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M a t h e m a t i c s

ON CONVERGENCE OF THE FOURIER DOUBLE SERIES
WITH RESPECT TO THE VILENKIN SYSTEMS
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Let {Wk(x)}∞
k=0 be either unbounded or bounded Vilenkin system. Then, for

each 0 < ε < 1, there exist a measurable set E ⊂ [0,1)2 of measure
|E| > 1− ε , and a subset of natural numbers Γ of density 1 such that for any
function f (x,y)∈ L1(E) there exists a function g(x,y)∈ L1[0,1)2, satisfying the
following conditions: g(x,y) = f (x,y) on E; the nonzero members of the
sequence {|ck,s(g)|} are monotonically decreasing in all rays, where

ck,s(g) =
∫ 1

0

∫ 1

0
g(x,y)Wk(x)Ws(y)dxdy; lim

R∈Γ, R→∞
SR((x,y),g) = g(x,y)

almost everywhere on [0,1)2, where SR((x,y),g) = ∑
k2+s2≤R2

ck,s(g)Wk(x)Ws(y).
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Introduction. Recall the definition of Vilenkin (multiplicative) systems
of functions (see [1]). Consider the arbitrary sequence of natural numbers
P≡ {p1, p2, . . . , pk, . . .}, where p j ≥ 2 for all j ∈ N.

We set

m0 = 1, mk =
k

∏
j=1

p j, k ∈ N. (1)

It is not difficult to notice that for each point x∈ [0,1) and for any n∈ [mk−1,mk)∩N,
k ∈ N, there exist numbers x j, α j ∈ {0,1, . . . , p j−1} such that

n =
k

∑
j=1

α jm j−1 and x =
∞

∑
j=1

x j

m j
, (2)

P-order expansions.
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Note that all the points of type
l

mk
with l,k ∈ N, 0 ≤ l ≤ mk− 1, have two

different expansions: finite and infinite, and have only unique expansions, if we take
only finite expansions for such points. As a result, we get the correspondences

n−→ {α1,α2, . . . ,αk, . . .}, x−→ {x1,x2, . . . ,xk, . . .}. (3)

The Vilenkin system corresponding to sequence P is defined as follows:

W0(x)≡ 1; Wn(x) = exp

(
2πi

k

∑
j=1

α j
x j

p j

)
. (4)

The expression (4) can be written in the form

Wn(x) = exp

(
2πi

k

∑
j=1

α j
x j

p j

)
=

k

∏
j=1

(
exp
(

2πi
x j

p j

))α j

.

From (4) it follows that

Wm j−1(x) = exp
(

2πi
x j

p j

)
,

and for the n-th function we obtain the expression

Wn(x) =
k

∏
j=1

(Wm j−1(x))
α j .

Notice that
∫ 1

0
Wn(t)W k(t)dt =

{
1, if k = n,
0, if k 6= n,

where W k(t) is the

complex conjugate of Wk(t).
The theory of such systems have been introduced by N. Vilenkin in 1946

[2, 3]. There are interesting results for Vilenkin system [4–7]. In 1957 C. Watary [8]
proved that the bounded Vilenkin system is basis in Lr when r > 1. Then, in 1976,
W.S. Young [9] for arbitrary sequence pk (that is, both for bounded and unbounded
Vilenkin systems) established the basicity of Vilenkin system in Lr when r > 1. Note
that the following problem remains open: is the Fourier series of function from
L2[0,1) with respect to the unbounded Vilenkin systems convergent almost every-
where or not? Note also that in [10] P. Billard established that this problem has a
positive answer for the Walsh system. For the bounded type Vilenkin systems it was
proved by Gosselin in [5].

Let f (x) be a real valued function from Lr[0,1), r ≥ 1, and cn( f ) be the
Fourier–Vilenkin coefficients of function f , that is

cn( f ) =
∫ 1

0
f (x)Wn(x)dx.

Let spec( f ) be the spectrum of f (x), that is the set of integers k for which
ck( f ) 6= 0.

Let f (x,y) ∈ Lp[0,1)2, p ≥ 1, and ck,n( f ) be its Fourier coefficients with
respect to the Vilenkin system, that is

ck,n( f ) =
∫ 1

0

∫ 1

0
f (t,τ)Wk(t)Wn(τ)dtdτ, k,n = 0,1,2, . . .
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We denote the spectrum of f by

spec( f ) = {(k,s) : ck,s( f ) 6= 0, k,s ∈ N∪{0}}, (5)

and the spherical partial sums of its Fourier double series in the Walsh double system

SR((x,y), f ) = ∑
k2+s2≤R2

ck,s( f )Wk(x)Ws(y). (6)

In this work we will discuss the behavior of the Fourier coefficients with
respect to the Vilenkin double system, as well as almost everywhere convergence
of the spherical partial sums of the double Fourier–Walsh series after modification of
functions.

D e f i n i t i o n 1 . Given subset Γ of the natural numbers, its density ρ(Γ)
is defined by

ρ(Γ) = limsup
n→∞

γ(n)
n

, (7)

where γ(n) is the number of elements in Γ not exceeding n.
Let Φ = {ϕk(x)} be the Walsh system. This system forms a basis in the spaces

Lp[0,1) for all p > 1, that is, any function f (x) ∈ Lp[0,1) can be uniquely re-

presented by the series
∞

∑
k=0

ck( f )ϕk(x), which converges to f in the Lp
µ [0,1) norm,

where ck( f ) =
∫ 1

0
f (x)ϕk(x)dx.

D e f i n i t i o n 2 . The nonzero members in
{

bk,s
}∞

k,s=0 are said to be in a
monotonically decreasing order over all rays, if bk2,s2 < bk1,s1 , when k2 ≥ k1, s2 ≥ s1,
k2 + s2 > k1 + s1 (bki,si 6= 0, i = 1,2).

Obviously the systems, corresponding to different sequences pk, differ from
each other (if P ≡ {2,2, . . . ,2, . . .}, the Vilenkin system coincides with the Walsh
system [4]). If sup{pk} = ∞ (sup{pk} < ∞) the system {Wn(x)} is said to be
unbounded (respectively bounded).

In the paper [14] it was proved the following theorem.
T h e o r e m A . Let

{
Wk(x)

}∞

k=0 be either unbounded or bounded Vilenkin
system. Then, for each 0 < ε < 1 there exists a measurable set E ⊂ [0,1) of measure
|E|> 1−ε such that for any function f ∈ L1[0,1) there exists a function g ∈ L1[0,1)
such that f (x)= g(x) if x∈E, and the elements of the sequence {|ck(g)|,k∈ spec(g)}
are monotonically decreasing.

In this paper we will prove the following theorem.
T h e o r e m 1 . Let

{
Wk(x)

}∞

k=0 be either unbounded or bounded Vilenkin
system. Then, for each 0 < ε < 1 there exist a measurable set E ⊂ [0,1)2 of measure
|E| > 1− ε , and a sequence Rk ↗ such that for any function f (x,y) ∈ L1(E) there
exists a function g(x,y) ∈ L1[0,1)2, satisfying the following conditions:



Simonyan L. S. On Convergence of the Fourier Double Series ... 15

1. g(x,y) = f (x,y) on E;
2. the nonzero members of the sequence {|ck,s(g)|} are monotonically

decreasing in all rays;
3. the subsequences {SRk((x,y),g)} of spherical sums of the function g(x,y)

converge to g(x,y) almost everywhere.
Theorem 1 follows from more general result of the following theorem.
T h e o r e m 2 . Let

{
Wk(x)

}∞

k=0 be either unbounded or bounded Vilenkin
system. Then, for each 0 < ε < 1 there exist a measurable set E ⊂ [0,1)2 of measure
|E|> 1− ε and a subset of natural numbers Γ of density 1 such that for any function
f (x,y) ∈ L1(E) there exists a function g(x,y) ∈ L1[0,1)2, satisfying the following
conditions:

1. g(x,y) = f (x,y) on E;
2. the nonzero members of the sequence {|ck,s(g)|} are monotonically

decreasing in all rays;
3. lim

R∈Γ, R→∞
SR((x,y),g) = g(x,y) almost everywhere on [0,1)2, where

SR((x,y),g) = ∑
k2+s2≤R2

ck,s(g)Wk(x)Ws(y).

The Basic Lemmas. Let

∆
(k)
j =

[
j

mk
,

j+1
mk

)
, (8)

where j = 0,1, ...,mk−1 (the definition of integers mk see in (1)), k ∈ N.
We consider a set {γ,∆}, which depends on two parameters, γ running over

the set of all real numbers, and ∆ running over the set of all intervals of type ∆
(k)
j and

a set of functions

B =

{
f (x) : f (x) =

ν0

∑
k=1

γkχ∆k , (γk,∆k) ∈ {γ,∆}, ∆k
⋂

∆k′ =∅, k 6= k′
}
. (9)

We will use the following lemma from [14].
L e m m a 1 . Let

{
Wk(x)

}∞

k=0 be either unbounded or bounded Vilenkin

system. Then for all γ 6= 0, ε > 0, N0 ∈ N and ∆
(k0)
α =

[
α

mk0

,
α +1
mk0

)
:= ∆ there

exist a measurable set E ⊂ [0,1) and a Vilenkin polinomial Q(x) =
N

∑
n=N0

cnWn(x)

such that:
1. the nonzero coefficients in

{
|cn|
}N

n=N0
are equal to |γ||∆|;

2. |E|> |∆|(1− ε);

3. Q(x) =

{
γ on E,
0 outside ∆;

4.
∫ 1

0
|Q(x)|dx < 2|γ||∆|.

Using Lemma 1 instead of Lemma 2 in [15] and repeating the arguments in
the proof of Lemma 6 of the same paper, we get the following lemma, which is the
basic tool in the proof of Theorem 3.
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L e m m a 2 . Let
{

Wp(t)
}∞

p=0 be either unbounded or bounded Vilenkin
system, and let R0 > 1, ε > 0 and δ > 0. Then for each function f (x,y) ∈ B
there exist a polynomial of Vilenkin system Q(x,y) = ∑

R2
0<k2+s2<R2

ak,sWk(x)Ws(y)

and a measurable set E ∈ [0,1)2, satisfying the following conditions:
1. |E|> 1− ε;
2. Q(x,y) = f (x,y) for all (x,y) ∈ E;
3. 0≤ |ak,s|< δ and the nonzero coefficients in the sequence

{
|ak,s|

}N
k,s=N0

are monotonically decreasing in all rays;

4.
∫ 1

0

∫ 1

0
|Q(x,y)|dxdy≤ 2

∫ 1

0

∫ 1

0
| f (x,y)|dxdy.

Proof of the Theorem 3. It is not difficult to notice that ∃
{

fn(x,y)
}∞

n=1 ⊂ B
dense in L1[0,1) (see (9)). Then, for every n ∈ N, successively applying Lemma 2,
we obtain a sequence of measurable sets En ⊂ [0,1)2, n = 1,2, . . . , and polinomials

Qn(x,y) = ∑
R2

n<k2+s2<Rn
2

a(n)k,sWk(x)Ws(y), (10)

Rn+1 = Rn +2nRn, n = 1,2, . . . , (11)

such that for each n ∈ N
|En|> 1− ε ·2−n, (12)

Qn(x,y) = fn(x,y),(x,y) ∈ En, (13)

‖Qn‖ ≤ 2‖ fn‖, (14)

where ‖ · ‖ denotes the L1[0,1)2 norm.
The nonzero members in {|a(n)k,s |, R2

n < k2+s2 < Rn
2} are decreasing in all rays

for any fixed n and

max
k,s∈(Rn+1,Rn+1)

|a(n+1)
k,s |< min

( j,l)∈spec(Qn)
|a(n)j,l | for all n = 1,2, . . . (15)

We denote

ak,s =

{
a(n)k,s , if R2

n < k2 + s2 < Rn
2
, n = 1,2, . . . ,

0, otherwise,
(16)

E =
∞⋂

n=1

En. (17)

From Eqs. (12)–(17) we have |E| > 1− ε, and the nonzero members in{
|ak,s|

}∞

k,s=0 are decreasing in all rays.
Let f (x,y) ∈ L1[0,1)2, from (9) it follows that it is possible to find a

subsequence
{

fnν
(x,y)

}∞

ν=1 from
{

fn(x,y)
}∞

n=1 such that

lim
N−→∞

∥∥∥∥∥ N

∑
n=1

fnν
(x,y)− f (x,y)

∥∥∥∥∥= 0, (18)
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‖ fnν
(x,y)‖ ≤ 2−3ν (19)

for all ν ≥ 2.

From (14) and (19) it follows that the sequence

{
N

∑
ν=1

Qnν
(x,y)

}∞

ν=1
is fundamental in L1[0,1)2.

From this and (12)–(18) it follows that there exists g(x,y) ∈ L1[0,1)2 such that

lim
N→∞

∥∥∥∥∥ N

∑
n=1

Qnν
(x,y)−g(x,y)

∥∥∥∥∥= 0, (20)

g(x,y) = f (x,y), i f (x,y) ∈ E. (21)

Set
∞

∑
k,s=0

ck,sWk(x)Ws(y) =
∞

∑
ν=1

Qnν
(x,y), (22)

where

ck,s =

{
ak,s, if R2

nν
< k2 + s2 < Rnν

2
,ν = 1,2, . . . ,

0, otherwise.
(23)

Obviously, the nonzero members in {|ck,s|} are decreasing in all rays. Let

SR(x) = ∑
k2+s2≤R2

ck,sWk(x)Ws(y). (24)

It is clear that the sequence SRnν
(x,y) converges to g(x,y) in L1[0,1)2 norm

(see (20), (22)–(24)). Therefore, ck,s =
∫ 1

0

∫ 1

0
g(x,y)Wk(x)Ws(y)dxdy. From (14),

(19) and (20) it follows that∥∥∥∥∥ n

∑
k=1

Qνk(x,y)−g(x,y)

∥∥∥∥∥
1

≤ 2−2n. (25)

Set

Gn =

{
(x,y) ∈ [0,1)2,

∥∥∥∥∥ n

∑
k=1

Qνk − f (x,y)

∥∥∥∥∥
1

≤ 2−n

}
, G =

∞⋃
m=1

∞⋂
n=m

Gn. (26)

From this we obtain |G|= 1.
Let Γ =

⋃
∞
n=1
[
Rn,Rn+1

]
. From this, (7) and (11) it follows that ρ(Γ) = 1.

It is not hard to see that ∀(x,y) ∈ G

lim
R∈Γ, R→∞

SR((x,y),g) = g(x,y), (27)

where
SR((x,y),g) = ∑

k2+s2≤R2

ck,s(g)Wk(x)Ws(y). �
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