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DIRICHLET BOUNDARY VALUE PROBLEM
IN THE WEIGHTED SPACES L1(ρ)
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The Dirichlet boundary value problem in the weighted spaces L1(ρ) on the
unit circle T = {z : |z|= 1} is investigated, where ρ(t) = |t− tk|αk , k = 1, . . . ,m,
tk ∈ T and αk are arbitrary real numbers. The problem is to determine a function
Φ(z) analytic in unit disc such that: limr→1−0 ‖ReΦ(rt)− f (t)‖L1(ρr)

= 0, where
f ∈ L1(ρ). In the paper necessary and sufficient conditions for solvability of
the problem are given and the general solution is written in the explicit form.
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Introduction. Let Γ be a simple closed Lyapunov curve in the complex plane
z, and let G+ and G− be the interior and exterior domains respectively, bounded by the
curve Γ. The following Riemann boundary value problem (or conjugation problem)
is well known [1, 2]:

Φ
+(t)−a(t)Φ−(t) = f (t), t ∈ Γ,

where a(t) is a given piecewise continuous function in the sense of Hölder function
on Γ and f belongs to either the class Cδ or Lp (1 < p < ∞). The functions Φ± to be
determined are assumed to be analytic on G± and to belong to the class E p [3].

In the study of the Riemann boundary value problem the boundedness of the
Cauchy type integral operator in the corresponding spaces plays an important role. In
the case f ∈ L1(Γ) the problem becomes complicated, since in this case the Cauchy
type integral is not a bounded operator in the space L1(Γ) [4].

Since the Dirichlet boundary value problem is studied by transforming it into
the Riemann boundary value problem, the same argument is applied here. In [5] was
suggested a new setting of the Dirichlet problem in the space L1(Γ). In the case,
where Γ is the unit circle, the problem can be stated as follows: determine analytic
on D+ = {z, |z|< 1} function Φ, satisfying

lim
r→1−0

‖Re Φ(rt)− f (t)‖L1 = 0,
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where ‖.‖1 stands for the norm in the space L1(T ), T = {z, |z|= 1}.
The Dirichlet problem in this setting on the half-plane with the weight func-

tion concentrated on a single singular point is investigated by H.M. Hayrapetyan,
A.V. Tsutsulyan [6]. The Dirichlet problem in the class of biharmonic functions on
the unit circle was investigated by V.G. Petrosyan, H.M. Hayrapetyan [7].

Statement of the Problem. Let T be the unit circle in the complex plane z,
and let D+ and D− be the interior and exterior domains respectively, bounded by the
curve T , T = {z : |z|= 1}, D+ = {z : |z|< 1}, D− = {z : |z|> 1}. Define

L1(ρ) := L1(ρ,T ) = { f : ‖ f‖L1(ρ) :=
∫

T
| f (t)|ρ(t)|dt|< ∞},

where

ρ(t) =
m

∏
k=1
|t− tk|αk , k = 1, . . . ,m, (1)

tk ∈ T and αk, k = 1, . . . ,m, are arbitrary real numbers. To formulate the problem we
first introduce some notation. We set

ρr(t) = ρ
∗(t)

m

∏
k=1
|rδkt− tk|nk , ρ

∗(t) =
m

∏
k=1
|t− tk|αk−nk , (2)

nk =


[αk]+1, if αk is noninteger,

αk, if αk is integer.

δk =


1, if αk ≤−1,

0, if αk >−1.

We consider Dirichlet boundary value problem in the following setting:
P r o b l e m D . Let f be a real-valued, measurable on T function from the

class L1(ρ). Determine an analytic in D+ function Φ(z) to satisfy the condition

lim
r→1−0

‖Re Φ(rt)− f (t)‖L1(ρr) = 0. (3)

It is well known [1] that the function

Φ∗(z) =−Φ

(
1
z̄

)
(4)

is analytic on D−, where Φ(z) is analytic on D+.
So we have the following contractions of the function Φ on D+ and

D− respectively: 
Φ+(z) = Φ(z), z ∈ D+,

Φ−(z) =−Φ

(
1
z̄

)
, z ∈ D−.

(5)

Taking into account (5), we may rewrite (3) as follows:

lim
r→1−0

‖Φ+(rt)−Φ
−(r−1t)−2 f (t)‖L1(ρr) = 0. (6)
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Obviously, (6) is the convergence condition of Riemann boundary value problem [8].
Thus we get the following:

P r o b l e m R . Let f be a measurable on T function from the class L1(ρ).
Determine an analytic in D+∪D− function Φ(z), Φ(∞) =C to satisfy the boundary
condition (6), where Φ± are the contractions of the function Φ on D± respectively.

Suppose Φ(z) is a solution of the Problem R. Then, generally it may not be a
solution of the Problem D as well. To be a solution of the Problem D it is necessary
and sufficient that Φ(z) to satisfy to the following condition:

Φ∗(z) = Φ(z), |z| 6= 1. (7)

Besides, if Φ(z) is a solution of the Problem R, Φ∗(z) is also a solution. Hence, we
will give the general solution of the Problem D by the following formula:

Ω( f ,z) =
1
2
(Φ(z)+Φ∗(z)) . (8)

Solution of the Problem D. Let make the following notations:

N =
m

∑
k=1

nk; Π(z) =
m

∏
k=1

(z− tk)nk .

Denote K( f ,z) =
1

πiΠ(z)

∫
T

f (t)Π(t)
t− z

dt, z ∈ D+∪D−.

Suppose K∗( f ,z) =−K
(

1
z̄

)
, then

K∗( f ,z) =
1

πiΠ
(1

z̄

) ∫
T

f (t)Π(t)
t̄− 1

z

dt.

Since t = eiθ , dt = ieiθ , we have dt =−ie−iθ dθ =−dt
t2 . Also,

Π

(
1
z̄

)
=

m

∏
k=1

(
1
z
− tk

)nk

=
(−1)N

zN Π(z)
m

∏
k=1

t−nk
k ,

Π(t) =
(−1)N

zN Π(t)
m

∏
k=1

t−nk
k .

Hence,

K∗( f ,z) =
zN

Π(z)

(∫
T

f (t)Π(t)
tN(t− z)

dt−
∫

T

f (t)Π(t)
tN+1 dt

)
.

Taking into account (8), we finally get

Ω( f ,z) =
1

πi Π(z)

(∫
T

f (t)(tN + zN)Π(t)dt
tN(t− z)

−
∫

T

f (t)Π(t)dt
tN+1

)
. (9)

T h e o r e m 1. The following assertions hold:
a) if N ≥−1, then Ω( f ,z) is a solution of the Problem D;
b) if N < −1, then Ω( f ,z) is a solution of the Problem D if and only if f

satisfies to the following condition:∫
T

f (t)Π(t)tkdt = 0, k = 0,1, . . . ,−N−2. (10)
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P r o o f . Taking into consideration the condition Ω( f ,∞) = C, this theorem
directly follows from corresponding theorem on Riemann boundary value problem
(see [8]). �

T h e o r e m 2. The following assertions hold:
a) if N >−1, then the general solution of the homogeneous Problem D can be

represented in the form

Φ0(z) =
1

Π(z)

(
c0zN + c1zN−1 + · · ·+ cN

)
, (11)

where the numbers {cl}N
l=0 satisfy the following condition:

(−1)N+1cl

m

∏
k=1

tnk
k = cN−l, l = 0,1, . . . ,N; (12)

b) if N ≤−1, then the homogeneous problem has only trivial solution.
P r o o f . Let N >−1, then we get the following solution of the homogeneous

Problem R (see [8])

Φ(z) =
P(z)
Π(z)

,

where P(z) is any polynomial of degree N.
Taking into account (4), we get

Φ∗(z) =

(−1)N+1zN
m

∏
k=1

tnk
k

Π(z)
P
(

1
z̄

)
.

Now suppose P(z) = c0zN + c1zN−1 + · · ·+ cN , then

P
(

1
z̄

)
= c0z−N + c1z−N+1 + · · ·+ cN .

Hence,

Φ∗(z) =

(−1)N+1
m

∏
k=1

tnk
k

Π(z)

(
c0 + c1z+ · · ·+ cNzN) .

Taking into account (7), we finally get

(−1)N+1cl

m

∏
k=1

tnk
k = cN−l, l = 0,1, . . . ,N.

Thus, assertion a) is proved. Assertion b) directly follows from the corresponding
theorem for the homogeneous Riemann boundary value problem [8]. �

T h e o r e m 3. The following assertions hold:
a) if N ≥−1, then the general solution of the Problem D can be represented in

the form
Φ(z) = Ω( f ,z)+Φ0(z), (13)

where Ω( f ,z) is as in (9), and Φ0(z) is the general solution of the homogeneous
Problem D;

b) if N <−1, then the Problem D is solvable if and only if f satisfies condition
(10). And the solution can be represented in the form (9).
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