 5 subcases a)-e) there are only two cases, namely

$$
0 \leq l \leq \sin \alpha \quad \text { and } \quad \sin \alpha \leq l \leq a
$$

and result of Theorem coincides with the result of [7] (Eqs. (4.3), (4.4)) for a regular triangle.

Received 14.07.2017

REFERENCES

1. Santalo L.A. Integral Geometry and Geometric Probability. Addision-Wesley, 2004.
2. Schneider R., Weil W. Stochastic and Integral Geometry. Springer, 2008.
3. Gasparyan A.G., Ohanyan V.K. Recognition of Triangles by Covariogram. // J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2013, v. 48, № 3, p. 110-122.
4. Harutyunyan H.S., Ohanyan V.K. Orientation-Dependent Section Distributions for Convex Bodies. // J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2014, v. 49, № 3, p. 139-156.
5. Gasparyan A.G., Ohanyan V.K. Orientation-Dependent Distribution of the Length of a Random Segment and Covariogram. // Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2015, v. 50, № 2, p. 90-97.
6. Aharonyan N.G., Ohanyan V.K. Kinematic Measure of Intervals Lying in Domains. // J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2011, v. 46, № 5, p. 280-288.
7. Aharonyan N.G., Ohanyan V.K. Calculation of Geometric Probabilities Using Covariogram of Convex Bodies. // Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2018, v. 53, № 3.

[^0]: * E-mail: narine78@ysu.am
 ${ }^{* *}$ E-mail: harutyunyan.hripsime@ysu.am

