PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2017, 51(3), p. 250-254

Mathematics

DIRICHLET BOUNDARY VALUE PROBLEM IN THE WEIGHTED SPACES $L^{1}(\rho)$

V. G. PETROSYAN *

Institute of Mathematics of NAS of the Republic of Armenia

The Dirichlet boundary value problem in the weighted spaces $L^1(\rho)$ on the unit circle $T = \{z : |z| = 1\}$ is investigated, where $\rho(t) = |t - t_k|^{\alpha_k}$, k = 1, ..., m, $t_k \in T$ and α_k are arbitrary real numbers. The problem is to determine a function $\Phi(z)$ analytic in unit disc such that: $\lim_{r\to 1-0} ||Re\Phi(rt) - f(t)||_{L^1(\rho_r)} = 0$, where $f \in L^1(\rho)$. In the paper necessary and sufficient conditions for solvability of the problem are given and the general solution is written in the explicit form.

MSC2010: 34M50.

Keywords: Dirichlet problem, weighted spaces, Cauchy type integral.

Introduction. Let Γ be a simple closed Lyapunov curve in the complex plane z, and let G^+ and G^- be the interior and exterior domains respectively, bounded by the curve Γ . The following Riemann boundary value problem (or conjugation problem) is well known [1,2]:

$$\Phi^+(t) - a(t)\Phi^-(t) = f(t), t \in \Gamma,$$

where a(t) is a given piecewise continuous function in the sense of Hölder function on Γ and f belongs to either the class C^{δ} or L^{p} $(1 . The functions <math>\Phi^{\pm}$ to be determined are assumed to be analytic on G^{\pm} and to belong to the class E^{p} [3].

In the study of the Riemann boundary value problem the boundedness of the Cauchy type integral operator in the corresponding spaces plays an important role. In the case $f \in L^1(\Gamma)$ the problem becomes complicated, since in this case the Cauchy type integral is not a bounded operator in the space $L^1(\Gamma)$ [4].

Since the Dirichlet boundary value problem is studied by transforming it into the Riemann boundary value problem, the same argument is applied here. In [5] was suggested a new setting of the Dirichlet problem in the space $L^1(\Gamma)$. In the case, where Γ is the unit circle, the problem can be stated as follows: determine analytic on $D^+ = \{z, |z| < 1\}$ function Φ , satisfying

$$\lim_{t \to 1-0} \| Re \ \Phi(rt) - f(t) \|_{L^1} = 0,$$

^{*} E-mail: vahee.petrosian@gmail.com

where $\|.\|_1$ stands for the norm in the space $L^1(T)$, $T = \{z, |z| = 1\}$.

The Dirichlet problem in this setting on the half-plane with the weight function concentrated on a single singular point is investigated by H.M. Hayrapetyan, A.V. Tsutsulyan [6]. The Dirichlet problem in the class of biharmonic functions on the unit circle was investigated by V.G. Petrosyan, H.M. Hayrapetyan [7].

Statement of the Problem. Let *T* be the unit circle in the complex plane *z*, and let D^+ and D^- be the interior and exterior domains respectively, bounded by the curve *T*, $T = \{z : |z| = 1\}, D^+ = \{z : |z| < 1\}, D^- = \{z : |z| > 1\}$. Define

$$L^{1}(\rho) := L^{1}(\rho, T) = \{f : \|f\|_{L^{1}(\rho)} := \int_{T} |f(t)|\rho(t)|dt| < \infty\},$$

where

$$\rho(t) = \prod_{k=1}^{m} |t - t_k|^{\alpha_k}, \ k = 1, \dots, m,$$
(1)

 $t_k \in T$ and α_k , k = 1, ..., m, are arbitrary real numbers. To formulate the problem we first introduce some notation. We set

$$\rho_{r}(t) = \rho^{*}(t) \prod_{k=1}^{m} |r^{\delta_{k}}t - t_{k}|^{n_{k}}, \quad \rho^{*}(t) = \prod_{k=1}^{m} |t - t_{k}|^{\alpha_{k} - n_{k}},$$
(2)
$$n_{k} = \begin{cases} [\alpha_{k}] + 1, & \text{if } \alpha_{k} \text{ is noninteger}, \\ \alpha_{k}, & \text{if } \alpha_{k} \text{ is integer}. \end{cases}$$
$$\delta_{k} = \begin{cases} 1, & \text{if } \alpha_{k} \leq -1, \\ 0, & \text{if } \alpha_{k} > -1. \end{cases}$$

We consider Dirichlet boundary value problem in the following setting:

Problem D. Let f be a real-valued, measurable on T function from the class $L^1(\rho)$. Determine an analytic in D^+ function $\Phi(z)$ to satisfy the condition

$$\lim_{t \to 1-0} \|Re \ \Phi(rt) - f(t)\|_{L^1(\rho_r)} = 0.$$
(3)

It is well known [1] that the function

$$\Phi_*(z) = -\Phi\left(\frac{1}{\bar{z}}\right) \tag{4}$$

is analytic on D^- , where $\Phi(z)$ is analytic on D^+ .

r

So we have the following contractions of the function Φ on D^+ and D^- respectively:

$$\begin{cases} \Phi^+(z) = \Phi(z), & z \in D^+, \\ \Phi^-(z) = -\overline{\Phi}\left(\frac{1}{\overline{z}}\right), & z \in D^-. \end{cases}$$
(5)

Taking into account (5), we may rewrite (3) as follows:

$$\lim_{r \to 1-0} \|\Phi^+(rt) - \Phi^-(r^{-1}t) - 2f(t)\|_{L^1(\rho_r)} = 0.$$
(6)

Obviously, (6) is the convergence condition of Riemann boundary value problem [8]. Thus we get the following:

Problem R. Let *f* be a measurable on *T* function from the class $L^1(\rho)$. Determine an analytic in $D^+ \cup D^-$ function $\Phi(z)$, $\Phi(\infty) = C$ to satisfy the boundary condition (6), where Φ^{\pm} are the contractions of the function Φ on D^{\pm} respectively.

Suppose $\Phi(z)$ is a solution of the Problem R. Then, generally it may not be a solution of the Problem D as well. To be a solution of the Problem D it is necessary and sufficient that $\Phi(z)$ to satisfy to the following condition:

$$\Phi_*(z) = \Phi(z), \ |z| \neq 1.$$
 (7)

Besides, if $\Phi(z)$ is a solution of the Problem R, $\Phi_*(z)$ is also a solution. Hence, we will give the general solution of the Problem D by the following formula:

$$\Omega(f,z) = \frac{1}{2} \left(\Phi(z) + \Phi_*(z) \right).$$
(8)

Solution of the Problem D. Let make the following notations:

$$N = \sum_{k=1}^{m} n_k; \quad \Pi(z) = \prod_{k=1}^{m} (z - t_k)^{n_k}.$$

Denote $K(f, z) = \frac{1}{\pi i \Pi(z)} \int_T \frac{f(t) \Pi(t)}{t - z} dt, \ z \in D^+ \cup D^-.$
Suppose $K_*(f, z) = -\overline{K\left(\frac{1}{\overline{z}}\right)},$ then

$$K_*(f,z) = \frac{1}{\pi i \overline{\Pi\left(\frac{1}{z}\right)}} \int_T \frac{f(t)\overline{\Pi(t)}}{\overline{t} - \frac{1}{z}} \overline{dt}.$$

Since $t = e^{i\theta}$, $dt = ie^{i\theta}$, we have $\overline{dt} = -ie^{-i\theta}d\theta = -\frac{dt}{t^2}$. Also,

$$\overline{\Pi\left(\frac{1}{\overline{z}}\right)} = \prod_{k=1}^{m} \left(\frac{1}{z} - \overline{t_k}\right)^{n_k} = \frac{(-1)^N}{z^N} \Pi(z) \prod_{k=1}^{m} t_k^{-n_k}$$
$$\overline{\Pi(t)} = \frac{(-1)^N}{z^N} \Pi(t) \prod_{k=1}^{m} t_k^{-n_k}.$$

Hence,

$$K_*(f,z) = \frac{z^N}{\Pi(z)} \left(\int_T \frac{f(t)\Pi(t)}{t^N(t-z)} dt - \int_T \frac{f(t)\Pi(t)}{t^{N+1}} dt \right).$$

Taking into account (8), we finally get

$$\Omega(f,z) = \frac{1}{\pi i \,\Pi(z)} \left(\int_T \frac{f(t)(t^N + z^N)\Pi(t)dt}{t^N(t-z)} - \int_T \frac{f(t)\Pi(t)dt}{t^{N+1}} \right).$$
(9)

Theorem 1. The following assertions hold:

a) if $N \ge -1$, then $\Omega(f, z)$ is a solution of the Problem D;

b) if N < -1, then $\Omega(f,z)$ is a solution of the Problem D if and only if f satisfies to the following condition:

$$\int_{T} f(t)\Pi(t)t^{k}dt = 0, \ k = 0, 1, \dots, -N-2.$$
(10)

Proof. Taking into consideration the condition $\Omega(f,\infty) = C$, this theorem directly follows from corresponding theorem on Riemann boundary value problem (see [8]).

Theorem 2. The following assertions hold:

a) if N > -1, then the general solution of the homogeneous Problem D can be represented in the form

$$\Phi_0(z) = \frac{1}{\Pi(z)} \left(c_0 z^N + c_1 z^{N-1} + \dots + c_N \right), \tag{11}$$

where the numbers $\{c_l\}_{l=0}^N$ satisfy the following condition:

$$(-1)^{N+1}\overline{c_l}\prod_{k=1}^m t_k^{n_k} = c_{N-l}, \ l = 0, 1, \dots, N;$$
(12)

b) if $N \leq -1$, then the homogeneous problem has only trivial solution.

Proof. Let N > -1, then we get the following solution of the homogeneous Problem R (see [8])

$$\Phi(z) = \frac{P(z)}{\Pi(z)},$$

where
$$P(z)$$
 is any polynomial of degree N.

Taking into account (4), we get

$$\Phi_{*}(z) = \frac{(-1)^{N+1} z^{N} \prod_{k=1}^{m} t_{k}^{n_{k}}}{\Pi(z)} P\left(\frac{1}{\bar{z}}\right).$$

Now suppose $P(z) = c_0 \frac{z^N + c_1 z^{N-1} + \dots + c_N}{\sqrt{1}}$, then

$$P\left(\frac{1}{\overline{z}}\right) = \overline{c_0} z^{-N} + \overline{c_1} z^{-N+1} + \dots + \overline{c_N}.$$

Hence,

$$\Phi_*(z) = \frac{(-1)^{N+1} \prod_{k=1}^m t_k^{n_k}}{\Pi(z)} \left(\overline{c_0} + \overline{c_1}z + \dots + \overline{c_N}z^N\right).$$

Taking into account (7), we finally get

$$(-1)^{N+1}\overline{c_l}\prod_{k=1}^m t_k^{n_k} = \overline{c_{N-l}}, \ l = 0, 1, \dots, N.$$

Thus, assertion a) is proved. Assertion b) directly follows from the corresponding theorem for the homogeneous Riemann boundary value problem [8]. \Box

Theorem 3. The following assertions hold:

a) if $N \ge -1$, then the general solution of the Problem D can be represented in the form

$$\Phi(z) = \Omega(f, z) + \Phi_0(z), \tag{13}$$

where $\Omega(f,z)$ is as in (9), and $\Phi_0(z)$ is the general solution of the homogeneous Problem D;

b) if N < -1, then the Problem D is solvable if and only if f satisfies condition (10). And the solution can be represented in the form (9).

Received 05.06.2017

REFERENCES

- 1. Muskhelishvili N.I. Singular Integral Equations. Courier Corporation, 2008, 447 p.
- 2. Gakhov F.D. Boundary Value Problems. Courier Corporation, 1990, 551 p.
- 3. Kazaryan K., Soria F., Spitkovsky I. The Riemann Boundary Value Problem in Spaces with Weight Admitting Singularities. // Dokl. RAN, 1997, v. 357, № 6, p. 717–719 (in Russian).
- 4. Hoffman K. Banach Spaces of Analytic Functions. Dover Publications, 2007, 224 p.
- 5. Hayrapetyan H.M. The Dirichlet Problem in Spaces with Weight. // Proceedings of NAS of Armenia. Mathematics, 2001, v. 36, № 3, p. 22–44.
- Hayrapetyan H.M., Tsutsulyan A.V. On the Dirichlet Problem in a Half-Plane in Weighted Spaces. // Proceedings of the YSU. Natural Sciences. Mathematics, 2007, № 3, p. 3–10 (in Russian).
- 7. **Petrosyan V.G., Hayrapetyan H.M.** On Dirichlet Problem for Biharmonic Functions in the Weighted Spaces. // Bulletin, Collection of Scientific Papers, National Polytechnic University of Armenia, 2017, part I, p. 32–37 (in Russian).
- 8. Petrosyan V.G., Hayrapetyan H.M. Riemann Problem in the Weighted Spaces $L^1(\rho)$. // Journal of Contemporary Mathematical Analysis, 2016, v. 51, Nº 5, p. 215–227.