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Introduction. One of the well-known and frequently used algebraic
object in contemporary mathematical physics is the Toeplitz algebra T. This alge-
bra and its various modifications were considered by many authors [1–10]. Barnes
in [1] proved that bicyclic semigroup has only one infinite dimensional, irreducible,
unitarily non-equivalent representation, and series of one dimensional represen-
tations are parameterized by unit circle S1. By Coburn’s theorem [2] C∗-algebras
generated by non-unitary isometric representations of semigroup of non-negative
integers are canonically isomorphic. This results were generalized by Douglas [3]
for semigroups with Archimedean property and by Murphy [4] for totally ordered
semigroups. In [5] Aukhadiev M. and Tepoyan V. proved the reverse direction of
Murphy’s theorem [4], that is all C∗-algebras, generated by faithful isometrical
non-unitary representations of semigroup, are canonically isomorphic only if the
semigroup is totally ordered. Thus we conclude that faithful, infinite dimensional
representation of bicyclic semigroup generates the Toeplitz algebra. A natural
question arises here: consider C∗-algebras generated by inverse subsemigroups of
a bicyclic semigroup. In this article we consider above-mentioned generalizations of
the Toeplitz algebra.

Earlier the authors initiated the study of the C∗-subalgebras of the Toeplitz
algebra T, which is generated by the monomials with their indexes divisible by m.
This C∗-algebra was denoted by Tm and it was proved that Tm consists of the fixed
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points under a finite subgroup in S1 of order m. All irreducible infinite-dimensional
representations of this C∗-algebra were described and complete description for all
invariant ideals of the algebra Tm was given (see [11–13]). The complete description
of the group of automorphisms of C∗-algebra Tm and some of its subalgebras were
represented in [14]. Besides, in [15] it was shown that Tm can be represented as a
crossed product: Tm = ϕ(A)×δm Z, where A = C0(Z+)⊕CI is the algebra of all
continuous functions on Z+, which have a finite limit at infinity.

Preliminaries. A semigroup (S, ·) is called inverse, if any a ∈ S has a unique
inverse element in S denoted by a∗. That is, there is a unique a∗ ∈ S such that the
equalities hold: a ·a∗ ·a = a and a∗ ·a ·a∗ = a∗. Any group is an example of an inverse
semigroup, where the inverse of an element a in the group is given by a∗ = a−1. An
inverse semigroup (S, ·) with an identity e is called bicyclic if it is generated by one
element a and the relation a∗ ·a = e.

Let S be a bicyclic semigroup with a generator a. Each element of S has a
unique presentation in the form aka∗l , where k and l are nonnegative integers. Such
elements are called monomials, while the number k− l is called the index of the
monomial aka∗l and is denoted by ind(aka∗l) (see [11]).

Let fix some integer m ∈ N and denote by Sm the inverse subsemigroup of the
bicyclic semigroup S, generated by the monomials with their indexes divisible by m:

Sm = {b ∈ S : ind(b) = k ·m, k ∈ Z}.
Let S(m) ⊂ S be a subsemigroup generated by the element am. Obviously, both
S(m) and Sm are inverse subsemigroups of the bicylic semigroup S. The relationship
between these two semigroups was given in [11].

Consider the representation π : S→ B(l2(Z+)) of the bicyclic semigroup given
by π(aka∗l) = T kT ∗l , where T acts on the orthonormal basis {en}n∈N of Hilbert space
l2(Z+) by Ten = en+1. Note that π is an infinite dimensional, irreducible, faithful
representation of S and the Teoplitz algebra T is the C∗-algebra generated by π(S).
Denote by Tm the subalgebra of T generated by π(Sm). Otherwise, Tm is generated
by all monomials of the form T kT ∗l , where ind(T kT ∗l) = cm,c ∈ Z.

Let T(m) be a C∗-subalgebra of the Toeplitz algebra T generated by π(S(m)).
It is obvious that T(m)⊂ Tm.

Tm as an Abstract Algebra. In this paragraph we consider the algebra Tm not
as a subalgebra of the classical Toeplitz algebra [11–13]. Here an algebra isomorphic
to Tm is constructed, and in the future it will be identified with Tm. Let’s consider
decomposition of Hilbert space l2(Z+) in the following way:

l2(Z+) = H1⊕H2⊕ ...⊕Hm, (1)

where the basis of subspaces Hi consists of elements
{

ei−1+km
}

k∈Z+
, 1 ≤ i ≤ m.

Then subspaces Hi, 1 ≤ i ≤ m, are invariant with respect to the algebra Tm, due to
which each element A ∈ Tm is uniquely represented in the following way:

A = A|H1⊕ ...⊕A|Hm . (2)

Let K be C∗-subalgebra of all compact operators in the Toeplitz algebra T and Km

be the C∗-subalgebra of all compact operators in Tm.
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L e m m a 1. The following identity is true:
Km =K(H1)⊕ ...⊕K(Hm).

In [11, 12] it was shown, that the representations
πi : Tm→ B(Hi), πi(A) = A|Hi , i = 1, . . . ,m,

give the complete characterization of all irreducible, unitarily non-equivalent, infinite
dimensional representations of the algebra Tm.

Invariant ideals of the algebra Tm are the kernels of infinite dimensional
representations πi, i = 1, ...,m and its all possible intersections [13]:

Ji = ker(πi) = {K(H1)⊕ ...⊕K(Hi−1)⊕0⊕K(Hi+1)⊕ ...⊕K(Hm)}. (3)
A sequences of algebras

0−→ A
ϕ−→ B

ψ−→C −→ 0 (4)
is called short exact sequence, if im(ϕ) = ker(ψ), where ϕ is a monomorphism and
ψ is an epimorphism. Besides, the short exact sequence (4) is called split, if there
exists a homomorphism h : C→ B such that the composition ψ ◦h is the identity map
of C. It is also proved the existence of the following short exact sequences:

0→Km→ Tm→C(S1)→ 0, (5)

0→
n⋂

k=1

Jik → Tm→ Tn→ 0. (6)

Besides, short exact sequence (6) is splittable.
L e m m a 2. [12]. There exists a unique representation of the group S1 into

the group of automorphisms of the Toeplitz algebra:
σ0 : S1→ AutT, σ0(z)(T nT ∗m) = z(n−m)T nT ∗m, ∀m,n ∈ Z+.

Let us define unitary operator u j : H j→ l2(Z+),1≤ j≤m, which acts on basis
elements in this way: u j(e j+km) = ek. Since H j is invariant with respect to C∗-algebra

Tm, the unitary operator u = u1⊕ ...⊕um : H1⊕H2⊕ ...⊕Hm→
m⊕

j=1
l2(Z+) generates

embedding:

σ : Tm→
m⊕

j=1

B(l2(Z+)), σ(A) = uAu∗, where A ∈ Tm.

Since T mei+km = ei+(k+1)m, σ(T m) = T ⊕ ... ⊕ T is the m copy of the shift
operator T . The algebra T(m) is generated by the operators T m and T ∗m

consequently, for each A ∈ T(m) there exists an operator B ∈ T such that
σ(A) = B⊕ ...⊕B.

Obviously, the reverse is also true. That is, for each B ∈ T there exists an operator
A ∈ T(m) such that σ(A) = B⊕ ...⊕B. So the algebra T(m) will be identified with
the algebra σ(T(m)):

T(m)≈ σ(T(m)) = mT = {A : A = B⊕B⊕ ...⊕B, B ∈ T} ↪→
m⊕

T, (7)

where by
m⊕
T is denoted the direct sum of m copies of the Toeplitz algebra T.
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As it was shown in [13],

Pj|Hi =

{
I, i−1≥ j,
T mT ∗m, i−1 < j.

Taking into account the above mentioned facts, we derive σ(Pi) = T T ∗⊕ ...⊕T T ∗⊕
I⊕ ...⊕ I. In the sequel the projectors Pi, 0 ≤ i ≤ m− 1, will be identified with
the projectors σ(Pi): Pi ≈ σ(Pi), 0 ≤ i ≤ m− 1. Particularly, using Lemma 1 the
subalgebra of compact operators Km in Tm, which could be identified with the algebra
σ(Km), is derived by

Km ≈ σ(Km) =
m⊕

K. (8)

Using the above mentioned identifications (7), (8), the algebra Tm can be iden-
tified with the algebra σ(Tm):

Tm ≈ σ(Tm) = {A : A = (B+K1)⊕ ...⊕ (B+Km), B ∈ T, K1, ...,Km ∈K}. (9)

K-Groups of Some Subalgebras of the Toeplitz Algebra. Let A be an
∗-algebra. Denote the n× n matrix with entries from A by Mn(A) and 0n, 1n are
zero and identity elements in Mn(A) respectively. Define

P[A] =
∞⋃

n=0

{p ∈Mn(A) : p2 = p = p∗}.

Let p,q ∈ P[A]. We say that p and q are equivalent, and write p ∼ q, if there
exists a rectangular matrix u with entries from A such that p = u∗u, q = uu∗.

Projectors p and q in P[A] are called stably equivalent and are denoted p ≈ q,
if there exists a nonnegative integer n such that 1n⊕ p ∼ 1n⊕ q. It is easy to see
that ≈ is a relation of equivalence in P[A]. Denote the class of stably equivalency
of projector p ∈ P[A] by [p], and set of all these classes of equivalency by K0(A)+.
We define [p] + [q] = [p⊕ q] for [p], [q] ∈ K0(A)+. If A is an unital ∗-algebra, then
K0(A)+ is an Abelian semigroup with a cancelation, and [0] will be its zero element.
K0(A) will be the Grothendieck group of the semigroup K0(A)+ in the case A is an
unital algebra.

If A and B are unital C∗-algebras, then the unital homomorphism ϕ : A→ B
generates a uniquely defined homomorphism of the corresponding groups:
ϕ∗ : K0(A)→ K0(B), ϕ∗([p]) = [ϕ(p)].

In this way there is constructed a covariant functor

A 7−→ K0(A), ϕ 7−→ ϕ∗

from the category of unital C∗-algebras into the category of Abelian groups.
Let A be a unital or non-unital C∗-algebra. Denote K̃0(A) = ker(τ∗), where

τ : A→ C is a canonical ∗-homomorphism. Thus K̃0(A) is a subsemigroup in K0(A).
If A is a unital C∗-algebra, then the group K0(A) is isomorphic to the group K̃0(A).

For each C∗-algebra A its suspension is called C∗-algebra

S(A) = { f ∈C([0,1],A) : f (0) = f (1) = 0}.
For each C∗-algebra A we will denote K̃1(A) = K̃0(S(A)).
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T h e o r e m 1. For each m ∈ N the K0 group of the C∗-algebra Tm is
isomorphic to the following group Zm = Z⊕Z⊕ ...⊕Z= {z1⊕ z2⊕ ...⊕ zm, where
zi ∈ Z, i = 1,2...,m}:

K0(Tm) = Zm.

P r o o f . One of the main properties of K-theory is the fact, that short exact
splittable sequence of C∗-algebras induces short exact sequence of the corresponding
groups (see [6, 7]). Thus short exact splittable sequence (6)

0→ Ji→ Tm→ T→ 0

generates short exact sequence of group

0→ Ki(Ji)→ Ki(Tm)→ Ki(T)→ 0. (10)

It follows from (10) that Ki(Tm)' Ki(Ji)⊕Ki(T), i = 0,1.
In [7] it is proven that K0(T) = Z. On the other hand, taking into account that

for every C∗-algebras A,B the following equality holds: K0(A⊕B) = K0(A)⊕K0(B)
and K0(K) = Z (see [7]), we derive
K0(Ji) =
K0(K⊕ ...⊕K⊕0⊕K⊕ ...⊕K) =K0(K)⊕ ...⊕K0(K)⊕0⊕K0(K)⊕ ...⊕K0(K) =

= Z⊕Z⊕ ...⊕Z⊕0⊕Z⊕ ...⊕Z' Zm−1. (11)

The last isomorphism in (11) is evident.
Thus, K0(Tm)' K0(Ji)⊕K0(T)' Zm−1⊕Z= Zm. �
C o r o l l a r y 1. The K0 group of the C∗-algebra Km is isomorphic to the

group Zm:
K0(Km)' Zm.

C o r o l l a r y 2. Since K1(T) = 0, K1(K) = 0 (see [7]), repeating all
considerations, which were given in the proof of the above mentioned Theorem 1
for short exact sequence (6), we get

K1(Tm) = 0, K1(Km) = 0.

In K-theory the next important fact is the existence of six-term exact sequences.
In [7] there is the theorem, which states that if A is an ideal in C∗-algebra B, short
exact sequence 0→ A→ B→ B/A→ 0 generates six-term exact sequence:

K1(A) // K1(B) // K1(A/B)

δ1
��

K0(A/B)

δ0

OO

K0(B)oo K0(A)oo

Thus, short exact sequence (6) generates the following six term exact sequence:

K1(Km) // K1(Km) // K1(C(S1))

δ1
��

K0(C(S1))

δ0

OO

K0(Tm)oo K0(Km)oo
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Using the Theorem, the Corollary 2 and the fact, that K0(C(S1)) =
= K1(C(S1)) = Z (see [7]), the above diagram gets the following form:

0 // 0 // Z

δ1
��

Z

δ0

OO

Zmoo Zmoo

where the map δ1(1) = 1⊕1⊕ ...⊕1︸ ︷︷ ︸
m

is an index of Fredholm.

Let us consider an inductive sequence of C∗-algebras:

T1
ϕ1−→ T2

ϕ2−→ T3
ϕ3−→ ..., (12)

where the morphism Tk
ϕk−→ Tk+1 is defined as follows:

ϕk((T ⊕K1)+(T ⊕K2)+ ...+(T ⊕Kk)) =
= (T ⊕K1)+(T ⊕K2)+ ...+(T ⊕Kk)+(T ⊕K1).

Denote the inductive limit of sequence (12) by T′∞. Sequence (12) generates
inductive sequence of K0 groups:

K0(T1)
ϕ1∗−→ K0(T2)

ϕ2∗−→ K0(T3)
ϕ3∗−→ ... (13)

Applying the Theorem 1 to sequence (13), it will have the following form:

Z ϕ1∗−→ Z2
ϕ2∗−→ Z3

ϕ3∗−→ ..., (14)

where Zi
ϕi∗−→ Zi+1 acts as follows ϕi∗(z1⊕ z2⊕ ...⊕ zi) = z1⊕ z2⊕ ...⊕ zi⊕ z1.

Let us assume the that ψi : Zi→ Z∞
i , where

Z∞
i = {z1⊕ z2⊕ z3⊕ ...⊕ zi⊕ z1⊕ z1⊕ ... : zi ∈ Z} ⊂ Z∞.

It is easy to prove, that ψi is an isomorphism. After identifying Zi ∼= Z∞
i ,

the inductive sequence of groups (14) has the form:

Z1
ϕ1∗−−−−→ Z2

ϕ2∗−−−−→ Z3
ϕ2∗−−−−→ ...yψ1

yψ1

yψ3

Z∞
1

id−−−−→ Z∞
2

id−−−−→ Z∞
3

id−−−−→ ...

It follows from the last diagram that Z∞ =
∞⋃

i=1
Z∞

i . That is the inductive limit of

direct sequence of groups (14) is the group Z∞: lim−→(Zn,ϕn∗) = Z∞.
Thus we prove the following theorem:
T h e o r e m 2. The inductive limit of the inductive sequence of groups

Z ϕ1∗−→ Z2
ϕ2∗−→ Z3

ϕ3∗−→ ..., generated by K0 groups of the corresponding inductive
sequence of C∗-algebras T1

ϕ1−→ T2
ϕ2−→ T3

ϕ3−→ ..., is the group Z∞, that is
lim−→(Zn,ϕn∗) = Z∞.
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