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UNIQUENESS THEOREMS FOR MULTIPLE FRANKLIN SERIES
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It is proved, that if the square partial sums o,,(x) of a multiple Franklin

. . . . qn+1 .
series converge in measure to a function f, the ratio 2" is bounded and the

n
majorant of partial sums satisfies to a necessary condition, then the coefficients
of the series are restored by the function f.
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Introduction. The orthonormal Franklin system consists of piecewise linear
and continuous functions. This system was constructed by Franklin [1] as the first
example of a complete orthonormal system, which is a basis in the space of continu-
ous functions on [0, 1]. In order to formulate earlier, as well as new results, let’s recall
some definitions.

Letn =2+ v, u >0, where 1 <v <2, Denote

L for 0<i<2v,

i =4 (1)

1—V
<
T for 2v<i<n

Let S, denote the space of functions continuous and piecewise linear on [0, 1] with
nodes {s,,}} . i.e. f €Sy, if f € C[0,1], is linear on each closed interval [s,, ;1,8
i=1,2,...,n. Itis clear, that dim S, = n+ 1 and the set {s, ; }"", is obtained by adding
the point s,y to the set {sn,L,-};’:_Ol. Therefore, there exists a unique function
fn € Sp, which is orthogonal to S,,_1, || fu|l2 = 1 and f,(s,.2v—1) > 0. Setting fo(x) =1,
fi(x) =v/3(2x—1), x € [0, 1], we obtain the orthonormal system { f,,(x)}>_,, which
was defined equivalently by Franklin [[1].

In this paper we will consider multiple series by Franklin system.

Let d be a natural number. Consider multiple Franklin series

Y, dmfm(x), )

d
meNj
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where m = (mj,my,...,my) € N‘Ol is a vector with non-negative integer coordinates,
X = (x1,%2,..,X7) € [0,1]¢ and fin(X) = fru, (x1) -+ fin, (Xa)-

Denote by 6, (x) the n-th square partial sum of the series (2)), i.e.

()= )  amfm(®), (3)
m:m;<n, i=1,....d

where m = (my,...,my).

The following theorems were proved by Gevorkyan and Poghosyan.

Theorem A. [2]. If the sums 02 (X) converge in measure to an integrable
function f and

hmmf(?t -mes{x € [0, 117 sup|oa (x)| > l}) =0,
A—>too n

then the series (2)) is the Fourier-Franklin series of f.
Theorem B.[3] If the sums 02 (xX) converge in measure to a function f
and
lim (Ak mes{x € [0,1]? : sup|ox(x)| > Ak}> =0
n

k—oo

for some sequence Ay — +oo, then for any m € Ng

am=Tim [ )] fim(X)dx

k=-+eo.J[0,1)¢

£ :{ F), i )] <A,

where

0, if [f(x)]>A.

In this paper we will prove, that in the Theorem B instead of the partial

sums 02:(X) one can take square partial sums o,,(x), where g, is any increasing
qn+1

qn

sequence of natural numbers, for which the ratio —— is bounded. The following

theorem holds.
Theorem 1. Let {g,} be an increasing sequence of natural numbers such

that the ratio "+

is bounded. If the sums o,, (x) converge in measure to a function

qn
f and there exists a sequence A; — oo that the following condition holds:
]}im (lk-mes{x € [0,1]4: sup|o,, (x)| > lk}) =0, 4)
—ro0 n
then for any m € Ng
= i dx. 5
m = lim [0,1]d[f (%) fm (x)dx )

Recall, that the function f is called A-integrable on a set G, if

lhm A-mes{x € G: |f(x)| > A} =0 and the following limit exists:
—>oo

lim | [f(x)]ndx=:( /f

A—+e0 /G
Notice that the next two theorems are immediate corollaries of the Theorem
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Theorem 2. Let {g,} be an increasing sequence of natural numbers such
. qntl
that the ratio

q
f and !

is bounded. If the sums oy, (x) converge in measure to a function

lim (l -mes{x € [0,1]: sup|o,, (x)| > /l}) =0,

A—ro0

then all functions f(x) fm(x), m € N¢, are A-integrable and
=) [ S mx)dx, m NG,

Theorem 3. Let {g,} be an increasing sequence of natural numbers such
. G+l
that the ratio

qn
f € L[0,1)¢ and for some sequence A; — oo the condition (@) holds, then (2) is the
Fourier—Franklin series of f.
Not that similar questions for series by Franklin system and generlized Franklin
system were considered in [4-7].
In [8]] for Haar series analogous theorems to Theorems are proved.
Similar problems for Vilenkin and generalized Haar systems were considered
in [9]] and [10], for systems generated by a bounded sequence {p;} and in [11] for
general case.
Proof of Theorems. Let {g,} be an increasing sequence of natural numbers
and M be a number satisfying the inequality
q:]“ <M forall neN. (6)
n
Denote S*(x) := sup, |0,,(x)| and suppose that for the sequence A ,* +oo the
following statement holds:
. d. ¢* —
Jim_ (/lk-mes{x c0,19: §"(x) > )Lk}> ~0. %)
Let {sn;}}, be the points given in (1), s,—1 = 0 and s,,4+1 = 1. For any n
and i € {0,1,...,n} denote 8" := (s,—1,5:,i+1). Let define the function B} (x) as
follows. It is linear on intervals [s, j—1,5,,], j = 1,2,...,n, and

is bounded. If the sums o, (x) converge in measure to a function

Lif i=j,
n N\ b ) _
Bi(snh,)—{ 0. if iZ], j=0,1,...,n

For any natural v we set N¢ := {0,1,...,qy }¥. Itis clear that

Oy, (x) = Z am fm(X).

meN¢
For any j = (ji, ja,- .-, js) € N4 denote
V._ S qv qv
A ._6j1 ><5j2><-~~><8jd, (8)
FY(x) := BY (x1) - BY (x2) - ... - BY" (x4).

Obviously supp(F;") = AT/ and

1\¢ ) 4\¢
(a) smea<(3) ®
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n

It follows from the definition of functions B, that } B} (x) =1 for all x € [0,1],
i=0

therefore,

ZdFjV(x) =1 forall xel0,1%
jeng

Let us notice that

mes(AY)
_ _ (IV J
o Eiv(x)dx F" )dx = I I/qv F]l X;)dx; = —d
Therefore, by denoting
2d
M = Ad
j (%) mes(AY) (),

we obtain (in view of (9)) that

, l]d]\/lj"(x)dx:l and |M}(x)| < (49,)?, VvEN, jeNL.  (10)

Itis clear that the functions {M;’};cq are basis in the space

Sy 1= Z Amfm(X): am €R

meN¢

The following lemmas were proved in [2].
Lemma 1. Let F be a function, which is defined on A = [a;,b;] x -+ X
[a4,b4], d € N, and is linear with respect to each variable. If L = max,ca |F(t)|,

mes{teA: \F()\_zd} m";@‘).

Lemma 2. For any MJY)O and v > Vv, there exist numbers o; such that

= Z Otijv (X)

jeNg

where
Y oj=1, >0 and o=0 if A/ ZA".
jenNd

Although the Lemma 2] in [2] was proved for g, = 2V, obviously the same
proof is true in general case, also.

Now suppose that the statements (6) and (7)) hold and the sums o, (x) converge
in measure to a function f. First let’s prove that for any m = (m,my,...,my) € Ng
and jo € N¢ , for which max, <;<s{m;} < qv,, the following statement is true:

M (x)dx = li M (x)dx. 11
O IV = im0 M (5)x an
For any k € N denote

E, = {X c supp(Mi‘:)O) = AJ}:;) : S*(X) > )Lk}
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Let € be a positive number. In view of (7)), one can take the natural number kj such
that the following inequalities hold:
(47 qy,M)? Ay -mes(E;) < €, when k> ko, (12)
mes(Ey) < (44M)-dmes(AjV;), when k> ko. (13)
Suppose v > vy. We set

Qv = {A A= (Sanj1_17sqV~,jl) X X (stVajd_l’SqV’jd)’ AcC AJVOO} (]4)

Obviously
1\¢ 2\
<> <mes(A) < <> forall AcQ,. (15)
2qy qv

Notice, that if for some A € Q,, v > vy, the inequality

mes(E;NA) <2 *'mes(A) (16)
holds, then

|0, (x)| <2 forall xe€A. (17)

Let suppose that A € Q, and for some point Xy € A the inequality does not
hold, i.e. |0y, (x0)| > 29%. Since o,,(x) is linear with respect to each variable
on the set A, according to the Lemma|I| we obtain that

mes{x €A: |0y, (x)| > X} > 3 9mes(A),

which contradicts (16).
According to (8), (13)) and (14)), we obtain that

mes(ExNA) < (4*'M) “mes (AJVOO) < (M) 7dmes(A), when Ae€Q,. (18)
Now let’s define by induction the families Qé and Q%, v > vy. If v = v, then we set
Q) ={A€Qy : mes(ExNA) > (£M) *-mes(A)}, Qv = U 4

AeQy

and

O ={AcQy: AZ 0y}, Py,:= | A
AeQ,

From (I8) we have, that Qy,, = 0 and the closure of Py, is the supp(Mi‘;"), ie.

PTO = q Now suppose we have defined the sets Q,ll, Qﬁ, 0, and P, for all n < v.

Let’s denote

Ql = {A €Q,: mes(ENA) > (4’M)“-mes(A) and A ¢ | Q,,}, (19)

n<v

0v:= 4,

AcQ),

Q%::{Aegv:AgzUQn}, P:= J A

n<y AcQ?
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Thus we have defined the families Ql,, Q%, and the sets Py, Qy (V > Vp), satisfying
to the following conditions: Q}, C Q,, Q2 C Q,,

supp(M;’) = A = P, (U Qn> , P (U Qn> =0, (20)

n<v n<v
oyNQ,=0, if v#n. Q1)
It is seen from (21)) and (19), that
mes (U Qn) < (4°M)%mes(Ey) forany v >vp. (22)
n<v

For any v > v denote
Jy={eNy: A/nOy, #0, A CP_}. (23)

Note that for any j € J, and for all B € Q,, which are subset of A}’,
the inequality
mes(E; NB) < 4 “mes(B) (24)

holds. Suppose there exists a parallelepiped B € Q, such that B C Ajv, but the inequal-
ity (24) does not hold. Denote by D that set from Q,_, which contains B. Using (6]
and (TI3), we get that

d d d
B>() > ) (L (D)
mes — — | mes(D).
“\2¢qv/) T \2Mgy_ —\4M
Therefore,

mes(E; N D) > mes(E; NB) >4 9mes(B) > (4*°M) “mes(D),

which means that BC D C U 0,,, moreover Ajv ﬂ < U On | #0 (see (19)). But this
n<v n<v

contradicts to (23) and (20). Thus, if j € Jy, then for all B € Q, with
B € A} the inequality is true, therefore,

mes(E; NAY) <4 “mes(A}).
Using the last inequality and according to (I6) and (17)), we get
0g,(x)| < 2%, if x€AY, jeE. (25)

Similarly we obtain (according to definition of P, and (19)), that if AJY C Py,
then mes(E; N4) < (43M)*dmes(AJY ) and, therefore,

|04, ()| <274, if x€A] CP,. (26)
Now let’s define by induction different expansions ¢, for Mj‘g’, satisfying conditions:
M =n=3 Y og;Mi+ ) oMy, 27
v<n jely JAICP,
Y Yo+ Y a'=1, a;>0, o >0. (28)

v<n jeJ, j:A}’CP,l
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Set @y, := MJ‘;0 It is clear that @y, satisfies both and (28).
Suppose we have defined expansions @y, ..., ®,, satisfying and (28).
According to Lemma for any Ay C P, we have

M= Y BM™', where [ >0. (29)
EATT A
Note, that if AJf' C P, and (29) holds, then either A;”] N Qui1 # 0 and, therefore,

i€ Jyy or Af“ C P,11. Therefore, inserting the expressions (29) in (27) and
grouping similar terms, we obtain

My =g= ¥ Yaims ¥ ogtuto G0

v<n+l jeJy j:A"iHlenH

It is obvious, that all coefficients in (30) are nonnegative. Since the integrals of all
3 \4
functions M are 1 (see (10)), from (30) we get that

Yoyt ¥oagrer

vntl jely FATI P

So we have proved, that for any n > vy the expansion with coefficients
is possible.
According to the definition of J, and sets Oy, we obtain that

mes (U A}’) < 4%mes(Qy).

eJy

Therefore, using the inequality and (2I)), for the measure of the set
D, = U U Af we get that

v<n jely

mes(D,) < 4/mes (U QV) < (4*M)%mes(Ey). (31)

v<n

According to (10), 27), 28] and (31)), we obtain that for any n > vy

Y Yoa,=Y Yo, / MY (x)dx < / MY (x)dx < (4°Mqy,'mes(Ey). (32)
D, D,

v<n jely v<n jely

Suppose we are given a number v > vy and p = (p1,p2,...,pa) € N‘Ol such
that max;{p;} > gv. Then, according to the definition of functions f, and M;’, we get

(fo: M) == o1 fo(X)Mj (x)dx=0 forany je N¢.

[ bl

Therefore, for any n > v and for all j € Nif one can write

(an,]wj") = Z ap(fpaj‘/[jv) = Z ap(fpanv) = (quanv)' (33)
peN; peNy
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It is easily seen (see Egs. and (33)) that for any n > vy

oo Con M )5 [ PO )| = | (4, 112087

~|ow -l X Lot + ¥ apmy || < 64

v<n jelJy j: A"CP

< Z Z a\r/l,j (O-fIv - lkv

v<n jeJy

AZP OC” an MJ’Z) =L +1.
Jia5C

Using (23), (10), and (12), for I; we will have the inequality
h<Y Y ovgl(on =oM< @h+i) Y Yoy <

v<n jeJy v<n jeJ,
< (4°Mgy, ) Aymes(Ey) < 479¢, forany n > vj. (35)

Denote  Hy :=Ujarce, A}, Toi={xe A [f(x)] > M}
It is clear (see also (12)) that

mes(7;) < mes(Ey) < (4'Mgy,) A 'e.

According to and (27), we obtain

= Cgu)? [ 10, (%)~ [F)laxr (36)

NI

+(4qv0) i\ 1, 100, (%) = [f X)X =I5 + L.
Using (26) and (12)), we can estimate I3 as follows:
I < (49v) (2N + M) (4 Mqy,) 2 Te < 474, (37)

Since o, (x) — [f(x)]3, on the set H, \ T} converges in measure to 0, as n — oo, and

E
is bounded, then for sufficiently large n we get that I; < vk Therefore, according to

(B4)—-(37), we obtain (TI).

Now let’s prove that for any m € Ng the coefficient ay can be found by (3).
Assume m = (mj,my,...,my) € Ng. First let’s fix a number Vv satisfying
maxj<j<gm; < qy. Since fyn € S;, and the system of functions {]\/Ij"}jeN‘vf is
a basis in the space S, , then one can find numbers f;, j € fo, such that

x)= Y BiM] (x). (38)

jeNg
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Using (3), and (L), we get that
am = (g, fm) = Y Bi(og, . M) =} Bilim [ [f(x)];,M] (x)dx =

JeNy jeng el
= lim X X)dx
fim [ s (),
which proves the Theorem
Received 22.09.2017
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