PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2017, **51**(3), p. 224–230

Mathematics

K-GROUPS OF SOME SUBALGEBRAS OF THE TOEPLITZ ALGEBRA

K. H. HOVSEPYAN ; A. V. TSUTSULYAN**

Ijevan Branch of Yerevan State University, Armenia

In the paper *K*-groups of C^* -subalgebras of the Toeplitz algebra generated by inverse subsemigroups of the bicyclic semigroup are discussed. For these algebras inductive limit of inductive sequence of *K*-groups, which are generated by the corresponding inductive sequence of C^* -algebras is constructed.

MSC2010: Primary 46L05; Secondary 47L30.

Keywords: Toeplitz algebra, inverse subsemigroup of the bicyclic semigroup, *K*-group, inductive limit.

Introduction. One of the well-known and frequently used algebraic object in contemporary mathematical physics is the Toeplitz algebra \mathcal{T} . This algebra and its various modifications were considered by many authors [1-10]. Barnes in [1] proved that bicyclic semigroup has only one infinite dimensional, irreducible, unitarily non-equivalent representation, and series of one dimensional representations are parameterized by unit circle S^1 . By Coburn's theorem [2] C^* -algebras generated by non-unitary isometric representations of semigroup of non-negative integers are canonically isomorphic. This results were generalized by Douglas [3] for semigroups with Archimedean property and by Murphy [4] for totally ordered semigroups. In [5] Aukhadiev M. and Tepoyan V. proved the reverse direction of Murphy's theorem [4], that is all C^* -algebras, generated by faithful isometrical non-unitary representations of semigroup, are canonically isomorphic only if the semigroup is totally ordered. Thus we conclude that faithful, infinite dimensional representation of bicyclic semigroup generates the Toeplitz algebra. A natural question arises here: consider C^* -algebras generated by inverse subsemigroups of a bicyclic semigroup. In this article we consider above-mentioned generalizations of the Toeplitz algebra.

Earlier the authors initiated the study of the C^* -subalgebras of the Toeplitz algebra \mathcal{T} , which is generated by the monomials with their indexes divisible by m. This C^* -algebra was denoted by \mathcal{T}_m and it was proved that \mathcal{T}_m consists of the fixed

** E-mail: artak _v@list.ru

^{*} E-mail: karen.hovsep@gmail.com

points under a finite subgroup in S^1 of order *m*. All irreducible infinite-dimensional representations of this C^* -algebra were described and complete description for all invariant ideals of the algebra \mathcal{T}_m was given (see [11–13]). The complete description of the group of automorphisms of C^* -algebra \mathcal{T}_m and some of its subalgebras were represented in [14]. Besides, in [15] it was shown that \mathcal{T}_m can be represented as a crossed product: $\mathcal{T}_m = \varphi(\mathcal{A}) \times_{\delta_m} \mathbb{Z}$, where $\mathcal{A} = C_0(\mathbb{Z}_+) \oplus \mathbb{C}I$ is the algebra of all continuous functions on \mathbb{Z}_+ , which have a finite limit at infinity.

Preliminaries. A semigroup (S, \cdot) is called *inverse*, if any $a \in S$ has a unique *inverse* element in S denoted by a^* . That is, there is a unique $a^* \in S$ such that the equalities hold: $a \cdot a^* \cdot a = a$ and $a^* \cdot a \cdot a^* = a^*$. Any group is an example of an inverse semigroup, where the inverse of an element a in the group is given by $a^* = a^{-1}$. An inverse semigroup (S, \cdot) with an identity e is called *bicyclic* if it is generated by one element a and the relation $a^* \cdot a = e$.

Let *S* be a bicyclic semigroup with a generator *a*. Each element of *S* has a unique presentation in the form $a^k a^{*l}$, where *k* and *l* are nonnegative integers. Such elements are called *monomials*, while the number k - l is called the *index* of the monomial $a^k a^{*l}$ and is denoted by $ind(a^k a^{*l})$ (see [11]).

Let fix some integer $m \in \mathbb{N}$ and denote by S_m the inverse subsemigroup of the bicyclic semigroup S, generated by the monomials with their indexes divisible by m:

$$S_m = \{ b \in S : \operatorname{ind}(b) = k \cdot m, \ k \in \mathbb{Z} \}.$$

Let $S(m) \subset S$ be a subsemigroup generated by the element a^m . Obviously, both S(m) and S_m are inverse subsemigroups of the bicylic semigroup S. The relationship between these two semigroups was given in [11].

Consider the representation $\pi: S \to B(l^2(\mathbb{Z}_+))$ of the bicyclic semigroup given by $\pi(a^k a^{*l}) = T^k T^{*l}$, where *T* acts on the orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$ of Hilbert space $l^2(\mathbb{Z}_+)$ by $Te_n = e_{n+1}$. Note that π is an infinite dimensional, irreducible, faithful representation of *S* and the Teoplitz algebra \mathcal{T} is the *C**-algebra generated by $\pi(S)$. Denote by \mathcal{T}_m the subalgebra of \mathcal{T} generated by $\pi(S_m)$. Otherwise, \mathcal{T}_m is generated by all monomials of the form $T^k T^{*l}$, where $\operatorname{ind}(T^k T^{*l}) = cm, c \in \mathbb{Z}$.

Let $\mathfrak{T}(m)$ be a C^* -subalgebra of the Toeplitz algebra \mathfrak{T} generated by $\pi(S(m))$. It is obvious that $\mathfrak{T}(m) \subset \mathfrak{T}_m$.

 \mathfrak{T}_m as an Abstract Algebra. In this paragraph we consider the algebra \mathfrak{T}_m not as a subalgebra of the classical Toeplitz algebra [11–13]. Here an algebra isomorphic to \mathfrak{T}_m is constructed, and in the future it will be identified with \mathfrak{T}_m . Let's consider decomposition of Hilbert space $l^2(\mathbb{Z}_+)$ in the following way:

$$H^{2}(\mathbb{Z}_{+}) = H_{1} \oplus H_{2} \oplus \dots \oplus H_{m}, \tag{1}$$

where the basis of subspaces H_i consists of elements $\{e_{i-1+km}\}_{k\in\mathbb{Z}_+}, 1 \le i \le m$. Then subspaces $H_i, 1 \le i \le m$, are invariant with respect to the algebra \mathcal{T}_m , due to which each element $A \in \mathcal{T}_m$ is uniquely represented in the following way:

$$A = A|_{H_1} \oplus \dots \oplus A|_{H_m}.$$
 (2)

Let \mathcal{K} be C^* -subalgebra of all compact operators in the Toeplitz algebra \mathcal{T} and \mathcal{K}_m be the C^* -subalgebra of all compact operators in \mathcal{T}_m .

Lemma 1. The following identity is true:

 $\mathcal{K}_m = \mathcal{K}(H_1) \oplus \ldots \oplus \mathcal{K}(H_m).$

In [11, 12] it was shown, that the representations

$$\pi_i$$
: $\mathfrak{T}_m \to B(H_i), \quad \pi_i(A) = A|_{H_i}, \quad i = 1, \dots, m,$

give the complete characterization of all irreducible, unitarily non-equivalent, infinite dimensional representations of the algebra T_m .

Invariant ideals of the algebra \mathcal{T}_m are the kernels of infinite dimensional representations π_i , i = 1, ..., m and its all possible intersections [13]:

$$\mathcal{J}_i = \ker(\pi_i) = \{\mathcal{K}(H_1) \oplus \dots \oplus K(H_{i-1}) \oplus 0 \oplus K(H_{i+1}) \oplus \dots \oplus \mathcal{K}(H_m)\}.$$
(3)
guences of algebras

A sequences of algebras

$$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0 \tag{4}$$

is called short exact sequence, if $im(\varphi) = ker(\psi)$, where φ is a monomorphism and ψ is an epimorphism. Besides, the short exact sequence (4) is called split, if there exists a homomorphism $h: C \to B$ such that the composition $\psi \circ h$ is the identity map of *C*. It is also proved the existence of the following short exact sequences:

$$0 \to \mathcal{K}_m \to \mathcal{T}_m \to C(S^1) \to 0, \tag{5}$$

$$0 \to \bigcap_{k=1}^{n} \mathcal{J}_{i_k} \to \mathcal{T}_m \to \mathcal{T}_n \to 0.$$
(6)

Besides, short exact sequence (6) is splittable.

Lemma 2. [12]. There exists a unique representation of the group S^1 into the group of automorphisms of the Toeplitz algebra:

$$\sigma_0: S^1 \to Aut\mathcal{T}, \ \sigma_0(z)(T^nT^{*m}) = z^{(n-m)}T^nT^{*m}, \ \forall m, n \in \mathbb{Z}_+$$

Let us define unitary operator $u_j: H_j \to l^2(\mathbb{Z}_+), 1 \le j \le m$, which acts on basis elements in this way: $u_j(e_{j+km}) = e_k$. Since H_j is invariant with respect to C^* -algebra \mathcal{T}_m , the unitary operator $u = u_1 \oplus ... \oplus u_m: H_1 \oplus H_2 \oplus ... \oplus H_m \to \bigoplus_{j=1}^m l^2(\mathbb{Z}_+)$ generates embedding:

$$\sigma: \mathfrak{T}_m \to \bigoplus_{j=1}^m B(l^2(\mathbb{Z}_+)), \ \sigma(A) = uAu^*, \text{ where } A \in \mathfrak{T}_m.$$

Since $T^m e_{i+km} = e_{i+(k+1)m}$, $\sigma(T^m) = T \oplus ... \oplus T$ is the *m* copy of the shift operator *T*. The algebra $\mathfrak{T}(m)$ is generated by the operators T^m and T^{*m} consequently, for each $A \in \mathfrak{T}(m)$ there exists an operator $B \in \mathfrak{T}$ such that

$$\sigma(A) = B \oplus \ldots \oplus B.$$

Obviously, the reverse is also true. That is, for each $B \in \mathcal{T}$ there exists an operator $A \in \mathcal{T}(m)$ such that $\sigma(A) = B \oplus ... \oplus B$. So the algebra $\mathcal{T}(m)$ will be identified with the algebra $\sigma(\mathcal{T}(m))$:

$$\mathfrak{T}(m) \approx \sigma(\mathfrak{T}(m)) = m\mathfrak{T} = \{A : A = B \oplus B \oplus ... \oplus B, B \in \mathfrak{T}\} \hookrightarrow \bigoplus^{m} \mathfrak{T},$$
(7)

where by $\bigoplus_{m=1}^{m} \mathcal{T}$ is denoted the direct sum of *m* copies of the Toeplitz algebra \mathcal{T} .

As it was shown in [13],

$$P_{j}|_{H_{i}} = \begin{cases} I, & i-1 \ge j, \\ T^{m}T^{*m}, & i-1 < j. \end{cases}$$

Taking into account the above mentioned facts, we derive $\sigma(P_i) = TT^* \oplus ... \oplus TT^* \oplus I \oplus ... \oplus I$. In the sequel the projectors P_i , $0 \le i \le m - 1$, will be identified with the projectors $\sigma(P_i)$: $P_i \approx \sigma(P_i)$, $0 \le i \le m - 1$. Particularly, using Lemma 1 the subalgebra of compact operators \mathcal{K}_m in \mathcal{T}_m , which could be identified with the algebra $\sigma(\mathcal{K}_m)$, is derived by

$$\mathcal{K}_m \approx \sigma(\mathcal{K}_m) = \bigoplus^m \mathcal{K}.$$
(8)

Using the above mentioned identifications (7), (8), the algebra \mathcal{T}_m can be identified with the algebra $\sigma(\mathcal{T}_m)$:

$$\mathfrak{T}_m \approx \boldsymbol{\sigma}(\mathfrak{T}_m) = \{ A : A = (B + K_1) \oplus \ldots \oplus (B + K_m), \ B \in \mathfrak{T}, \ K_1, \ldots, K_m \in \mathfrak{K} \}.$$
(9)

K-Groups of Some Subalgebras of the Toeplitz Algebra. Let *A* be an *-algebra. Denote the $n \times n$ matrix with entries from *A* by $M_n(A)$ and 0_n , 1_n are zero and identity elements in $M_n(A)$ respectively. Define

$$P[A] = \bigcup_{n=0}^{\infty} \{ p \in M_n(A) : p^2 = p = p^* \}.$$

Let $p, q \in P[A]$. We say that p and q are *equivalent*, and write $p \sim q$, if there exists a rectangular matrix u with entries from A such that $p = u^*u, q = uu^*$.

Projectors p and q in P[A] are called *stably* equivalent and are denoted $p \approx q$, if there exists a nonnegative integer n such that $1_n \oplus p \sim 1_n \oplus q$. It is easy to see that \approx is a relation of equivalence in P[A]. Denote the class of stably equivalency of projector $p \in P[A]$ by [p], and set of all these classes of equivalency by $K_0(A)^+$. We define $[p] + [q] = [p \oplus q]$ for $[p], [q] \in K_0(A)^+$. If A is an unital *-algebra, then $K_0(A)^+$ is an Abelian semigroup with a cancelation, and [0] will be its zero element. $K_0(A)$ will be the Grothendieck group of the semigroup $K_0(A)^+$ in the case A is an unital algebra.

If *A* and *B* are unital *C**-algebras, then the unital homomorphism $\varphi : A \to B$ generates a uniquely defined homomorphism of the corresponding groups: $\varphi_* : K_0(A) \to K_0(B), \varphi_*([p]) = [\varphi(p)].$

In this way there is constructed a covariant functor

$$A \longmapsto K_0(A), \ \varphi \longmapsto \varphi_*$$

from the category of unital C^* -algebras into the category of Abelian groups.

Let *A* be a unital or non-unital *C*^{*}-algebra. Denote $\tilde{K}_0(A) = \ker(\tau_*)$, where $\tau : A \to \mathbb{C}$ is a canonical *-homomorphism. Thus $\tilde{K}_0(A)$ is a subsemigroup in $K_0(A)$. If *A* is a unital *C*^{*}-algebra, then the group $K_0(A)$ is isomorphic to the group $\tilde{K}_0(A)$.

For each C^* -algebra A its suspension is called C^* -algebra

$$S(A) = \{ f \in C([0,1],A) : f(0) = f(1) = 0 \}.$$

For each *C*^{*}-algebra *A* we will denote $\tilde{K}_1(A) = \tilde{K}_0(S(A))$.

Theorem 1. For each $m \in \mathbb{N}$ the K_0 group of the C^* -algebra \mathfrak{T}_m is isomorphic to the following group $\mathbb{Z}_m = \mathbb{Z} \oplus \mathbb{Z} \oplus ... \oplus \mathbb{Z} = \{z_1 \oplus z_2 \oplus ... \oplus z_m, \text{ where } z_i \in \mathbb{Z}, i = 1, 2..., m\}$:

$$K_0(\mathfrak{T}_m) = \mathbb{Z}_m.$$

Proof. One of the main properties of *K*-theory is the fact, that short exact splittable sequence of C^* -algebras induces short exact sequence of the corresponding groups (see [6,7]). Thus short exact splittable sequence (6)

$$0 \to \mathcal{J}_i \to \mathcal{T}_m \to \mathcal{T} \to 0$$

generates short exact sequence of group

$$0 \to K_i(\mathcal{J}_i) \to K_i(\mathcal{T}_m) \to K_i(\mathcal{T}) \to 0.$$
(10)

It follows from (10) that $K_i(\mathfrak{T}_m) \simeq K_i(\mathfrak{J}_i) \oplus K_i(\mathfrak{T}), i = 0, 1.$

In [7] it is proven that $K_0(\mathcal{T}) = \mathbb{Z}$. On the other hand, taking into account that for every C^* -algebras A, B the following equality holds: $K_0(A \oplus B) = K_0(A) \oplus K_0(B)$ and $K_0(\mathcal{K}) = \mathbb{Z}$ (see [7]), we derive $K_0(\mathcal{J}_i) =$

$$K_0(\mathcal{K} \oplus ... \oplus K \oplus 0 \oplus K \oplus ... \oplus \mathcal{K}) = K_0(\mathcal{K}) \oplus ... \oplus K_0(\mathcal{K}) \oplus 0 \oplus K_0(\mathcal{K}) \oplus ... \oplus K_0(\mathcal{K}) =$$
$$= \mathbb{Z} \oplus \mathbb{Z} \oplus ... \oplus \mathbb{Z} \oplus 0 \oplus \mathbb{Z} \oplus ... \oplus \mathbb{Z} \simeq \mathbb{Z}_{m-1}.$$
(11)

The last isomorphism in (11) is evident.

Thus, $K_0(\mathfrak{T}_m) \simeq K_0(\mathfrak{J}_i) \oplus K_0(\mathfrak{T}) \simeq \mathbb{Z}_{m-1} \oplus \mathbb{Z} = \mathbb{Z}_m.$

Corollary 1. The K_0 group of the C^* -algebra \mathcal{K}_m is isomorphic to the group \mathbb{Z}_m :

$$K_0(\mathcal{K}_m)\simeq \mathbb{Z}_m.$$

Corollary 2. Since $K_1(\mathcal{T}) = 0$, $K_1(\mathcal{K}) = 0$ (see [7]), repeating all considerations, which were given in the proof of the above mentioned Theorem 1 for short exact sequence (6), we get

$$K_1(\mathfrak{T}_m)=0, \ K_1(\mathfrak{K}_m)=0.$$

In *K*-theory the next important fact is the existence of six-term exact sequences. In [7] there is the theorem, which states that if *A* is an ideal in C^* -algebra *B*, short exact sequence $0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0$ generates six-term exact sequence:

Thus, short exact sequence (6) generates the following six term exact sequence:

228

Using the Theorem, the Corollary 2 and the fact, that $K_0(C(S^1)) = K_1(C(S^1)) = \mathbb{Z}$ (see [7]), the above diagram gets the following form:

where the map $\delta_1(1) = \underbrace{1 \oplus 1 \oplus ... \oplus 1}_{i \oplus i \oplus i}$ is an index of Fredholm.

Let us consider an inductive sequence of C^* -algebras:

$$\mathfrak{T}_1 \xrightarrow{\phi_1} \mathfrak{T}_2 \xrightarrow{\phi_2} \mathfrak{T}_3 \xrightarrow{\phi_3} \dots, \tag{12}$$

where the morphism $\mathfrak{T}_k \xrightarrow{\varphi_k} \mathfrak{T}_{k+1}$ is defined as follows: $\varphi_k((T \oplus K_1) + (T \oplus K_2) + ... + (T \oplus K_k)) =$

$$= (T \oplus K_1) + (T \oplus K_2) + \ldots + (T \oplus K_k) + (T \oplus K_1).$$

Denote the inductive limit of sequence (12) by \mathfrak{T}'_{∞} . Sequence (12) generates inductive sequence of K_0 groups:

$$K_0(\mathfrak{T}_1) \xrightarrow{\phi_{1*}} K_0(\mathfrak{T}_2) \xrightarrow{\phi_{2*}} K_0(\mathfrak{T}_3) \xrightarrow{\phi_{3*}} \dots$$
 (13)

Applying the Theorem 1 to sequence (13), it will have the following form:

$$\mathbb{Z} \xrightarrow{\phi_{1*}} \mathbb{Z}_2 \xrightarrow{\phi_{2*}} \mathbb{Z}_3 \xrightarrow{\phi_{3*}} \dots,$$
(14)

where $\mathbb{Z}_i \xrightarrow{\varphi_{i*}} \mathbb{Z}_{i+1}$ acts as follows $\varphi_{i*}(z_1 \oplus z_2 \oplus ... \oplus z_i) = z_1 \oplus z_2 \oplus ... \oplus z_i \oplus z_1$. Let us assume the that $\psi_i : \mathbb{Z}_i \to \mathbb{Z}_i^{\infty}$, where

$$\mathbb{Z}_i^{\infty} = \{ z_1 \oplus z_2 \oplus z_3 \oplus \ldots \oplus z_i \oplus z_1 \oplus z_1 \oplus \ldots : \ z_i \in \mathbb{Z} \} \subset \mathbb{Z}_{\infty}.$$

It is easy to prove, that ψ_i is an isomorphism. After identifying $\mathbb{Z}_i \cong \mathbb{Z}_i^{\infty}$, the inductive sequence of groups (14) has the form:

$$\mathbb{Z}_1 \xrightarrow{\phi_{1*}} \mathbb{Z}_2 \xrightarrow{\phi_{2*}} \mathbb{Z}_3 \xrightarrow{\phi_{2*}} \dots$$
$$\downarrow \psi_1 \qquad \qquad \downarrow \psi_1 \qquad \qquad \downarrow \psi_3 \\ \mathbb{Z}_1^{\infty} \xrightarrow{id} \mathbb{Z}_2^{\infty} \xrightarrow{id} \mathbb{Z}_3^{\infty} \xrightarrow{id} \dots$$

It follows from the last diagram that $\mathbb{Z}_{\infty} = \bigcup_{i=1}^{\infty} \mathbb{Z}_{i}^{\infty}$. That is the inductive limit of direct sequence of groups (14) is the group \mathbb{Z}_{∞} : $\varinjlim(\mathbb{Z}_{n}, \varphi_{n*}) = \mathbb{Z}_{\infty}$.

Thus we prove the following theorem:

Theorem 2. The inductive limit of the inductive sequence of groups $\mathbb{Z} \xrightarrow{\phi_{1*}} \mathbb{Z}_2 \xrightarrow{\phi_{2*}} \mathbb{Z}_3 \xrightarrow{\phi_{3*}} \dots$, generated by K_0 groups of the corresponding inductive sequence of C^* -algebras $\mathcal{T}_1 \xrightarrow{\phi_1} \mathcal{T}_2 \xrightarrow{\phi_2} \mathcal{T}_3 \xrightarrow{\phi_3} \dots$, is the group \mathbb{Z}_{∞} , that is $\varinjlim(\mathbb{Z}_n, \varphi_{n*}) = \mathbb{Z}_{\infty}.$

Received 31.07.2017

REFERENCES

- Barnes B.A. Representation of the l¹-Algebra of an Inverse Semigroup. // Trans. of AMS, 1976, v. 218, p. 361–396.
- Coburn L.A. The C*-Algebra Generated by an Isometry. // Bull. Amer. Math. Soc., 1967, № 73, p. 722–726.
- Douglas R.G. On the C*-Algebra of a One-Parameter Semigroup of Isometries. // Acta Math., 1972, № 128, p. 143–152.
- Murphy G.J. Ordered Groups and Toeplitz Algebras. // J. Operator Theory, 1987, № 18, p. 303–326.
- 5. Aukhadiev M.A., Tepoyan V.H. Isometric Representations of Totally Ordered Semigroups. // Lobachevskii Journal of Mathematics, 2012, v. 33, № 3, p. 239–243.
- 6. Murphy G.J. C*-Algebras and Operator Theory. Boston: Academic Press, 1990, 296 p.
- 7. Wege-Olsen N.E. *K*-Theory and *-Algebra: A Friendly Approach. NY: Oxford University Press, 1993, 373 p.
- 8. **Davidson K.R.** *C**-Algebras by Example. V. 6. Fields Institute Monograph. AMS, 1996, 309 p.
- 9. Jang S.Y. Uniqueness Property of C*-Algebras Like the Toeplitz Algebras. // Trends Math., 2003, № 6, p. 29–32.
- 10. Grigoryan S.A., Salakhutdinov A.F. C*-Algebras Generated by Cancellative Semigroups. // Siberian Mathematical Journal, 2010, v. 51, № 1, p. 12–19.
- Hovsepyan K.H. On C*-Algebras Generated by Inverse Subsemigroups of the Bicyclic Semigroup. // Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2014, v. 49, № 5, p. 67–75.
- 12. Lipacheva E.V., Hovsepyan K.H. The Structure of C^{*}-Subalgebras of the Toeplitz Algebra Fixed with Respect to a Finite Group of Automorphisms. // Russian Mathematics (Izvestiya Vuz. Matematika), 2015, v. 59, № 6, p. 10–17.
- 13. Hovsepyan K.H., Lipacheva E.V. The Structure of Invariant Ideals of Some Subalgebras of Toeplitz Algebra. // Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2015, v. 50, № 2, p. 70–79.
- 14. Lipacheva E.V., Hovsepyan K.H. Automorphisms of Some Subalgebras of the Toeplitz Algebra. // Siberian Mathematical Journal, 2016, v. 57, № 3, p. 525–531.
- 15. Hovsepyan K.H. The C^* -Algebra \mathcal{T}_m as a Crossed Product. // Proceedings of the YSU. Physical and Mathematical Sciences, 2014, Nº 3, p. 24–30.