ON THE MINIMAL COSET COVERING FOR A SPECIAL SUBSET IN DIRECT PRODUCT OF TWO FINITE FIELDS

A. V. MINASYAN *
Chair of Discrete Mathematics and Theoretical Informatics YSU, Armenia

In this paper we estimate the minimal number of systems of linear equations of $n+m$ variables over a finite field F_{q} such that the union of all solutions of all the systems coincides exactly with all elements of $\stackrel{*}{\mathbb{F}_{q}^{n}} \times \mathbb{F}_{q}^{m}$.

MSC2010: Primary 97H60; Secondary 14N20, 51E21.
Keywords: linear algebra, covering with cosets.
Introduction. Let \mathbb{F}_{q} be the finite field of q elements and \mathbb{F}_{q}^{n} be n-dimensional linear space over \mathbb{F}_{q}. We denote by \mathbb{F}_{q}^{n} the set of all nonzero vectors in \mathbb{F}_{q}^{n}. A coset of linear subspace L in \mathbb{F}_{q}^{n} is a translation of L, i.e. a set $\alpha+L \equiv\{\alpha+x \mid x \in L\}$ for some $\alpha \in \mathbb{F}_{q}^{n}$. It is known that any k-dimensional coset in \mathbb{F}_{q}^{n} can be represented as a set of solutions of a certain system of linear equations over \mathbb{F}_{q} of rank $n-k$ and vice versa.

Let A be a set of vectors in \mathbb{F}_{q}^{n}. We say that a set of cosets $\left\{L_{1}, \ldots, L_{k}\right\}$ is a covering for a set A if and only if $L_{i} \subseteq A$ for $1 \leq i \leq k$ and $A=\cup_{i=1}^{k} L_{i}$. The length of covering is the number of its cosets.

In [1] the following theorem is proved:
Theorem A. The minimal number of cosets needed to cover \mathbb{F}_{q}^{*} is equal to $n(q-1)$.

Let $A \times B$ be direct product of two vector sets. In this paper we present several results related to coset covering of $\stackrel{*}{\mathbb{F}_{q}^{n}} \times \stackrel{*}{\mathbb{F}_{q}^{m}}$.

Main Results. Let M be a subset of in \mathbb{F}_{q}^{n}. A coset $H \subseteq M$ is maximal in M, if it can not be enclosed in another coset $K \subseteq M$.

Proposition 1. If $A \subseteq \underset{\mathbb{F}_{q}^{n}}{*} \times \stackrel{*}{\mathbb{F}_{q}^{m}}$ is maximal coset for $\stackrel{*}{\mathbb{F}_{q}^{n}} \times \stackrel{*}{\mathbb{F}_{q}^{m}}$, then $A=A_{1} \times A_{2}$, where A_{1} is a coset in $\stackrel{*}{\mathbb{F}_{q}^{n}}$ and A_{2} is a coset in $\stackrel{*}{\mathbb{F}_{q}^{m}}$ and $\operatorname{dim}\left(A_{1}\right)=n-1$, $\operatorname{dim}\left(A_{2}\right)=m-1$.

[^0]$\boldsymbol{P r o o f}$. Consider all vectors of A, which are $n+m$-dimensional vectors. Let A_{1}^{\prime} be the set of all n-dimensional vectors that we get by omiting last m coordinates of vectors in A. Obviously, A_{1}^{\prime} is a coset in \mathbb{F}_{q}^{n}. It can be enclosed in a coset A_{1} that has dimension $n-1$. Similarly, we can get the coset A_{2}. We have $A \subseteq A_{1} \times A_{2}$, and since A is a maximal coset, we have $A=A_{1} \times A_{2}$.

Therefore, all maximal cosets of $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{m}$ have dimension $n+m-2$ and are constructed by taking direct product of two maximal cosets from $\stackrel{*}{\mathbb{F}_{q}^{n}}$ and $\stackrel{*}{\mathbb{F}_{q}^{m}}$. Since for every covering we can construct a covering with the same number of maximal cosets we will use only maximal cosets [2-5].

Lets denote the minimal number of cosets needed to cover $\stackrel{*}{\mathbb{F}_{q}^{n}} \times \stackrel{*}{\mathbb{F}_{q}^{m}}$ by $C_{n, m, q}$. One can cover $\stackrel{*}{\mathbb{F}_{q}^{n}} \times \stackrel{\mathbb{F}_{q}^{m}}{ }$ by taking all direct products of cosets from coverings of $\stackrel{*}{\mathbb{F}_{q}^{n}}$ and $\stackrel{*}{\mathbb{F}_{q}^{m}}$. It will produce a covering of size $n(q-1) \times m(q-1)$. So, $C_{n, m, q} \leq n m(q-1)^{2}$.

Proposition 2. $C_{n, 1, q}=n(q-1)^{2}$.
Proof. A maximal coset in $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{1}$ is a direct product of $n-1$ dimensional coset in $\stackrel{*}{\mathbb{F}_{q}^{n}}$ and one of $q-1$ elements from $\stackrel{*}{\mathbb{F}_{q}^{1}}$. To cover $\stackrel{*}{\mathbb{F}_{q}^{n}} \times \stackrel{*}{\mathbb{F}_{q}^{1}}$ one should take a coset covering of $\stackrel{*}{\mathbb{F}_{q}^{n}}$ of size $n(q-1)$ (by Theorem A) for every element of \mathbb{F}_{q}^{1}.

Proposition 3. $C_{2 n, 2 m, q} \leq 3 C_{n, m, q}$.
Proof. Let $\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{2 n}, y_{1}, \ldots, y_{m}, y_{m+1}, \ldots, y_{2 m}\right)$ be a vector in $\mathbb{F}_{q}^{*} \times \mathbb{F}_{q}^{*}$. We will divide all vectors of $\mathbb{F}_{q}^{2 n} \times \mathbb{F}_{q}^{*}$ into 3 groups (we say a vector is nonzero, if any of its coordinates is not zero):

1) $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{m}\right)$ are nonzero;
2) $\left(x_{n+1}, \ldots, x_{2 n}\right)$ and $\left(y_{m+1}, \ldots, y_{2 m}\right)$ are nonzero;

3a) $\left(x_{1}, \ldots, x_{n}\right) ;\left(y_{m+1}, \ldots, y_{2 m}\right)$ are nonzero and $\left(x_{n+1}, \ldots, x_{2 n}\right) ;\left(y_{1}, \ldots, y_{m}\right)$ are zero;
3b) $\left(x_{1}, \ldots, x_{n}\right) ;\left(y_{m+1}, \ldots, y_{2 m}\right)$ are zero and $\left(x_{n+1}, \ldots, x_{2 n}\right) ;\left(y_{1}, \ldots, y_{m}\right)$ are nonzero.
We show here that covering of each of the 3 groups is equivalent to covering of $\mathbb{F}_{q}^{n} \times \stackrel{*}{\mathbb{F}_{q}^{m}}$. For 1) and 2) cases it is easy to verify. For 3) case lets define $u_{1}=x_{1}+x_{n+1}, \ldots, u_{n}=x_{n}+x_{2 n}$ and $v_{1}=y_{1}+y_{m+1}, \ldots, v_{m}=y_{m}+y_{2 m}$. If we get covering for vectors $\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right)$, where $\left(u_{1}, \ldots, u_{n}\right)$ is nonzero and $\left(v_{1}, \ldots, v_{m}\right)$ is nonzero, then we can replace u, v by their values depending on x, y in the system of equations of covering cosets and the set 3) will be covered. Obviously it can be covered using $C_{n, m, q}$ cosets.

The same idea was used in [6] to find a minimal coset covering for a specific equation.

Theorem 1. If $n \geq m$ and both are powers of 2 , then

$$
C_{n, m, q} \leq m^{\log _{2} 3} \times \times \frac{n}{m}(q-1)^{2} .
$$

Proof. Let $n=2^{k}, m=2^{t}$. If the Proposition 1 is applied t times we get: $C_{n, m, q}=C_{2^{k}, 2^{t}, q} \leq 3^{t} 2^{k-t}(q-1)^{2}=3^{\log _{2} m} 2^{\log _{2} n-\log _{2} m}(q-1)^{2}=m^{\log _{2} 3 \frac{n}{m}(q-1)^{2} .}$

If $n=m$, we get $C_{n, n, q} \leq n^{\log _{2} 3}(q-1)^{2}$.
Theorem 2. $C_{n, m, q} \geq n(q-1)\left(q-1 / q^{m-1}\right)$.
Proof. Let A be a set of cosets that cover $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{m}$. We can replace a coset by maximal one and, by Proposition 2, we can represent each maximal coset by a solution of system of 2 equations of the following form:

$$
\left\{\begin{array}{l}
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=\alpha_{0} \\
\beta_{1} y_{1}+\ldots+\beta_{m} y_{m}=\beta_{0}
\end{array}\right.
$$

All coefficients are in \mathbb{F}_{q}. Since there are no covering vectors, where the first n or the last m coordinates are 0 , we can assume that α_{0} and β_{0} are nonzero. By multiplying both equations by appropriate elements of \mathbb{F}_{q} we get systems of the following form:

$$
\left\{\begin{array}{l}
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=1 \\
\beta_{1} y_{1}+\ldots+\beta_{m} y_{m}=1
\end{array}\right.
$$

Let $\stackrel{*}{b}=\left(b_{1}, \ldots, b_{m}\right)$ be a vector in \mathbb{F}_{q}^{m}. If a coset $\beta_{1} y_{1}+\ldots+\beta_{m} y_{m}=1$ covers it, then $\beta_{1} b_{1}+\ldots+\beta_{m} b_{m}=1$, so the number of maximal cosets in \mathbb{F}_{q}^{m} that cover $\stackrel{*}{b}$ is equal to the number of $\left(\beta_{1}, \ldots, \beta_{m}\right)$ solutions of the equation $\beta_{1} b_{1}+\ldots+\beta_{m} b_{m}=1$. Since solution set is a $m-1$ dimensional coset, we have q^{m-1} maximal cosets that cover a single vector in \mathbb{F}_{q}^{*}.

Let $A_{b} \subseteq A$ be the set of cosets from A, where the bottom equation of the system of corresponding coset is one of the q^{m-1} equations covering $\left(b_{1}, \ldots, b_{m}\right)$. Their upper equation of the same system is coset in \mathbb{F}_{q}^{n}. The solutions of those upper equations of systems corresponding cosets in A_{b} must form a covering for $\stackrel{F}{F}_{q}^{n}$. If $\left(a_{1}, \ldots, a_{n}\right)$ is not covered by them, then $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)$ is not covered by A. Since the minimal number of cosets necessary to cover \mathbb{F}_{q}^{n} is $n(q-1)$, we get $\left|A_{*}\right| \geq n(q-1)$.

By summing all inequalities for all $\stackrel{*}{b} \in \stackrel{*}{\mathbb{F}_{q}^{m}}$, we get

$$
\sum_{\substack{* \\ b \in \mathbb{F}_{q}^{m}}}\left|A_{b}\right| \geq n(q-1)\left(q^{m}-1\right)
$$

Since each bottom equation of the system of corresponding to a coset in A covers q^{m-1} vectors of \mathbb{F}_{q}^{*}, we have

$$
\sum_{\substack{* \\ b \in \mathbb{F}_{q}^{m}}}\left|A_{*}\right|=q^{m-1}|A|,|A| \geq n(q-1) \frac{q^{m}-1}{q^{m-1}}=n(q-1)\left(q-\frac{1}{q^{m-1}}\right)
$$

If $m=1$ this result coincides with Proposition 3, where $C_{n, 1, q}=n(q-1)^{2}$.
Theorem 3. $C_{n, 2, q} \leq 3\left\lceil\frac{n}{2}\right\rceil(q-1)^{2}$.

Proof. A vector in $\mathbb{F}_{q}^{n} \times \stackrel{*}{F}_{q}^{2}$ will be written by $\left(x_{1}, \ldots, x_{n}, y_{1}, y_{2}\right)$. Lets first prove that $C_{2,2, q} \leq 3(q-1)^{2}$. Consider the following set of cosets in $\mathbb{F}_{q}^{2} \times \stackrel{*}{\mathbb{F}_{q}^{2}}$.

For all $a, b \in \mathbb{F}_{q}^{*}$:
(I) $\left\{\begin{array}{l}x_{1}=a \\ y_{1}=b\end{array} \quad ; \quad(I I)\left\{\begin{array}{l}x_{2}=a \\ y_{2}=b\end{array} \quad ; \quad(I I I)\left\{\begin{array}{l}x_{1}+x_{2}=a \\ y_{1}+y_{2}=b\end{array}\right.\right.\right.$.

Each group has $(q-1)^{2}$ cosets, so there are $3(q-1)^{2}$ cosets. Consider a vector $v=\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \in \stackrel{*}{\mathbb{F}_{q}^{2}} \times \stackrel{*}{\mathbb{F}_{q}^{2}}$.

If a_{1} and b_{1} are not 0 , then v is covered by a coset from (I) group. If a_{2} and b_{2} are not 0 , then v is covered by a coset from (II) group. If one of a_{1} and a_{2} is 0 and one of b_{1} and b_{2} is 0 , then v is covered by a coset from (III) group.

Therefore, we have a covering for $\mathbb{F}_{q}^{2} \times \stackrel{*}{\mathbb{F}_{q}^{2}}$ of size $3(q-1)^{2}$. Now let $n=2 k$ and consider this set of cosets in ${\underset{\mathbb{F}}{q}}_{n}^{x} \times \mathbb{F}_{q}^{2}$. For all $i=1,3, \ldots, 2 k-1$ and $a, b \in \mathbb{F}_{q}^{*}$:
$\left(I_{i}\right)\left\{\begin{array}{l}x_{i}=a \\ y_{1}=b\end{array} \quad ; \quad\left(I I_{i}\right)\left\{\begin{array}{l}x_{i+1}=a \\ y_{2}=b\end{array} \quad ; \quad\left(I I I_{i}\right)\left\{\begin{array}{l}x_{i}+x_{i+1}=a \\ y_{1}+y_{2}=b\end{array}\right.\right.\right.$.
If $v=\left(a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}\right) \in \stackrel{*}{F}_{q}^{n} \times \mathbb{F}_{q}^{2}$, then for some $i \in\{1,3, \ldots, 2 k-1\}$ $\left(a_{i}, a_{i+1}\right)$ is nonzero. Obviously, it will be covered by one of the cosets from $\left(I_{i}\right)$, $\left(I I_{i}\right)$ or $\left(I I I_{i}\right)$.

If n is odd, then several cosets will not be required and a covering of size $3\left\lceil\frac{n}{2}\right\rceil(q-1)^{2}$ for $\mathbb{F}_{q}^{*} \times \mathbb{F}_{q}^{2}$ is found.

Corollary 1. If $q=2$, then from Theorem 2 and 3 it follows that $C_{n, 2,2}=3\left\lceil\frac{n}{2}\right\rceil$.

When $n=m=2$, we have $2(q-1)^{2}(q+1) / q \leq C_{2,2, q} \leq 3(q-1)^{2}$. Clearly, $C_{2,2,2}=3$. From the inequalities it follows that $11 \leq C_{2,2,3} \leq 12$.

Theorem 4. $C_{2,2,3}=12$.
Proof. The following set is to be covered: $\mathbb{F}_{3}^{2} \times \mathbb{F}_{3}^{2}=\left(\begin{array}{c}0,1 \\ 0,2 \\ 1,0 \\ 1,1 \\ 1,2 \\ 2,0 \\ 2,1 \\ 2,2\end{array}\right) \times\left(\begin{array}{c}0,1 \\ 0,2 \\ 1,0 \\ 1,1 \\ 1,2 \\ 2,0 \\ 2,1 \\ 2,2\end{array}\right)$. If A is a covering then every coset in A has the following form:

$$
\left\{\begin{array}{l}
\alpha_{1} x_{1}+\alpha_{2} x_{2}=1 \\
\beta_{1} y_{1}+\beta_{2} y_{2}=1
\end{array}\right.
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{F}_{3}$, one of $\alpha_{1}, \alpha_{2} \neq 0$ and one of $\beta_{1}, \beta_{2} \neq 0$.
Let $t_{i j}$ be the number of cosets in A, where the bottom equation of the system of
corresponding system is of the form $i y_{1}+j y_{2}=1$. The size of A is equal to the sum of all $t_{i j}, 0 \leq i \leq 2,0 \leq j \leq 2$ and $t_{00}=0$.

The cosets covering the vector $(0,1)$ are $y_{2}=1, y_{1}+y_{2}=1$ and $2 y_{1}+y_{2}=1$. Using the same arguments as in Theorem 2, we get $t_{01}+t_{11}+t_{21} \geq 4$. If we do the same for all vectors of \mathbb{F}_{3}^{2}, then we get the system of inequalities:

$$
\left\{\begin{array}{l}
t_{01}+t_{11}+t_{21} \geq 4 \\
t_{02}+t_{12}+t_{22} \geq 4 \\
t_{10}+t_{11}+t_{12} \geq 4 \\
t_{10}+t_{01}+t_{22} \geq 4 \\
t_{10}+t_{02}+t_{21} \geq 4 \\
t_{20}+t_{21}+t_{22} \geq 4 \\
t_{20}+t_{01}+t_{12} \geq 4 \\
t_{20}+t_{02}+t_{11} \geq 4
\end{array}\right.
$$

There are 8 integer unknowns, $t_{i j} \geq 0,0 \leq i \leq 2,0 \leq j \leq 2, t_{00}$ is missing. Every unknown is used in exactly 3 inequalities. The problem is to find the solution of the system that minimize sum of all $t_{i j}$.

Let one of $t_{i j}$ be 2 (if there is 3 , using the same method we can even prove that the sum is ≥ 13).

Let $t_{02}=2$.
If $t_{01}=0$, then $t_{10}+t_{22} \geq 4, t_{11}+t_{21} \geq 4$ and $t_{12}+t_{20} \geq 4$, so the sum of all $t_{i j} \geq 2+0+4+4+4=14$.

Similarly:
if $t_{01}=1$, then $t_{10}+t_{22} \geq 3, t_{11}+t_{21} \geq 3$ and $t_{12}+t_{20} \geq 3$, so $t_{i j} \geq 12$;
if $t_{01}=2$, then $t_{10}+t_{11}+t_{12} \geq 4$ and $t_{20}+t_{21}+t_{22} \geq 4$, so $t_{i j} \geq 12$.
For all cases we have the sum of all $t_{i j} \geq 12$. It means that the covering has at least 12 cosets.

Received 31.07.2017

REFERENCES

1. Jamison R. Covering Finite Fields with Cosets of Subspaces. // J. Combin. Theory, Ser. A, 1977, v. 22, p. 253-266.
2. Alexanyan A.A. Disjunctive Normal Forms over Linear Functions. // Theory and applications. Yer.: YSU Press, 1990 (in Russian).
3. Alexanyan A.A. Realization of Boolean Functions by Disjunctions of Products of Linear Forms. // Soviet Math. Dokl., 1989, v. 39, № 1, p. 131-135 (in Russian).
4. Alexanyan A.A., Serobyan R.K. Covers Concerned with the Quadratic over Finite Field Equations. 1992, p. 6-10 (in Russian).
5. Alexanyan A.A., Papikyan M. On Blocking Sets of Affine Spaces. 1999, v. 1.
6. Minasyan A.V. On Minimal Coset Covering of Solutions of a Boolean Equation. // Proceedings of the YSU, Physical and Mathematical Sciences, 2015, № 1, p. 26-30.

[^0]: * E-mail: ashot.minasya@gmail.com

