In the paper K-groups of C^*-subalgebras of the Toeplitz algebra generated by inverse subsemigroups of the bicyclic semigroup are discussed. For these algebras inductive limit of inductive sequence of K-groups, which are generated by the corresponding inductive sequence of C^*-algebras is constructed.

MSC2010: Primary 46L05; Secondary 47L30.

Keywords: Toeplitz algebra, inverse subsemigroup of the bicyclic semigroup, K-group, inductive limit.

Introduction. One of the well-known and frequently used algebraic object in contemporary mathematical physics is the Toeplitz algebra \mathcal{T}. This algebra and its various modifications were considered by many authors [1–10]. Barnes in [1] proved that bicyclic semigroup has only one infinite dimensional, irreducible, unitarily non-equivalent representation, and series of one dimensional representations are parameterized by unit circle S^1. By Coburn’s theorem [2] C^*-algebras generated by non-unitary isometric representations of semigroup of non-negative integers are canonically isomorphic. This results were generalized by Douglas [3] for semigroups with Archimedean property and by Murphy [4] for totally ordered semigroups. In [5] Aukhadiev M. and Tepoyan V. proved the reverse direction of Murphy’s theorem [4], that is all C^*-algebras, generated by faithful isometrical non-unitary representations of semigroup, are canonically isomorphic only if the semigroup is totally ordered. Thus we conclude that faithful, infinite dimensional representation of bicyclic semigroup generates the Toeplitz algebra. A natural question arises here: consider C^*-algebras generated by inverse subsemigroups of a bicyclic semigroup. In this article we consider above-mentioned generalizations of the Toeplitz algebra.

Earlier the authors initiated the study of the C^*-subalgebras of the Toeplitz algebra \mathcal{T}, which is generated by the monomials with their indexes divisible by m. This C^*-algebra was denoted by \mathcal{T}_m and it was proved that \mathcal{T}_m consists of the fixed

\[\begin{align*}
\text{E-mail: karen.hovsep@gmail.com} & \quad \text{** E-mail: artak_v@list.ru}
\end{align*} \]
points under a finite subgroup in S^1 of order m. All irreducible infinite-dimensional representations of this C^*-algebra were described and complete description for all invariant ideals of the algebra T_m was given (see [11,13]). The complete description of the group of automorphisms of C^*-algebra T_m and some of its subalgebras were represented in [14]. Besides, in [15] it was shown that T_m can be represented as a crossed product: $T_m = \phi(A) \times_\delta \mathbb{Z}$, where $A = C_0(\mathbb{Z}_+) \oplus CI$ is the algebra of all continuous functions on \mathbb{Z}_+, which have a finite limit at infinity.

Preliminaries. A semigroup (S, \cdot) is called **inverse**, if any $a \in S$ has a unique inverse element in S denoted by a^*. That is, there is a unique $a^* \in S$ such that the equalities hold: $a \cdot a^* = a$ and $a^* \cdot a = a^*$. Any group is an example of an inverse semigroup, where the inverse of an element a in the group is given by $a^* = a^{-1}$. An inverse semigroup (S, \cdot) with an identity e is called **bicyclic** if it is generated by one element a and the relation $a^* \cdot a = e$.

Let S be a bicyclic semigroup with a generator a. Each element of S has a unique presentation in the form a^ka^l, where k and l are nonnegative integers. Such elements are called **monomials**, while the number $k - l$ is called the **index** of the monomial a^ka^l and is denoted by $\text{ind}(a^ka^l)$ (see [11]).

Let fix some integer $m \in \mathbb{N}$ and denote by S_m the inverse subsemigroup of the bicyclic semigroup S, generated by the monomials with their indexes divisible by m:

$$S_m = \{ b \in S : \text{ind}(b) = k \cdot m, k \in \mathbb{Z} \}.$$

Let $S(m) \subset S$ be a subsemigroup generated by the element a^m. Obviously, both $S(m)$ and S_m are inverse subsemigroups of the bicyclic semigroup S. The relationship between these two semigroups was given in [11].

Consider the representation $\pi: S \to B(l^2(\mathbb{Z}_+))$ of the bicyclic semigroup given by $\pi(a^ka^l) = T^kT^l$, where T acts on the orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$ of Hilbert space $l^2(\mathbb{Z}_+)$ by $T e_n = e_{n+1}$. Note that π is an infinite dimensional, irreducible, faithful representation of S and the Toeplitz algebra T is the C^*-algebra generated by $\pi(S)$. Denote by T_m the subalgebra of T generated by $\pi(S_m)$. Otherwise, T_m is generated by all monomials of the form T^kT^l, where $\text{ind}(T^kT^l) = cm, c \in \mathbb{Z}$.

Let $\mathcal{T}(m)$ be a C^*-subalgebra of the Toeplitz algebra T generated by $\pi(S(m))$. It is obvious that $\mathcal{T}(m) \subset T_m$.

T_m as an Abstract Algebra. In this paragraph we consider the algebra T_m not as a subalgebra of the classical Toeplitz algebra T_m. Here an algebra isomorphic to T_m is constructed, and in the future it will be identified with T_m. Let’s consider decomposition of Hilbert space $l^2(\mathbb{Z}_+)$ in the following way:

$$l^2(\mathbb{Z}_+) = H_1 \oplus H_2 \oplus \ldots \oplus H_m,$$

where the basis of subspaces H_i consists of elements $\{e_{i+km}\}_{k \in \mathbb{Z}_+}, 1 \leq i \leq m$. Then subspaces H_i, $1 \leq i \leq m$, are invariant with respect to the algebra T_m, due to which each element $A \in T_m$ is uniquely represented in the following way:

$$A = A|_{H_i} \oplus \ldots \oplus A|_{H_m}.$$
Lemma 1. The following identity is true:

\[\mathcal{K}_m = \mathcal{K}(H_1) \oplus \ldots \oplus \mathcal{K}(H_m). \]

In [11][12] it was shown, that the representations

\[\pi_i : \mathcal{T}_m \to B(H_i), \quad \pi_i(A) = A|_{\mu_i}, \quad i = 1, \ldots, m, \]

give the complete characterization of all irreducible, unitarily non-equivalent, infinite dimensional representations of the algebra \(\mathcal{T}_m \).

Invariant ideals of the algebra \(\mathcal{T}_m \) are the kernels of infinite dimensional representations \(\pi_i, i = 1, \ldots, m \) and its all possible intersections [13]:

\[\mathcal{J}_i = \ker(\pi_i) = \{ \mathcal{K}(H_1) \oplus \ldots \oplus K(H_{i-1}) \oplus 0 \oplus K(H_{i+1}) \oplus \ldots \oplus \mathcal{K}(H_m) \}. \] (3)

A sequence of algebras

\[0 \to \mathcal{K}_m \to \mathcal{T}_m \to C(S^1) \to 0 \] (4)

is called short exact sequence, if \(\text{im}(\phi) = \ker(\psi) \), where \(\phi \) is a monomorphism and \(\psi \) is an epimorphism. Besides, the short exact sequence (4) is called split, if there exists a homomorphism \(h : C \to B \) such that the composition \(\psi \circ h \) is the identity map of \(C \). It is also proved the existence of the following short exact sequences:

\[0 \to \mathcal{K}_m \to \mathcal{T}_m \to C(S^1) \to 0, \] (5)

\[0 \to \bigcap_{k=1}^{n} \mathcal{J}_k \to \mathcal{T}_m \to \mathcal{T}_n \to 0. \] (6)

Besides, short exact sequence (6) is splittable.

Lemma 2. [12] There exists a unique representation of the group \(S^1 \) into the group of automorphisms of the Toeplitz algebra:

\[\sigma_0 : S^1 \to \text{Aut}\mathcal{T}_m, \quad \sigma_0(z)(T^nT^{*m}) = z^{(n-m)}T^nT^{*m}, \quad \forall m,n \in \mathbb{Z}_+. \]

Let us define unitary operator \(u_j : H_j \to l^2(\mathbb{Z}_+), 1 \leq j \leq m \), which acts on basis elements in this way: \(u_j(e_{j+k}) = e_k \). Since \(H_j \) is invariant with respect to \(C^* \)-algebra \(\mathcal{T}_m \), the unitary operator \(u = u_1 \oplus \ldots \oplus u_m : H_1 \oplus H_2 \oplus \ldots \oplus H_m \to \bigoplus_{j=1}^{m} l^2(\mathbb{Z}_+) \) generates embedding:

\[\sigma : \mathcal{T}_m \to \bigoplus_{j=1}^{m} B(l^2(\mathbb{Z}_+)), \quad \sigma(A) = uAu^*, \text{ where } A \in \mathcal{T}_m. \]

Since \(T^me_{i+km} = e_{i+(k+1)m}, \sigma(T^m) = T \oplus \ldots \oplus T \) is the \(m \) copy of the shift operator \(T \). The algebra \(\mathcal{T}(m) \) is generated by the operators \(T^m \) and \(T^{*m} \) consequently, for each \(A \in \mathcal{T}(m) \) there exists an operator \(B \in \mathcal{T} \) such that

\[\sigma(A) = B \oplus \ldots \oplus B. \]

Obviously, the reverse is also true. That is, for each \(B \in \mathcal{T} \) there exists an operator \(A \in \mathcal{T}(m) \) such that \(\sigma(A) = B \oplus \ldots \oplus B \). So the algebra \(\mathcal{T}(m) \) will be identified with the algebra \(\sigma(\mathcal{T}(m)) \):

\[\mathcal{T}(m) \approx \sigma(\mathcal{T}(m)) = m\mathcal{T} = \{ A : A = B \oplus B \oplus \ldots \oplus B, B \in \mathcal{T} \} \to \bigoplus_{j=1}^{m} \mathcal{T}, \] (7)

where by \(\bigoplus \mathcal{T} \) is denoted the direct sum of \(m \) copies of the Toeplitz algebra \(\mathcal{T} \).
As it was shown in [13],

\[P_j|_{H_i} = \begin{cases}
I, & i - 1 \geq j, \\
T^mT^{*m}, & i - 1 < j.
\end{cases} \]

Taking into account the above mentioned facts, we derive \(\sigma(P_i) = TT^* \oplus \cdots \oplus TT^* \oplus I \oplus \cdots \oplus I. \) In the sequel the projectors \(P_i, \ 0 \leq i \leq m - 1, \) will be identified with the projectors \(\sigma(P_i) : P_i \approx \sigma(P_i), \ 0 \leq i \leq m - 1. \) Particularly, using Lemma 1 the subalgebra of compact operators \(\mathcal{K}_m \) in \(\mathcal{T}_m, \) which could be identified with the algebra \(\sigma(\mathcal{K}_m), \) is derived by

\[\mathcal{K}_m \approx \sigma(\mathcal{K}_m) = \bigoplus_{i=0}^{m} \mathcal{K}. \quad (8) \]

Using the above mentioned identifications (7), (8), the algebra \(\mathcal{T}_m \) can be identified with the algebra \(\sigma(\mathcal{T}_m): \)

\[\mathcal{T}_m \approx \sigma(\mathcal{T}_m) = \{ A : A = (B + K_1) \oplus \cdots \oplus (B + K_m), B \in \mathcal{T}, K_1, \ldots, K_m \in \mathcal{K} \}. \quad (9) \]

K-Groups of Some Subalgebras of the Toeplitz Algebra. Let \(A \) be an \(\ast \)-algebra. Denote the \(n \times n \) matrix with entries from \(A \) by \(M_n(A) \) and \(0_n, 1_n \) are zero and identity elements in \(M_n(A) \) respectively. Define

\[P[A] = \bigcup_{n=0}^{\infty} \{ p \in M_n(A) : p^2 = p = p^* \}. \]

Let \(p, q \in P[A]. \) We say that \(p \) and \(q \) are equivalent, and write \(p \sim q, \) if there exists a rectangular matrix \(u \) with entries from \(A \) such that \(p = u^*u, \) \(q = uu^*. \)

Projectors \(p \) and \(q \) in \(P[A] \) are called stably equivalent and are denoted \(p \approx q, \) if there exists a nonnegative integer \(n \) such that \(1_n \oplus p \sim 1_n \oplus q. \) It is easy to see that \(\approx \) is a relation of equivalence in \(P[A]. \) Denote the class of stably equivalency of projector \(p \in P[A] \) by \([p], \) and set of all these classes of equivalency by \(K_0(A)^+. \)

We define \([p] + [q] = [p \oplus q] \) for \([p], [q] \in K_0(A)^+. \) If \(A \) is an unital \(\ast \)-algebra, then \(K_0(A)^+ \) is an Abelian semigroup with a cancelation, and \([0]\) will be its zero element. \(K_0(A) \) will be the Grothendieck group of the semigroup \(K_0(A)^+ \) in the case \(A \) is an unital algebra.

If \(A \) and \(B \) are unital \(C^\ast \)-algebras, then the unital homomorphism \(\varphi : A \rightarrow B \) generates a uniquely defined homomorphism of the corresponding groups:

\(\varphi_* : K_0(A) \rightarrow K_0(B), \varphi_*([p]) = [\varphi(p)]. \)

In this way there is constructed a covariant functor

\[A \mapsto K_0(A), \ \varphi \mapsto \varphi_* \]

from the category of unital \(C^\ast \)-algebras into the category of Abelian groups.

Let \(A \) be a unital or non-unital \(C^\ast \)-algebra. Denote \(\tilde{K}_0(A) = \ker(\tau_*), \) where \(\tau : A \rightarrow \mathbb{C} \) is a canonical \(\ast \)-homomorphism. Thus \(\tilde{K}_0(A) \) is a subsemigroup in \(K_0(A). \)

If \(A \) is a unital \(C^\ast \)-algebra, then the group \(K_0(A) \) is isomorphic to the group \(\tilde{K}_0(A). \)

For each \(C^\ast \)-algebra \(A \) its suspension is called \(C^\ast \)-algebra

\[S(A) = \{ f \in C([0, 1], A) : f(0) = f(1) = 0 \}. \]

For each \(C^\ast \)-algebra \(A \) we will denote \(\tilde{K}_1(A) = \tilde{K}_0(S(A)). \)
In [7] there is the theorem, which states that if
considerations, which were given in the proof of the above mentioned Theorem 1
for short exact sequence (6), we get
The last isomorphism in (11) is evident.
Thus, short exact splittable sequence (6)
generates short exact sequence of group
0 \rightarrow \mathbb{J}_i \rightarrow \mathcal{T}_m \rightarrow \mathcal{J} \rightarrow 0
It follows from (10) that \(K_0(\mathcal{T}_m) \cong K_i(\mathcal{J}_i) \oplus K_0(\mathcal{J}) \), \(i = 0, 1 \).
In [7] it is proven that \(K_0(\mathcal{J}) = \mathbb{Z} \). On the other hand, taking into account that
for every C*-algebras \(A, B \) the following equality holds: \(K_0(A \oplus B) = K_0(A) \oplus K_0(B) \)
and \(K_0(\mathcal{K}) = \mathbb{Z} \) (see [7]), we derive
\[K_0(\mathcal{J}_i) = K_0(\mathcal{K} \oplus ... \oplus K \oplus 0 \oplus K \oplus ... \oplus \mathcal{K}) = K_0(\mathcal{K}) \oplus ... \oplus K_0(\mathcal{K}) \oplus 0 \oplus K_0(\mathcal{K}) \oplus ... \oplus K_0(\mathcal{K}) = \]
\[= \mathbb{Z} \oplus \mathbb{Z} \oplus ... \oplus \mathbb{Z} \oplus 0 \oplus \mathbb{Z} \oplus ... \oplus \mathbb{Z} \cong \mathbb{Z}_{m-1}. \]
The last isomorphism in (11) is evident.
Thus, \(K_0(\mathcal{T}_m) \cong K_0(\mathcal{J}_i) \oplus K_0(\mathcal{J}) \cong \mathbb{Z}_{m-1} \oplus \mathbb{Z} = \mathbb{Z}_m. \)

Corollary 1. The \(K_0 \) group of the C*-algebra \(\mathcal{K}_m \) is isomorphic to the group \(\mathbb{Z}_m \):
\[K_0(\mathcal{K}_m) \cong \mathbb{Z}_m. \]

Corollary 2. Since \(K_1(\mathcal{J}) = 0, \ K_1(\mathcal{K}) = 0 \) (see [7]), repeating all
considerations, which were given in the proof of the above mentioned Theorem 1
for short exact sequence (6), we get
\[K_1(\mathcal{T}_m) = 0, \ K_1(\mathcal{K}_m) = 0. \]

In K-theory the next important fact is the existence of six-term exact sequences.
In [7] there is the theorem, which states that if \(A \) is an ideal in C*-algebra \(B \), short
exact sequence \(0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0 \) generates six-term exact sequence:
\[K_1(A) \overset{\delta_0}{\longrightarrow} K_1(B) \overset{\delta_1}{\longrightarrow} K_1(A/B) \]
Thus, short exact sequence (6) generates the following six term exact sequence:
\[K_1(\mathcal{K}_m) \overset{\delta_0}{\longrightarrow} K_1(\mathcal{K}_m) \overset{\delta_1}{\longrightarrow} K_1(\mathcal{C}(S^1)) \]
\[K_0(\mathcal{C}(S^1)) \overset{\delta_0}{\longleftarrow} K_0(\mathcal{T}_m) \overset{\delta_1}{\longleftarrow} K_0(\mathcal{K}_m) \]
Using the Theorem, the Corollary 2 and the fact, that $K_0(C(S^1)) = K_1(C(S^1)) = \mathbb{Z}$ (see [7]), the above diagram gets the following form:

$$
\begin{array}{c}
\begin{array}{ccc}
0 & \longrightarrow & \mathbb{Z} \\
\delta_1 & & \delta_1 \\
\mathbb{Z} & \leftarrow & \mathbb{Z}_m \\
\end{array}
\end{array}
$$

where the map $\delta_1(1) = 1 \oplus 1 \oplus \ldots \oplus 1$ is an index of Fredholm.

Let us consider an inductive sequence of C^*-algebras:

$$
\mathcal{T}_1 \xrightarrow{\phi_1} \mathcal{T}_2 \xrightarrow{\phi_2} \mathcal{T}_3 \xrightarrow{\phi_3} \ldots, \tag{12}
$$

where the morphism $\mathcal{T}_k \xrightarrow{\phi_k} \mathcal{T}_{k+1}$ is defined as follows:

$$
\phi_k((T \oplus K_1) + (T \oplus K_2) + \ldots + (T \oplus K_k)) = (T \oplus K_1) + (T \oplus K_2) + \ldots + (T \oplus K_k) + (T \oplus K_1).
$$

Denote the inductive limit of sequence (12) by \mathcal{T}_∞. Sequence (12) generates inductive sequence of K_0 groups:

$$
\begin{array}{c}
\begin{array}{ccc}
K_0(\mathcal{T}_1) & \xrightarrow{\phi_1} & K_0(\mathcal{T}_2) \\
\phi_1 & & \phi_1 \\
K_0(\mathcal{T}_3) & \xrightarrow{\phi_2} & \ldots
\end{array}
\end{array}
$$

Applying the Theorem 1 to sequence (13), it will have the following form:

$$
\begin{array}{c}
\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{\phi_1} & \mathbb{Z}_2 \\
\phi_1 & & \phi_1 \\
\mathbb{Z}_3 & \xrightarrow{\phi_2} & \ldots
\end{array}
\end{array}
$$

where $\mathbb{Z}_i \xrightarrow{\phi_i} \mathbb{Z}_{i+1}$ acts as follows $\phi_i(z_1 \oplus z_2 \oplus \ldots \oplus z_i) = z_1 \oplus z_2 \oplus \ldots \oplus z_i \oplus 1$.

Let us assume the that $\psi_i : \mathbb{Z}_i \rightarrow \mathbb{Z}_\infty$, where

$$
\mathbb{Z}_\infty = \{z_1 \oplus z_2 \oplus z_3 \oplus \ldots \oplus z_i \oplus z_i \oplus \ldots : z_i \in \mathbb{Z}\} \subset \mathbb{Z}_\infty.
$$

It is easy to prove, that ψ_i is an isomorphism. After identifying $\mathbb{Z}_i \simeq \mathbb{Z}_\infty$, the inductive sequence of groups (14) has the form:

$$
\begin{array}{c}
\begin{array}{ccc}
\mathbb{Z}_1 & \xrightarrow{\phi_1} & \mathbb{Z}_2 \\
\phi_1 & & \phi_1 \\
\mathbb{Z}_3 & \xrightarrow{\phi_2} & \ldots
\end{array}
\end{array}
$$

It follows from the last diagram that $\mathbb{Z}_\infty = \bigcup_{i=1}^{\infty} \mathbb{Z}_i$. That is the inductive limit of direct sequence of groups (14) is the group \mathbb{Z}_∞: $\lim_{\to}(\mathbb{Z}_n, \phi_{n+1}) = \mathbb{Z}_\infty$.

Thus we prove the following theorem:

Theorem 2. The inductive limit of the inductive sequence of groups $\mathbb{Z} \xrightarrow{\phi_1} \mathbb{Z}_2 \xrightarrow{\phi_2} \mathbb{Z}_3 \xrightarrow{\phi_3} \ldots$, generated by K_0 groups of the corresponding inductive sequence of C^*-algebras $\mathcal{T}_1 \xrightarrow{\phi_1} \mathcal{T}_2 \xrightarrow{\phi_2} \mathcal{T}_3 \xrightarrow{\phi_3} \ldots$, is the group \mathbb{Z}_∞, that is $\lim_{\to}(\mathbb{Z}_n, \phi_{n+1}) = \mathbb{Z}_\infty$.

Received 31.07.2017
REFERENCES