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Introduction. Let Ω be a topological space and B(Ω) be the algebra of all
bounded complex-valued functions on Ω, C(Ω) be the algebra of all complex-valued
continuous functions on Ω, and let C∞(Ω) be the subalgebra of B(Ω) containing all
continuous functions.

Note that within isometric isomorphism we have B∗b(Ω)=M(Ω), where M(Ω)
is the space of all bounded regular measures, defined on the σ -algebra of the subsets
Σ = 2Ω of the set Ω. Here Bb(Ω) is the Banach algebra of all bounded complex-
valued functions on Ω in the sup-norms (see [1]).

Denote by B0(Ω) the ideal in algebra B(Ω) consisting of the functions
vanishing at “infinity” (i.e. for any ε > 0 there exists a compact set K ⊂ Ω such
that | f (x)|< ε for x ∈Ω\K). Then C0(Ω) = B0(Ω)∩C∞(Ω) is an ideal in C∞(Ω).

Let B00(Ω) be the ideal in the algebra B(Ω) consisting of those functions,
supports of which are compact subsets of Ω. Clearly, B00(Ω) ⊂ B0(Ω) and
C00(Ω) = B00(Ω)∩C∞(Ω) (see [1–4]).

Note that the ideal B0(Ω) contains:
1) all characteristic functions χK , where K ⊂Ω is compact;

2) all functions g of the following form g(x) =
∞

∑
n=1

αnχKn
(x), where Kn are

mutually disjoint compacts in Ω, αn ∈ C and |αn| → 0 as n→ ∞;

3) functions of the form g(x) =
∞

∑
n=1

αnχ{xn}
(x), where (xn)n∈N is an arbitrary

sequence of points from Ω and αn ∈ C, |αn| → 0 as n→ ∞.
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Let Ω be a Hausdorff space and B(Ω) be the σ -algebra of Borel subsets of
Ω (i.e. σ -algebra generated by closed subsets of Ω). In what follows, M(Ω) is the
space of all finite complex-valued regular measures on (Ω,B(Ω)).

P r o p o s i t i o n 1. If Ω is a topological space and f is a complex-valued
function on Ω such that f g ∈ B0(Ω) whenever g ∈ B0(Ω), then f ∈ B(Ω).

P r o o f . Suppose f 6∈ B(Ω). Choose a sequence (xn) ⊂ Ω such that
| f (xn)|> n. Consider the function g ∈ B0(Ω), which is defined by the formula

g(x) =
∞

∑
n=1

1√
n
· f (xn)

| f (xn)|2
χ{xn}

(x).

Since

(g f )(xn) =
∞

∑
n=1

1√
n
· f (xn) f (xn)

| f (xn)|2
=

∞

∑
n=1

1√
n
= ∞ ,

then g f 6∈ B(Ω), which contradicts the condition in the Proposition 1. Therefore,
f ∈ B(Ω). �

Note that in Property 1 the algebra B(Ω) can be replaced by algebra L∞(Ω),
where ideal B0(Ω) is replaced by ideal L∞

0 (Ω).
Recall (see [5]) that Hausdorf’s space Ω is called:
a) locally compact space, if each point in Ω has a precompact

neighborhood;
b) completely regular, if for every set E ⊂Ω and for each point x0 ∈Ω, which

is not an adherent point for E, there exists a continuous function on Ω, which
is zero on E and is different from zero in the point x0.

C o r o l l a r y 1. Let Ω be a complete regular space and the function
f ∈C(Ω) be such that for every g∈C0(Ω) the function f g∈C∞(Ω). Then f ∈C∞(Ω)
(see [5, 6]).

P r o o f . Suppose f 6∈ C∞(Ω). Then there exists a sequence (xn) ∈ Ω such

that | f (xn)|> n. Let the function g ∈C0(Ω) be such that g(xn) =
1√
n
· f (xn)

| f (xn)|
. Since

( f g)(xn) =
1√
n
| f (xn)|>

√
n. This contradiction shows that f ∈C∞(Ω). �

P r o p o s i t i o n 2. Let the measure µ is positive and σ -finite. If f is a
complex-valued function such that g f ∈ L1(Ω,µ) for all g ∈ L1(Ω,µ), then
f ∈ L∞(Ω,µ).

P r o o f . Suppose that f 6∈ L∞(Ω,µ). Then there exists a sequence of
nonintersecting measurable sets {En} with positive finite measures such that
| f (x)|> n1+ε for each x ∈ En, where ε > 0. We define the functions g by:

g(x) =


1

| f (x)|µ(En)
, if x ∈ En (n ∈ N),

0, if x ∈Ω\
⋃
n

En.

Then ∫
Ω

|g|dµ = ∑
n

∫
Ω

dµ

| f |µ(En)
6∑

n

1
n1+ε

∫
En

dµ

µ(En)
6∑

n

1
n1+ε

< ∞,
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and so ∫
Ω

|g f |dµ = ∑
n

∫
En

dµ

µ(En)
= ∞.

Then we get g f 6∈ L1(Ω,µ), hence f ∈ L∞(Ω,µ).
Note that every locally compact space is a complete regular space. It is well-

known (see [6, 7]) that every complete regular space Ω admits a compact extension.
Therefore, in the sequal it is natural to suppose, that Ω is completely regular space.

Going back to the general case, we let Ω be any set. Then every function
g ∈ B(Ω) defines a seminorm Pg on the algebra B(Ω) by the formula

Pg( f ) = ‖ f g‖
∞
= sup

x∈Ω

| f (x)g(x)|.

If Φ ⊂ B0(Ω) is an arbitrary family of functions, then Φ-topology on the B(Ω)
algebra is the topology defined by the system of seminorms {Pg}g∈Φ

.
(
The base

of open neighborhoods of zero for the Φ-topology is the system {Ug}g∈Φ
, where

Ug = { f ∈ B(Ω) : Pg( f )< 1}
)
.

Let Ω be a completely regular space and Φ = B0(Ω). Then the topology on the
B(Ω) algebra defined by the family of seminorms {Pg}g∈B0(Ω) is called
β -topology, and the B(Ω) algebra with this topology is denoted by Bβ (Ω). As it was
mentioned above, if Ω is a completely regular compact space, then the
topology in C∞(Ω) defined by the family of seminorms {Pg}g∈C0(Ω) is a β -topology,
and corresponding topological algebra is denoted by Cβ (Ω) (see [1, 2]). Clearly we
have Cβ (Ω)⊂Bβ (Ω). Note, that if Ω is a completely regular space, then the topology
in C∞(Ω) should be defined using the seminorms generated by the B0(Ω) ideal.

If we define a topology using sup-norm in the algebra C∞(Ω), then we will
have a Banach algebra Cb(Ω) with the topology of uniform convergence on Ω.

Actually, the β -topology on C∞(Ω), generated by the family of seminorms
{Pg}g∈B0(Ω), is the topology generated by a family of functions of type 2), i.e. by the
seminorms of the form

Pg( f ) =

∥∥∥∥∥ ∞

∑
n=1

αnχKn
f

∥∥∥∥∥
∞

= sup
n>1

{
|αn| ‖ f‖Kn

}
.

Recall (see [5, 6]), that the closed subalgebra A of the algebra Cβ (Ω) in the
β -topology is called β -uniform, if it contains constant functions and separates the
points of Ω

(
i.e. for any x1,x2 ∈ Ω, x1 6= x2 there exists a function f ∈ A such

that f (x1) 6= f (x2)
)
. In this case β -uniform algebra is denoted by Aβ . Since the

uniform topology is stronger than β -topology, the β -uniform algebra is a uniform
closed subalgebra of the algebra Cb(Ω). The algebra A, equipped with the uniform
topology, is denoted by A∞ as it was mentioned above, and the space of its maximal
ideals is denoted by MA∞

(see [7, 8]).
Recall that the β -uniform algebra Aβ is called regular, if for every closed set

F ⊂MA∞
and a point outside of that set x ∈MA∞

there exists a function g ∈Aβ such
that g(x) = 0 for every x ∈ F and g(x0) 6= 0.
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Notice, that if Ω is the completely regular space, then the algebra Cβ (Ω) is
complete topological algebra (see [5, 6]).

T h e o r e m 1. Let Ω be a complete regular space and Aβ be a symmetric
regular β -uniform subalgebra of the Cβ (Ω) algebra. Then A∗

β
=M(Ω).

P r o o f . Let ϕ be a β -continuous linear functional on Aβ algebra. Then it will
be a continuous functional on the Banach algebra A∞ = C (MA∞

), since the algebra
Aβ is regular and symmetric. By Riesz theorem there exists a finite regular Borel
measure µ on MA∞

, which is the representing measure for ϕ , i.e.

ϕ( f ) =
∫

MA∞

f̂ dµ ,

where f̂ is the Gelfand transform of f . Represent the measure µ as a sum
µ = µ

Ω
+ µF∞

, where MA∞
= Ω∪F∞, µ

Ω
and µF∞

is the restriction of the measure
µ on Ω and F∞ respectively. Proof that µF∞

= 0.
Let {ei}i∈I be the bounded approximate identity in C0(Ω).

(
Note that since the

algebra A is regular and symmetric, the approximate identity exists also in
A0 = Aβ ∩C0(Ω)

)
. As it was shown in [5, 6], the net of functions { fi}i∈I , where

fi = 1− ei, converges to the zero function in Ω with β -topology on Aβ . Hence,
the net of functionals ( fi ◦ϕ)i∈I , where ( fi ◦ϕ)( f ) = ϕ( fi f ) converges to the zero
functional.

Thus,

0 = lim
I
( fi ◦ϕ)( f ) = lim

I

∫
Ω

f̂i f dµ +
∫
F∞

f̂i f dµ

=
∫
F∞

f̂ dµ

for any f ∈A∞. Since Aβ is symmetric and regular, we have µF∞
= 0. Thus, for any

β -continuous linear functional on Aβ there is a measure from M(Ω) corresponding
to that functional. The Proof of the converse statement is obvious. �

C o r o l l a r y 2. Let Aβ be a symmetric regular β -uniform subalgebra of
the Cβ (Ω) algebra. Then there exists a linear multiplicative functional ϕ : Aβ → C,
which is discontinuous in β -topology.

P r o o f . Note, that if Ω is compact, then the space of multiplicative func-
tionals coincides wiith Ω, since MA∞

= Ω, i.e. every multiplicative functional ϕ is
a Dirac functional δx, x ∈ Ω. Note that ϕ has the unique representative measure on
Ω, which coincides with the Dirac atomic measure centred at some point x0. On
the other hand, if Ω is a completely regular space, then A∞ is isomorph isometric
to C (MA∞

).
Let x0 ∈MA∞

\Ω. Then the multiplicative functional ϕ : C (MA∞
)→C satisfies

ϕ( f ) = f̂ (x0) and is also a multiplicative functional on the Aβ algebra. Since the
functional ϕ has the a unique representative measure concentrated at the point x0, by
Theorem 1, the functional ϕ is not continuous.

Note that from Proposition 1 the commutative Banach algebras Bb(Ω) and
L∞(Ω,µ) can be transformed into β -uniform algebras if the topologies are
introduced by the family of seminorms {Pg}g∈B0(Ω) and {Pg}g∈L∞

0 (Ω,µ) respectively,
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where Pg( f ) = sup
Ω

| f g|, f ∈ B(Ω) and Pg( f ) = esssup
Ω

| f g|, f ∈ L∞(Ω,µ). Then for

topological algebras Bβ (Ω) and L∞

β
(Ω,µ) we have the following results:

T h e o r e m 2. Let Ω be a complete regular space. Then topological
algebras the Bβ (Ω) and L∞

β
(Ω,µ) are complete in the corresponding topologies.

T h e o r e m 3. Let Ω be a complete regular space and Aβ be a symmetric
regular β -uniform subalgebra of the algebra Bβ (Ω). Then A∗

β
=M(Ω).

Note that in the Theorem 3 the algebra Bβ (Ω) can be replaced by the
topological algebra L∞

β
(Ω,µ).

Note that for topological algebras Bβ (Ω) and L∞

β
(Ω,µ), the notion of

β -amenable algebras can be introduced and the analogues of the M.B. Sheinberg’s
Theorem can be obtained.
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