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VIBRATIONS OF TWO-LAYERED PLATES IN CASE OF SLIDING
CONTACT BETWEEN CONTACT SURFACES OF THE PLATE

A. M. GRISHKO ∗

Chair of Mechanics YSU, Armenia

The equations of oscillations of a two-layer plate are obtained on the basis
of the assumption of Kirchhoff’s hypothesis concerning the packet as a whole
when the contact surfaces of the plate can slide freely relative to each other. It
is assumed that the tangential stresses in the boundary conditions on the contact
surface of the plates are zero. The dependence of bending and planar vibrations
is obtained. The conditions for the appearance of a resonance are obtained.
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Introduction. The investigation of elastic multilayered plates under condi-
tions of rigid contact between the contact surfaces of the plate is devoted to a large
number of works [1, 2]. In the first, problem of a symmetrically inhomogeneous
over thickness plate was considered by Lekhnitskii [3, 4]. The paper [5] presents the
derivation of the equations of oscillations of a two-layer plate when the contact sur-
faces of the plate can slide freely relative to each other. The equations of oscillations
are obtained on the basis of the assumption of Kirchhoff’s hypothesis concerning the
packet as a whole [5, 6]. Let us consider a rectangular two-layer plate in a rectan-
gular Cartesian coordinate system (x,y,z). The layer with index (1) and thickness h1
occupies a region 0≤ x≤ a, 0≤ y≤ b, 0≤ z≤ h1, and the layer with index (2) and
thickness h2 is a region 0 ≤ x ≤ a, 0 ≤ y ≤ b, −h2 ≤ z ≤ 0. The vibrations of plate,
in accordance with theory of Kirchhoff [1], in conditions of free sliding between the
contact surfaces of the plate are described by the following system of equations:

C(1)
66 ∆u1 +

∂

∂x

((
C(1)

11 −C(1)
66

)
∂u1

∂x
+
(

C(1)
11 ν

(1)
22 +C(1)

66

)
∂v1

∂y

)
−

−h1

2
· ∂

∂x

(
C(1)

11
∂ 2w
∂x2 +

(
C(1)

11 ν
(1)
22 +2C(1)

66

)
∂ 2w
∂y2

)
= ρ1h1

∂ 2

∂ t2

(
u1−

h1

2
· ∂w

∂x

)
,

∗ E-mail: annochka1986@gmail.com



256 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2017, 51(3), p. 255–261.

C(1)
66 ∆v1 +

∂

∂y

((
C(1)

22 −C(1)
66

)
∂v1

∂y
+
(

C(1)
22 ν

(1)
11 +C(1)

66

)
∂u1

∂x

)
−

−h1

2
· ∂

∂y

(
C(1)

22
∂ 2w
∂y2 +

(
C(1)

22 ν
(1)
11 +2C(1)

66

)
∂ 2w
∂x2

)
= ρ1h1

∂ 2

∂ t2

(
v1−

h1

2
· ∂w

∂y

)
,

C(2)
66 ∆u2 +

∂

∂x

((
C(2)

11 −C(2)
66

)
∂u2

∂x
+
(

C(2)
11 ν

(2)
22 +C(2)

66

)
∂v2

∂y

)
−

−h2

2
· ∂

∂x

(
C(2)

11
∂ 2w
∂x2 +

(
C(2)

11 ν
(2)
22 +2C(2)

66

)
∂ 2w
∂y2

)
= ρ2h2

∂ 2

∂ t2

(
u2 +

h2

2
· ∂w

∂x

)
,

C(2)
66 ∆v2 +

∂

∂y

((
C(2)

22 −C(2)
66

)
∂v2

∂y
+
(

C(2)
22 ν

(2)
11 +C(2)

66

)
∂u2

∂x

)
−

−h2

2
· ∂

∂y

(
C(2)

22
∂ 2w
∂y2 +

(
C(2)

22 ν
(2)
11 +2C(2)

66

)
∂ 2w
∂x2

)
= ρ2h2

∂ 2

∂ t2

(
v2 +

h2

2
· ∂w

∂y

)
,

D11
∂ 4w
∂x4 +D22

∂ 4w
∂y4 +

2
3
(h1Ak +h2Ak)

∂ 4w
∂x2y2 −

(
K(1)

66 ∆

(
∂u1

∂x
+

∂v1

∂x

)
−

−K(2)
66 ∆

(
∂u2

∂x
+

∂v2

∂x

))
− ∂ 3

∂x3

(
f 1
1 u1− f 2

1 u2
)
− ∂ 3

∂y3

(
f 1
2 v1− f 2

2 v2
)
−

− ∂ 3

∂x2∂y

(
F1

2,1v1−F2
2,1v2

)
− ∂ 3

∂y2∂x

(
F1

1,2u1−F2
1,2u2

)
+m

∂ 2w
∂ t2 = 0,

(1)
where m = ρ1h1 +ρ2h2, Dkk = 2/3

(
h1K(1)

kk +h2K(2)
kk

)
, f k

l =
(

K(k)
ll −K(k)

66

)
,

Ak =
(

2K(k)
66 +ν

(k)
11 K(k)

22 +ν
(k)
22 K(k)

11

)
, Fk

l,p = ν
(k)
ll K(k)

pp +K(k)
66 , l, p,k = 1,2. (2)

Under the conditions of cylindrical bending equations (1) with considering (2)
may be written as
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As we see from Eqs. (3), bending vibrations w and planar oscillations v are
separated and u, w are not separated. Assuming the following notation:
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We come to the following system of differential equations:
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1. Let us consider the oscillations of a two-layer plate under the condition of
hinging at the edges. In the one-dimensional case the Navier condition coincides with
the free plumage:
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As can be seen from the above obtained in this case, the bending vibrations of
the plate lead to the appearance of planar oscillations with the same frequencies of
oscillations as in the bending:
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From the first equation of the system (10) we obtain:
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In this case planar vibrations of the plate lead to the appearance of bending
vibrations. In the case, when the denominator of equality (10) is equal to zero, there
will be a phenomenon of resonance:
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From Eq. (16) it is possible to determine λ 2
n , for which resonance takes place.
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For the plates of Kirchhoff h2λ 2
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From here:
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From the boundary conditions for edge x = a we obtain:
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The resonance will take place if the determinant of the system of Eqs. (38) is equal
to zero: ∣∣∣∣ (sinβa+ sinhβa) (cosβa+ coshβa)

(cosβa+ coshβa) (sinβa− sinhβa)

∣∣∣∣= 0. (39)

Solving Eq. (39) results in
cosβacoshβa =−1. (40)

 
 
 
 
 
 
 
 

                          
 

Graphical solution of Eq. (40) 

βa 

cos( ) cosh( ) 1βa βa    

Solving Eq. (40), we obtain
βa = 1.8751. (41)

Frequency of oscillations at which resonance occurs

ω
2 =

(1.8751)4D∗11
ma4 . (42)

Conclusion. The problems of vibration of two-layered plates are considered
in case of sliding contact between contact surfaces of the plate. Under the condi-
tions taken into account in this paper, differential equations of planar and bending
vibrations are not separated. In the case of a two-layered plates bending vibrations
may cause planar oscillations and vice versa. As a result, resonance is possible. The
dependence of bending and planar vibrations is obtained. In the one-dimensional
case, the Navier condition coincides with the free plumage. The conditions for the
appearance of a resonance are obtained.
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