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It is proved, that if the square partial sums σqn(x) of a multiple Franklin

series converge in measure to a function f , the ratio
qn+1

qn
is bounded and the

majorant of partial sums satisfies to a necessary condition, then the coefficients
of the series are restored by the function f .
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Introduction. The orthonormal Franklin system consists of piecewise linear
and continuous functions. This system was constructed by Franklin [1] as the first
example of a complete orthonormal system, which is a basis in the space of continu-
ous functions on [0,1]. In order to formulate earlier, as well as new results, let’s recall
some definitions.

Let n = 2µ +ν , µ ≥ 0, where 1≤ ν ≤ 2µ . Denote

sn,i =


i

2µ+1 for 0≤ i≤ 2ν ,

i−ν

2µ
for 2ν < i≤ n.

(1)

Let Sn denote the space of functions continuous and piecewise linear on [0,1] with
nodes {sn,i}n

i=0, i.e. f ∈ Sn, if f ∈C[0,1], is linear on each closed interval [sn,i−1,sn,i],
i= 1,2, . . . ,n. It is clear, that dimSn = n+1 and the set {sn,i}n

i=0 is obtained by adding
the point sn,2ν−1 to the set {sn−1,i}n−1

i=0 . Therefore, there exists a unique function
fn ∈ Sn, which is orthogonal to Sn−1, ‖ fn‖2 = 1 and fn(sn,2ν−1)> 0. Setting f0(x)= 1,
f1(x) =

√
3(2x−1), x ∈ [0,1], we obtain the orthonormal system { fn(x)}∞

n=0, which
was defined equivalently by Franklin [1].

In this paper we will consider multiple series by Franklin system.
Let d be a natural number. Consider multiple Franklin series

∑
m∈Nd

0

am fm(x), (2)
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where m = (m1,m2, . . . ,md) ∈ Nd
0 is a vector with non-negative integer coordinates,

x = (x1,x2, . . . ,xd) ∈ [0,1]d and fm(x) = fm1(x1) · · · fmd (xd).
Denote by σn(x) the n-th square partial sum of the series (2), i.e.

σn(x) = ∑
m:mi≤n, i=1,...,d

am fm(x), (3)

where m = (m1, . . . ,md).
The following theorems were proved by Gevorkyan and Poghosyan.
T h e o r e m A. [2]. If the sums σ2n(x) converge in measure to an integrable

function f and

liminf
λ→+∞

(
λ ·mes

{
x ∈ [0,1]d : sup

n
|σ2n(x)|> λ

})
= 0,

then the series (2) is the Fourier–Franklin series of f .
T h e o r e m B. [3] If the sums σ2n(x) converge in measure to a function f

and
lim
k→∞

(
λk ·mes

{
x ∈ [0,1]d : sup

n
|σ2n(x)|> λk

})
= 0

for some sequence λk→+∞, then for any m ∈ Nd
0

am = lim
k→+∞

∫
[0,1]d

[ f (x)]λk fm(x)dx,

where

[ f (x)]λ =

{
f (x), if | f (x)| ≤ λ ,
0, if | f (x)|> λ .

In this paper we will prove, that in the Theorem B instead of the partial
sums σ2n(x) one can take square partial sums σqn(x), where qn is any increasing
sequence of natural numbers, for which the ratio

qn+1

qn
is bounded. The following

theorem holds.
T h e o r e m 1. Let {qn} be an increasing sequence of natural numbers such

that the ratio
qn+1

qn
is bounded. If the sums σqn(x) converge in measure to a function

f and there exists a sequence λk→+∞ that the following condition holds:

lim
k→∞

(
λk ·mes

{
x ∈ [0,1]d : sup

n
|σqn(x)|> λk

})
= 0, (4)

then for any m ∈ Nd
0

am = lim
k→+∞

∫
[0,1]d

[ f (x)]λk fm(x)dx. (5)

Recall, that the function f is called A-integrable on a set G, if
lim

λ→+∞

λ ·mes{x ∈ G : | f (x)|> λ}= 0 and the following limit exists:

lim
λ→+∞

∫
G
[ f (x)]λ dx =: (A)

∫
G

f (x)dx.

Notice that the next two theorems are immediate corollaries of the Theorem 1.
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T h e o r e m 2. Let {qn} be an increasing sequence of natural numbers such
that the ratio

qn+1

qn
is bounded. If the sums σqn(x) converge in measure to a function

f and
lim

λ→∞

(
λ ·mes

{
x ∈ [0,1]d : sup

n
|σqn(x)|> λ

})
= 0,

then all functions f (x) fm(x), m ∈ Nd
0 , are A-integrable and

am = (A)
∫
[0,1]d

f (x) fm(x)dx, m ∈ Nd
0 .

T h e o r e m 3. Let {qn} be an increasing sequence of natural numbers such
that the ratio

qn+1

qn
is bounded. If the sums σqn(x) converge in measure to a function

f ∈ L[0,1]d and for some sequence λk→+∞ the condition (4) holds, then (2) is the
Fourier–Franklin series of f .

Not that similar questions for series by Franklin system and generlized Franklin
system were considered in [4–7].

In [8] for Haar series analogous theorems to Theorems 1–3 are proved.
Similar problems for Vilenkin and generalized Haar systems were considered

in [9] and [10], for systems generated by a bounded sequence {pk} and in [11] for
general case.

Proof of Theorems. Let {qn} be an increasing sequence of natural numbers
and M be a number satisfying the inequality

qn+1

qn
≤M for all n ∈ N. (6)

Denote S∗(x) := supn |σqn(x)| and suppose that for the sequence λ ↗ +∞ the
following statement holds:

lim
k→+∞

(
λk ·mes

{
x ∈ [0,1]d : S∗(x)> λk

})
= 0. (7)

Let {sn,i}n
i=0 be the points given in (1), sn,−1 = 0 and sn,n+1 = 1. For any n

and i ∈ {0,1, . . . ,n} denote δ n
i := (sn,i−1,sn,i+1). Let define the function Bn

i (x) as
follows. It is linear on intervals [sn, j−1,sn, j], j = 1,2, . . . ,n, and

Bn
i (sn, j) =

{
1, if i = j,
0, if i 6= j,

j = 0,1, . . . ,n.

For any natural ν we set Nd
ν := {0,1, . . . ,qν}d . It is clear that

σqν
(x) = ∑

m∈Nd
ν

am fm(x).

For any j = ( j1, j2, . . . , jd) ∈ Nd
ν denote

∆
ν
j := δ

qν

j1 ×δ
qν

j2 ×·· ·×δ
qν

jd , (8)

Fν
j (x) := Bqν

j1 (x1) ·Bqν

j2 (x2) · . . . ·Bqν

jd (xd).

Obviously supp(Fν
j ) = ∆ν

j and(
1

2qν

)d

≤mes(∆ν
j )≤

(
4
qν

)d

. (9)
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It follows from the definition of functions Bn
i , that

n

∑
i=0

Bn
i (x) = 1 for all x ∈ [0,1],

therefore,
∑

j∈Nd
ν

Fν
j (x) = 1 for all x ∈ [0,1]d .

Let us notice that∫
[0,1]d

Fν
j (x)dx =

∫
∆ν

j

Fν
j (x)dx =

d

∏
i=1

∫
δ

qν
ji

Fqν

ji (xi)dxi =
mes(∆ν

j )

2d .

Therefore, by denoting

Mν
j (x) :=

2d

mes(∆ν
j )

Fν
j (x),

we obtain (in view of (9)) that∫
[0,1]d

Mν
j (x)dx = 1 and |Mν

j (x)| ≤ (4qν)
d , ν ∈ N, j ∈ Nd

ν . (10)

It is clear that the functions {Mν
j }j∈Nd

ν
are basis in the space

Sν :=

 ∑
m∈Nd

ν

am fm(x) : am ∈ R

 .

The following lemmas were proved in [2].
L e m m a 1. Let F be a function, which is defined on ∆ = [a1,b1]× ·· · ×

[ad ,bd ], d ∈ N, and is linear with respect to each variable. If L = maxt∈∆ |F(t)|, then

mes
{

t ∈ ∆ : |F(t)| ≥ L
2d

}
≥ mes(∆)

3d .

L e m m a 2. For any Mν0
j0

and ν > ν0 there exist numbers αj such that

Mν0
j0
(x) = ∑

j∈Nd
ν

αjMν
j (x),

where
∑

j∈Nd
ν

αj = 1, αj ≥ 0 and αj = 0 if ∆
ν
j 6⊂ ∆

ν0
j0
.

Although the Lemma 2 in [2] was proved for qν = 2ν , obviously the same
proof is true in general case, also.

Now suppose that the statements (6) and (7) hold and the sums σqν
(x) converge

in measure to a function f . First let’s prove that for any m = (m1,m2, . . . ,md) ∈ Nd
0

and j0 ∈ Nd
ν0

, for which max1≤i≤d{mi} ≤ qν0 , the following statement is true:∫
[0,1]d

σqν0
(x)Mν0

j0
(x)dx = lim

k→+∞

∫
[0,1]d

[ f (x)]λk M
ν0
j0
(x)dx. (11)

For any k ∈ N denote

Ek :=
{

x ∈ supp(Mν0
j0
) = ∆

ν0
j0

: S∗(x)> λk
}
.
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Let ε be a positive number. In view of (7), one can take the natural number k0 such
that the following inequalities hold:

(47qν0M)d
λk ·mes(Ek)< ε, when k ≥ k0, (12)

mes(Ek)< (44M)−dmes(∆ν0
j0
), when k ≥ k0. (13)

Suppose ν ≥ ν0. We set

Ων :=
{

A : A = (sqν , j1−1,sqν , j1)× . . .× (sqν , jd−1,sqν , jd ), A⊂ ∆
ν0
j0

}
. (14)

Obviously(
1

2qν

)d

≤mes(A)≤
(

2
qν

)d

for all A ∈Ων . (15)

Notice, that if for some A ∈Ων , ν ≥ ν0, the inequality

mes(Ek∩A)≤ 2−2dmes(A) (16)

holds, then ∣∣σqν
(x)
∣∣≤ 2d

λk for all x ∈ A. (17)

Let suppose that A ∈ Ων and for some point x0 ∈ A the inequality (17) does not
hold, i.e.

∣∣σqν
(x0)

∣∣ > 2dλk. Since σqν
(x) is linear with respect to each variable

on the set A, according to the Lemma 1 we obtain that

mes
{

x ∈ A :
∣∣σqν

(x)
∣∣≥ λk

}
≥ 3−dmes(A),

which contradicts (16).
According to (8), (13) and (14), we obtain that

mes(Ek∩A)≤
(
44M

)−dmes
(
∆

ν0
j0

)
<
(
43M

)−dmes(A), when A ∈Ων0 . (18)

Now let’s define by induction the families Ω1
ν and Ω2

ν , ν ≥ ν0. If ν = ν0, then we set

Ω
1
ν0

:= {A ∈Ων0 : mes(Ek∩A)> (43M)−d ·mes(A)}, Qν0 :=
⋃

A∈Ω1
ν0

A,

and
Ω

2
ν0

:= {A ∈Ων0 : A 6⊂ Qν0}, Pν0 :=
⋃

A∈Ω2
ν0

A.

From (18) we have, that Qν0 = /0 and the closure of Pν0 is the supp(Mν0
j0
), i.e.

Pν0 = ∆
ν0
j0

. Now suppose we have defined the sets Ω1
n, Ω2

n, Qn and Pn for all n < ν .
Let’s denote

Ω
1
ν :=

{
A ∈Ων : mes(Ek∩A)> (43M)−d ·mes(A) and A 6⊂

⋃
n<ν

Qn

}
, (19)

Qν :=
⋃

A∈Ω1
ν

A,

Ω
2
ν :=

{
A ∈Ων : A 6⊂

⋃
n≤ν

Qn

}
, Pν :=

⋃
A∈Ω2

ν

A.
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Thus we have defined the families Ω1
ν , Ω2

ν and the sets Pν , Qν (ν ≥ ν0), satisfying
to the following conditions: Ω1

ν ⊂Ων , Ω2
ν ⊂Ων ,

supp(Mν0
j0
) = ∆

ν0
j0
= Pν

⋃(⋃
n≤ν

Qn

)
, Pν

⋂(⋃
n≤ν

Qn

)
= /0, (20)

Qν ∩Qn = /0, if ν 6= n. (21)

It is seen from (21) and (19), that

mes

(⋃
n≤ν

Qn

)
< (43M)dmes(Ek) for any ν ≥ ν0. (22)

For any ν > ν0 denote

Jν := {j ∈ Nd
ν : ∆

ν
j ∩Qν 6= /0, ∆

ν
j ⊂ Pν−1}. (23)

Note that for any j ∈ Jν and for all B ∈ Ων , which are subset of ∆ν
j ,

the inequality
mes(Ek∩B)< 4−dmes(B) (24)

holds. Suppose there exists a parallelepiped B∈Ων such that B⊂∆ν
j , but the inequal-

ity (24) does not hold. Denote by D that set from Ων−1, which contains B. Using (6)
and (15), we get that

mes(B)≥
(

1
2qν

)d

≥
(

1
2Mqν−1

)d

≥
(

1
4M

)d

mes(D).

Therefore,

mes(Ek∩D)≥mes(Ek∩B)≥ 4−dmes(B)≥ (42M)−dmes(D),

which means that B⊂D⊂
⋃

n<ν

Qn, moreover ∆
ν
j
⋂(⋃

n<ν

Qn

)
6= /0 (see (19)). But this

contradicts to (23) and (20). Thus, if j ∈ Jν , then for all B ∈ Ων with
B ∈ ∆ν

j the inequality (24) is true, therefore,

mes(Ek∩∆
ν
j )< 4−dmes(∆ν

j ).

Using the last inequality and according to (16) and (17), we get

|σqν
(x)| ≤ 2d

λk, if x ∈ ∆
ν
j , j ∈ Jν . (25)

Similarly we obtain (according to definition of Pν and (19)), that if ∆ν
j ⊂ Pν ,

then mes(Ek∩∆ν
j )≤ (43M)−dmes(∆ν

j ) and, therefore,

|σqν
(x)| ≤ 2d

λk, if x ∈ ∆
ν
j ⊂ Pν . (26)

Now let’s define by induction different expansions ϕn for Mν0
j0

, satisfying conditions:

Mν0
j0

= ϕn = ∑
ν≤n

∑
j∈Jν

α
n
ν ,jM

ν
j + ∑

j:∆n
j⊂Pn

α
n
j Mn

j , (27)

∑
ν≤n

∑
j∈Jν

α
n
ν ,j + ∑

j:∆n
j⊂Pn

α
n
j = 1, α

n
ν ,j ≥ 0, α

n
j ≥ 0. (28)
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Set ϕν0 := Mν0
j0

. It is clear that ϕν0 satisfies both (27) and (28).
Suppose we have defined expansions ϕν0 , . . . ,ϕn, satisfying (27) and (28).

According to Lemma 2, for any ∆n
j ⊂ Pn we have

Mn
j = ∑

i:∆n+1
i ⊂∆n

j

βiMn+1
i , where βi ≥ 0. (29)

Note, that if ∆n
j ⊂ Pn and (29) holds, then either ∆

n+1
i ∩Qn+1 6= /0 and, therefore,

i ∈ Jn+1 or ∆
n+1
i ⊂ Pn+1. Therefore, inserting the expressions (29) in (27) and

grouping similar terms, we obtain

Mν0
j0

= ϕn+1 = ∑
ν≤n+1

∑
j∈Jν

α
n+1
ν ,j Mν

j + ∑
j:∆n+1

j ⊂Pn+1

α
n+1
j Mn+1

j . (30)

It is obvious, that all coefficients in (30) are nonnegative. Since the integrals of all
functions Mν

j are 1 (see (10)), from (30) we get that

∑
ν≤n+1

∑
j∈Jν

α
n+1
ν ,j + ∑

j:∆n+1
j ⊂Pn+1

α
n+1
j = 1.

So we have proved, that for any n ≥ ν0 the expansion (27) with coefficients (28)
is possible.

According to the definition of Jν and sets Qν , we obtain that

mes

(⋃
j∈Jν

∆
ν
j

)
≤ 4dmes(Qν).

Therefore, using the inequality (22) and (21), for the measure of the set
Dn :=

⋃
ν≤n

⋃
j∈Jν

∆
ν
j we get that

mes(Dn)≤ 4dmes

(⋃
ν≤n

Qν

)
≤ (44M)dmes(Ek). (31)

According to (10), (27), (28) and (31), we obtain that for any n≥ ν0

∑
ν≤n

∑
j∈Jν

α
n
ν ,j = ∑

ν≤n
∑

j∈Jν

α
n
ν ,j

∫
Dn

Mν
j (x)dx≤

∫
Dn

Mν0
j0
(x)dx≤ (45Mqν0)

dmes(Ek). (32)

Suppose we are given a number ν ≥ ν0 and p = (p1, p2, . . . , pd) ∈ Nd
0 such

that maxi{pi}> qν . Then, according to the definition of functions fp and Mν
j , we get

( fp,Mν
j ) :=

∫
[0,1]d

fp(x)Mν
j (x)dx = 0 for any j ∈ Nd

ν .

Therefore, for any n≥ ν and for all j ∈ Nd
ν one can write

(σqn ,M
ν
j ) = ∑

p∈Nd
n

ap( fp,Mν
j ) = ∑

p∈Nd
ν

ap( fp,Mν
j ) = (σqν

,Mν
j ). (33)
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It is easily seen (see Eqs. (27) and (33)) that for any n≥ ν0∣∣∣∣∫
[0,1]d

σqν0
(x)Mν0

j0
(x)dx−

∫
[0,1]d

[ f (x)]λk M
ν0
j0
(x)dx

∣∣∣∣= ∣∣∣(σqn− [ f ]λk ,M
ν0
j0

)∣∣∣=
=

∣∣∣∣∣∣
σqn− [ f ]λk , ∑

ν≤n
∑

j∈Jν

α
n
ν ,jM

ν
j + ∑

j:∆n
j⊂Pn

α
n
j Mn

j

∣∣∣∣∣∣≤ (34)

≤

∣∣∣∣∣∑
ν≤n

∑
j∈Jν

α
n
ν ,j
(
σqν
− [ f ]λk ,M

ν
j
)∣∣∣∣∣+

∣∣∣∣∣∣ ∑
j:∆n

j⊂Pn

α
n
j
(
σqn− [ f ]λk M

n
j
)∣∣∣∣∣∣=: I1 + I2.

Using (25), (10), (32) and (12), for I1 we will have the inequality

I1 ≤ ∑
ν≤n

∑
j∈Jν

α
n
ν ,j|
(
σqν
− [ f ]λk ,M

ν
j
)
| ≤ (2d

λk +λk) ∑
ν≤n

∑
j∈Jν

α
n
ν ,j ≤

≤ (46Mqν0)
d
λkmes(Ek)< 4−d

ε, for any n≥ ν0. (35)

Denote Hn :=
⋃

j:∆n
j⊂Pn

∆n
j , Tk := {x ∈ ∆

ν0
j0

: | f (x)|> λk}.
It is clear (see also (12)) that

mes(Tk)≤mes(Ek)≤ (47Mqν0)
−d

λ
−1
k ε.

According to (10) and (27), we obtain

I2 ≤ (4qν0)
d
∫

Hn

|σqn(x)− [ f (x)]λk |dx =

= (4qν0)
d
∫

Hn∩Tk

|σqn(x)− [ f (x)]λk |dx+

+(4qν0)
d ∫

Hn\Tk
|σqn(x)− [ f (x)]λk |dx := I3 + I4.

(36)

Using (26) and (12), we can estimate I3 as follows:

I3 ≤ (4qν0)
d(2d

λk +λk)(47Mqν0)
−d

λ
−1
k ε < 4−d

ε. (37)

Since σqn(x)− [ f (x)]λk on the set Hn \Tk converges in measure to 0, as n→ ∞, and

is bounded, then for sufficiently large n we get that I4 <
ε

4
. Therefore, according to

(34)–(37), we obtain (11).
Now let’s prove that for any m ∈ Nd

0 the coefficient am can be found by (5).
Assume m = (m1,m2, . . . ,md) ∈ Nd

0 . First let’s fix a number ν satisfying
max1≤i≤d mi ≤ qν . Since fm ∈ Sqν

and the system of functions {Mν
j }j∈Nd

ν
is

a basis in the space Sqν
, then one can find numbers βj, j ∈ Nd

ν , such that

fm(x) = ∑
j∈Nd

ν

βjMν
j (x). (38)
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Using (3), (38) and (11), we get that

am = (σqν
, fm) = ∑

j∈Nd
ν

βj(σqν
,Mν

j ) = ∑
j∈Nd

ν

βj lim
k→∞

∫
[0,1]d

[ f (x)]λk M
ν
j (x)dx =

= lim
k→∞

∫
[0,1]d

[ f (x)]λk fm(x)dx,

which proves the Theorem 1.

Received 22.09.2017
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