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In this paper we estimate the minimal number of systems of linear equations
of n+m variables over a finite field Fq such that the union of all solutions of all

the systems coincides exactly with all elements of
∗
Fn

q×
∗
Fm

q .
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Introduction. Let Fq be the finite field of q elements and Fn
q be n-dimensional

linear space over Fq. We denote by
∗
Fn

q the set of all nonzero vectors in Fn
q. A coset

of linear subspace L in Fn
q is a translation of L, i.e. a set α +L ≡ {α + x| x ∈ L} for

some α ∈ Fn
q. It is known that any k-dimensional coset in Fn

q can be represented as a
set of solutions of a certain system of linear equations over Fq of rank n− k and vice
versa.

Let A be a set of vectors in Fn
q. We say that a set of cosets {L1, . . . ,Lk} is a

covering for a set A if and only if Li ⊆ A for 1 ≤ i ≤ k and A = ∪k
i=1Li. The length

of covering is the number of its cosets.
In [1] the following theorem is proved:

T h e o r e m A . The minimal number of cosets needed to cover
∗
Fn

q is
equal to n(q−1).

Let A×B be direct product of two vector sets. In this paper we present several

results related to coset covering of
∗
Fn

q×
∗
Fm

q .
Main Results. Let M be a subset of in Fn

q. A coset H ⊆M is maximal in M, if
it can not be enclosed in another coset K ⊆M.

P r o p o s i t i o n 1. If A ⊆
∗
Fn

q ×
∗
Fm

q is maximal coset for
∗
Fn

q ×
∗
Fm

q , then

A = A1×A2, where A1 is a coset in
∗
Fn

q and A2 is a coset in
∗
Fm

q and dim(A1) = n−1,
dim(A2) = m−1.
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P r o o f . Consider all vectors of A, which are n+m-dimensional vectors. Let
A′1 be the set of all n-dimensional vectors that we get by omiting last m coordinates

of vectors in A. Obviously, A′1 is a coset in
∗
Fn

q. It can be enclosed in a coset A1 that
has dimension n−1. Similarly, we can get the coset A2. We have A ⊆ A1×A2, and
since A is a maximal coset, we have A = A1×A2. �

Therefore, all maximal cosets of
∗
Fn

q×
∗
Fm

q have dimension n+m− 2 and are

constructed by taking direct product of two maximal cosets from
∗
Fn

q and
∗
Fm

q . Since
for every covering we can construct a covering with the same number of maximal
cosets we will use only maximal cosets [2–5].

Lets denote the minimal number of cosets needed to cover
∗
Fn

q×
∗
Fm

q by Cn,m,q.

One can cover
∗
Fn

q ×
∗
Fm

q by taking all direct products of cosets from coverings

of
∗
Fn

q and
∗
Fm

q . It will produce a covering of size n(q − 1) × m(q − 1). So,
Cn,m,q ≤ nm(q−1)2.

P r o p o s i t i o n 2. Cn,1,q = n(q−1)2.

P r o o f . A maximal coset in
∗
Fn

q×
∗
F1

q is a direct product of n−1 dimensional

coset in
∗
Fn

q and one of q− 1 elements from
∗
F1

q. To cover
∗
Fn

q×
∗
F1

q one should take a

coset covering of
∗
Fn

q of size n(q−1) (by Theorem A) for every element of
∗
F1

q. �
P r o p o s i t i o n 3. C2n,2m,q ≤ 3Cn,m,q.
P r o o f . Let (x1, . . . ,xn,xn+1, . . . ,x2n,y1, . . . ,ym,ym+1, . . . ,y2m) be a vector in

∗
F2n

q ×
∗

F2m
q . We will divide all vectors of

∗
F2n

q ×
∗

F2m
q into 3 groups (we say a vector is

nonzero, if any of its coordinates is not zero):
1) (x1, . . . ,xn) and (y1, . . . ,ym) are nonzero;
2) (xn+1, . . . ,x2n) and (ym+1, . . . ,y2m) are nonzero;
3a) (x1, . . . ,xn); (ym+1, . . . ,y2m) are nonzero and (xn+1, . . . ,x2n); (y1, . . . ,ym)

are zero;
3b) (x1, . . . ,xn); (ym+1, . . . ,y2m) are zero and (xn+1, . . . ,x2n); (y1, . . . ,ym)

are nonzero.
We show here that covering of each of the 3 groups is equivalent to

covering of
∗
Fn

q×
∗
Fm

q . For 1) and 2) cases it is easy to verify. For 3) case lets define
u1 = x1 + xn+1, . . . ,un = xn + x2n and v1 = y1 + ym+1, . . . ,vm = ym + y2m. If we get
covering for vectors (u1, . . . ,un,v1, . . . ,vm), where (u1, . . . ,un) is nonzero and
(v1, . . . ,vm) is nonzero, then we can replace u,v by their values depending on x,y in
the system of equations of covering cosets and the set 3) will be covered. Obviously
it can be covered using Cn,m,q cosets. �

The same idea was used in [6] to find a minimal coset covering for a specific
equation.

T h e o r e m 1. If n≥ m and both are powers of 2, then
Cn,m,q ≤ mlog2 3× × n

m
(q−1)2.
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P r o o f . Let n = 2k,m = 2t . If the Proposition 1 is applied t times we get:
Cn,m,q =C2k,2t ,q ≤ 3t2k−t(q−1)2 = 3log2 m2log2 n−log2 m(q−1)2 = mlog23 n

m(q−1)2. �

If n = m, we get Cn,n,q ≤ nlog2 3(q−1)2.
T h e o r e m 2. Cn,m,q ≥ n(q−1)(q−1/qm−1).

P r o o f . Let A be a set of cosets that cover
∗
Fn

q×
∗
Fm

q . We can replace a coset
by maximal one and, by Proposition 2, we can represent each maximal coset by a
solution of system of 2 equations of the following form:{

α1x1 + . . .+αnxn = α0,

β1y1 + . . .+βmym = β0.

All coefficients are in Fq. Since there are no covering vectors, where the
first n or the last m coordinates are 0, we can assume that α0 and β0 are nonzero.
By multiplying both equations by appropriate elements of Fq we get systems of the
following form: {

α1x1 + . . .+αnxn = 1,
β1y1 + . . .+βmym = 1.

Let
∗
b = (b1, . . . ,bm) be a vector in

∗
Fm

q . If a coset β1y1 + . . .+βmym = 1 covers

it, then β1b1 + . . .+βmbm = 1, so the number of maximal cosets in
∗
Fm

q that cover
∗
b is

equal to the number of (β1, . . . ,βm) solutions of the equation β1b1 + . . .+βmbm = 1.
Since solution set is a m− 1 dimensional coset, we have qm−1 maximal cosets that

cover a single vector in
∗
Fm

q .
Let A∗

b
⊆ A be the set of cosets from A, where the bottom equation of the

system of corresponding coset is one of the qm−1 equations covering (b1, . . . ,bm).

Their upper equation of the same system is coset in
∗
Fn

q. The solutions of those upper

equations of systems corresponding cosets in A∗
b

must form a covering for
∗
Fn

q. If
(a1, . . . ,an) is not covered by them, then (a1, . . . ,an,b1, . . . ,bm) is not covered by

A. Since the minimal number of cosets necessary to cover
∗
Fn

q is n(q− 1), we get
|A∗

b
| ≥ n(q−1).

By summing all inequalities for all
∗
b ∈

∗
Fm

q , we get

∑
∗
b∈

∗
Fm

q

|A∗
b
| ≥ n(q−1)(qm−1).

Since each bottom equation of the system of corresponding to a coset in A

covers qm−1 vectors of
∗
Fm

q , we have

∑
∗
b∈

∗
Fm

q

|A∗
b
|= qm−1|A|, |A| ≥ n(q−1)

qm−1
qm−1 = n(q−1)

(
q− 1

qm−1

)
. �

If m = 1 this result coincides with Proposition 3, where Cn,1,q = n(q−1)2.
T h e o r e m 3. Cn,2,q ≤ 3dn

2e(q−1)2.
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P r o o f . A vector in
∗
Fn

q×
∗
F2

q will be written by (x1, . . . ,xn,y1,y2). Lets first

prove that C2,2,q ≤ 3(q−1)2. Consider the following set of cosets in
∗
F2

q×
∗
F2

q.

For all a,b ∈
∗
Fq :

(I)

{
x1 = a
y1 = b

; (II)

{
x2 = a
y2 = b

; (III)

{
x1 + x2 = a
y1 + y2 = b

.

Each group has (q−1)2 cosets, so there are 3(q−1)2 cosets. Consider a vector

v = (a1,a2,b1,b2) ∈
∗
F2

q×
∗
F2

q.
If a1 and b1 are not 0, then v is covered by a coset from (I) group. If a2 and b2

are not 0, then v is covered by a coset from (II) group. If one of a1 and a2 is 0 and
one of b1 and b2 is 0, then v is covered by a coset from (III) group.

Therefore, we have a covering for
∗
F2

q×
∗
F2

q of size 3(q− 1)2. Now let n = 2k

and consider this set of cosets in
∗
Fn

q×
∗
F2

q. For all i = 1,3, . . . ,2k−1 and a,b ∈
∗
Fq:

(Ii)

{
xi = a
y1 = b

; (IIi)

{
xi+1 = a
y2 = b

; (IIIi)

{
xi + xi+1 = a
y1 + y2 = b

.

If v = (a1,a2, . . . ,an,b1,b2) ∈
∗
Fn

q ×
∗
F2

q, then for some i ∈ {1,3, . . . ,2k− 1}
(ai,ai+1) is nonzero. Obviously, it will be covered by one of the cosets from (Ii),
(IIi) or (IIIi).

If n is odd, then several cosets will not be required and a covering of size

3dn
2e(q−1)2 for

∗
Fn

q×
∗
F2

q is found. �
C o r o l l a r y 1. If q = 2, then from Theorem 2 and 3 it follows that

Cn,2,2 = 3dn
2e.

When n = m = 2, we have 2(q− 1)2(q+ 1)/q ≤ C2,2,q ≤ 3(q− 1)2. Clearly,
C2,2,2 = 3. From the inequalities it follows that 11≤C2,2,3 ≤ 12.

T h e o r e m 4. C2,2,3 = 12.

P r o o f . The following set is to be covered:
∗
F2

3×
∗
F2

3 =



0,1
0,2
1,0
1,1
1,2
2,0
2,1
2,2


×



0,1
0,2
1,0
1,1
1,2
2,0
2,1
2,2


. If

A is a covering then every coset in A has the following form:{
α1x1 +α2x2 = 1,
β1y1 +β2y2 = 1,

where α1,α2,β1,β2 ∈ F3, one of α1,α2 6= 0 and one of β1,β2 6= 0.
Let ti j be the number of cosets in A, where the bottom equation of the system of
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corresponding system is of the form iy1 + jy2 = 1. The size of A is equal to the sum
of all ti j, 0≤ i≤ 2, 0≤ j ≤ 2 and t00 = 0.

The cosets covering the vector (0,1) are y2 = 1,y1 + y2 = 1 and 2y1 + y2 = 1.
Using the same arguments as in Theorem 2, we get t01 + t11 + t21 ≥ 4. If we do the

same for all vectors of
∗
F2

3, then we get the system of inequalities:

t01 + t11 + t21 ≥ 4
t02 + t12 + t22 ≥ 4
t10 + t11 + t12 ≥ 4
t10 + t01 + t22 ≥ 4
t10 + t02 + t21 ≥ 4
t20 + t21 + t22 ≥ 4
t20 + t01 + t12 ≥ 4
t20 + t02 + t11 ≥ 4

.

There are 8 integer unknowns, ti j ≥ 0, 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, t00 is missing.
Every unknown is used in exactly 3 inequalities. The problem is to find the solution
of the system that minimize sum of all ti j.

Let one of ti j be 2 (if there is 3, using the same method we can even prove that
the sum is ≥ 13).

Let t02 = 2.
If t01 = 0, then t10 + t22 ≥ 4, t11 + t21 ≥ 4 and t12 + t20 ≥ 4, so the sum of all

ti j ≥ 2+0+4+4+4 = 14.
Similarly:
if t01 = 1, then t10 + t22 ≥ 3, t11 + t21 ≥ 3 and t12 + t20 ≥ 3, so ti j ≥ 12;
if t01 = 2, then t10 + t11 + t12 ≥ 4 and t20 + t21 + t22 ≥ 4, so ti j ≥ 12.
For all cases we have the sum of all ti j ≥ 12. It means that the covering

has at least 12 cosets. �
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