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In the present paper the connection between a class of systems of differen-
tial equations and integral operators with semi-separable kernel is established.
Using a matrix of the system the inverse to a given integral operator is con-
structed. Moreover by putting some additional conditions on the kernel of in-
tegral operator and by the help of inverse of integral operator a fundamental
matrix of the system is constructed.
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Introduction. Denote by Lp,loc(α,β ), 1 6 p < ∞, −∞ 6 α < β 6 ∞, the set
of all real valued function f such that f ∈ Lp(α

′,β ′) for every [α ′,β ′]⊂ (α,β ).
For an arbitrary linear space X we denote by Xn (Xn×m) the set of n-dimensional

columns (matrices of order n×m) with elements from X .
Suppose c,d ∈ Ln

1,loc(α,β ) and dcT ∈ Ln×n
1,loc(α,β ). Consider the system of

ordinary differential equations of the form
dz
dx

= d(x)cT (x)z. (1)

As a solution of this system we mean (see [1, § 16]) an absolutely continuous on each
boundary subinterval [α ′,β ′] ⊂ (α,β ) function, which almost everywhere satisfies
the system of equations (1).

Let D is a set of functions y ∈ L1,loc(α,β ) such that d · y ∈ Ln
1,loc(α,β ).

Along with the system (1) the integral operator Γξ : (L1,loc(α,β )→L1,loc(α,β )),
(ξ ∈ R∩ (α,β )) with a semi-separable kernel and domain D

(Γξ y)(x) = y(x)− cT (x)
∫ x

ξ

d(t)y(t)dt (2)

is considered.
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It is evident, that if −∞ < α < β < ∞ and d ∈ Ln
q(α,β ), c ∈ Ln

p(α,β ),(
1
p
+

1
q
= 1
)
, then the operator Γξ : Lp(α,β )→ Lq(α,β ) is bounded.

In [2, 3] the matrix analogue of the operator Γ0 in Ln
2(0,α), α < +∞, with

c ∈ Ln×m
2 (0,α), d ∈ Lm×n

2 (0,α) has been investigated. In [2], using the coupling
method, the properties of the indicated operator in terms of fundamental matrix of
some system of differential equations like (1) is considered.

In the present paper under some sufficiently general conditions on the kernel
of operator Γξ using the fundamental matrix of the system (1), the inverse operator to
Γξ : D→D is constructed. Moreover, by putting some additional conditions on the
kernel of integral operator and using the inverse of Γα , we construct the fundamental
matrix of (1).

Formula for the Inverse Operator. Let Φ be a fundamental matrix of
system (1), where the components of the matrix are absolutely continuous functions
on every bounded subinterval of (α,β ). Then the formula

(Lξ y) = y(x)+ cT
Φ(x)

∫ x

ξ

Φ
−1(t)d(t)y(t)dt

correctly defines the integral operator Lξ with a semi-separable kernel and
Lξ : D→D.

T h e o r e m 1. There hold the identities

Γξ (Lξ y)(x) = y(x), Lξ (Γξ y)(x) = y(x), y ∈D.

P r o o f . Using the equality dcT Φ = Φ′ , for y ∈D we obtain

Γξ (Lξ y)(x) = (Lξ y)(x)+(Γξ y)(x)−y(x)−cT (x)
∫ x

ξ

Φ
′(t)

∫ t

ξ

Φ
−1(τ)d(τ)y(τ)dτ dt.

Changing the order of integration in the last term, we get

cT (x)
∫ x

ξ

Φ
′(t)

∫ t

ξ

Φ
−1(τ)d(τ)y(τ)dτ dt =

= cT (x)
∫ x

ξ

∫ x

τ

Φ
′(t)dt Φ

−1(τ)d(τ)y(τ)dτ = (Lξ y)(x)+(Γξ )(x)−2y(x).

Then substituting the last term into the above expression, we get
Γξ (Lξ y)(x) = y(x).

On the other hand, it follows from the equality dcT = Φ′Φ−1 that

L(ξ )(Γξ y)(x) = (Γξ y)(x)+(Lξ y)(x)− y(x)−

− cT (x)Φ(x)
∫

ξ

x
Φ
−1(t)Φ′(t)Φ−1(t)

∫ t

ξ

d(τ)y(τ)dτ dt =

= (Γξ y)(x)+(Lξ y)(x)− y(x)+ cT (x)Φ(x)
∫

ξ

x

∫ t

τ

(Φ−1(t))′dtd(τ)y(τ)dτ =

= (Γξ y)(x)+(Lξ y)(x)− y(x)+ cT (x)Φ(x)
∫

ξ

x
(Φ−1(x)−Φ

−1(τ))d(τ)y(τ)dτ = y(x).

�
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C o r o l l a r y 1. Let c ∈ Lp(α,β ), d ∈ Lq(α,β ). Then the operator Γξ is
bounded and invertible in Lp(α,β ) and Γ

−1
ξ

= Lξ .
Nondegenerate Representations of an Integral Operator. Further it is

assumed that −∞ < α = ξ < β < ∞, c ∈ Ln
p(α,β ), d ∈ Ln

q(α,β ). Vector-function
a = (a1, . . . ,an)

T ∈ Ln
q(α,β ) is called nondegenerate at the point x = α , if there is

ε > 0 such that a1, . . . ,an are linearly independent in Lq(α,α+ε ′) for any 0< ε ′< ε .
Vector-function b = (b1, . . . ,bn)

T ∈ Ln
p(α,β ) is called nondegenerate at the point

x = β , if there is ε > 0 such that b1, . . . ,bn are linearly independent in Lp(β − ε ′,β )
for each 0 < ε ′ < ε .

It is clear that the representation (2) of operator Γα is not unique. We say
that representation (2) is nondegenerate at the point x = α , if the vector-function
d(x) is nondegenerate at this point and c1, ...,cn are linearly independent in Lp(α,β )
(c = c1, ...cn)

T . Similarly, we say that representation (2) is nondegenerate at the
point x = β , if the vector-function cT (x) is nondegenerate at this point and d1, ...,dn

are linearly independent in Lp(α,β ) (d = d1, ...dn)
T . The representation (2) is called

nondegenerated, if it is nondegenerated at point x = α as well as at x = β .
L e m m a 1. Let (2) (ξ = α) and

(Γαy)(x) = y(x)− c̃T (x)
∫ x

α

d̃(t)y(t)dt, x ∈ (α,β ), (3)

where c̃ ∈ Lm
p (α,β ), d̃ ∈ Lm

q (α,β ), are two different representations of the operator
Γα . Then

a) if representation (2) is nondegenerate at the point x = α , then m > n
and there exists a m×n matrix A with constant components such that

cT (x) = c̃T A; (4)

b) if representation (2) is nondegenerate at the point x = β , then m > n
and there exists a matrix B with constant components such that

d(x) = Bd̃(x). (5)

P r o o f . Suppose representation (2) is nondegenerate at the point x = α ,
d = (d1, . . . ,dn)

T and there is a ε > 0 such that for all ε ′, 0 < ε ′ < ε , d1, . . . ,dn are
linearly independent in Lq(α,α +ε ′). Fix ε ′ > 0. Suppose y1, . . . ,yn ∈ Lp(α,α +ε ′)
satisfy to system of equalities∫

α+ε ′

α

di(t)y j(t)dt = δi j, i, j = 1, . . . ,n,

where δi j is the Kroneker’s symbol. Denote by ỹ j ( j = 1, . . . ,n) the extension of y j on
(α,β ) such that ỹ j ≡ 0 in (α +ε ′,β ). By comparing the values of Γα ỹ j, j = 1, . . . ,n,
in (2) and (3) we get

c j(x) =
m

∑
i=1

ai jc̃i(x), j = 1, . . . ,n, (6)

almost everywhere on (α + ε ′,β ), where

ai j =
∫

α+ε ′

α

d̃i(t)y j(t)dt.
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Taking into account that ε ′ is arbitrary positive number, we can say that
equality (6) holds for almost all x ∈ (α,β ). If we get

A =

 a11 · · · a1n
...

an1 · · · ann

 ,

then we obtain (4). Moreover, since c1, . . . ,cn are linearly independent and
span{c1, . . . ,cn} ⊂ span{c̃1, . . . , c̃n}, then m> n and, proposition a) is proved.

Let the conjugate operator Γ∗α : Lq(α,β )→ Lq(α,β ) is written in the forms

(Γ∗αy)(x) = y(x)−dT (x)
∫

β

x
c(t)y(t)dt and

(Γ∗αy)(x) = y(x)− d̃T (x)
∫

β

x
c̃(t)y(t)dt.

Now, assume that the functions z1, . . . ,zn ∈ Lq(β − ε ′,β ), where ε ′ > 0 is
sufficiently small, are defined by equalities∫

β

β−ε ′
ci(t)zi(t)dt = δi j, i, j = 1, . . . ,n.

By the extension of these functions on (α,β −ε ′) such that c̃i(t) = 0 on this interval,
as in the case a), the equalities

di(x) =
m

∑
j=1

bi jd̃ j, i = 1, . . . ,n, (7)

can be proved. Denoting

bi j =
∫

β

β−ε ′
c̃ j(t)yi(t)dt

and

B =

 b11 · · · b1n
...

bn1 · · · bnn


it is easy to see that (7) is equivalent to (5). Moreover, from the embedding
span{d1, . . . ,dn} ⊂ span{d̃1, . . . , d̃n} is follows, that n6 m. �

This Lemma gives us the following description of the nondegenerate
representation of the operators Γα and Γ−1

α .
T h e o r e m 2. Suppose (2) is a nondegenerate representation of the

operators Γα . Then
a) representation (3) is nondegenerate if only if m = n and there exists

a nondegenerate matrix B of order n×n such that

cT (x) = c̃T (x)B−1, d̃(x) = Bd(x); (8)

b) every nondegenerate representation of the operator Γ−1
α has the form

(Γ−1
α y)(x) = y(x)− c(x)Φ(x)

∫ x

α

Φ
−1(t)y(t)dt, (9)

where Φ is any fundamental matrix of system (1).
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P r o o f . Assume there is a nondegenerate matrix B as in (8). Then is clear
that the representation (3) is nondegenerate. Let the representation (3) is nonde-
generate too. Then from Lemma 1 it follows that m = n and span{d1, . . . ,dn} =
= span{d̃1, . . . , d̃n}. Since the systems of the functions d1, . . . ,dn and d̃1, . . . , d̃n

are linearly independent, there exists a nondegenerate matrix B such that d̃ = Bd.
Substituting it in (3), we obtain

(Γαy)(x) = y(x)− c̃(x)B
∫ x

α

d(t)y(t)dt.

Choosing the functions y1, . . . ,yn as in part a) of Lemma 1 and comparing the
values Γαyi, i = 1, . . . ,n, in the last representation and in (2), we get c = c̃B,
which proves (8). Proposition b) and equality (9) follow from Corollary 1 and
proposition a). �

Fundamental Matrix. For a matrix-function G1 ∈ Ln×n
1 [α,β ] and for a matrix

B of the order n× n with constant components, we denote U(G,B) by thew matrix-
function such that (U(G,B))′ = G, U(G,B)(α) = B.

L e m m a 2. If there exists a vector-function p ∈ Ln
p[α,β ] such that

cTU(d pT ,B) = pT for some matrix B and if U(d pT ,B) is nondegenerate at some
point of [α,β ], then U(d pT ,B) is a fundamental matrix of the system (1) in [α,β ].

The proof follows from the definition of matrix U(d pT ,B) and equality
cTU(d pT ,B) = pT :

U ′(d pT ,B) = d pT = dcTU(d pT ,B),

which means that U(d pT ,B) is a fundamental matrix of the system (1).
L e m m a 3. If there exists a vector-function q ∈ Ln

q[α,β ] such that
U(−qcT ,A)d = q for some matrix A and if U(−qcT ,A) is nondegenerate at some
point of [α,β ], then U(−qcT ,A)−1 is a fundamental matrix of the system (1).

P r o o f . The proof immediately follows from the properties of the matrix
U(−qcT ,A). Namely,

(U(−qcT ,A)−1)′ =−U(−qcT ,A)−1U ′(−qcT ,A)U(−qcT ,A)−1 =

=U(−qcT ,A)−1qcTU(−qcT ,A)−1 = dcTU(−qcT ,A)−1.

�
T h e o r e m 3. Let (2) be a nondegenerate representation of the operator

Γα and

(Γ−1
α y)(x) = y(x)+ pT (x)

∫ x

α

q(t)y(t)dt (10)

is a nondegenerate representation of an operator Γ−1
α . Then for any nondegenerate

matrices B and A the matrix-functions U(d pT ,B) and (U(−qcT ,A))−1 are the
fundamental matrices for the system (1) in [α,β ].

P r o o f . Let U0 =U(d pT ,0). Using integration by part, it is easy to see that

cT (x)
∫ x

α

(d pT )(t)
∫ t

α

q(τ)y(τ)dτ dt =

= cT (x)U0(x)
∫ x

α

q(t)y(t)dt− cT (x)
∫ x

α

U0(t)q(t)y(t)dt, y ∈ Lp(α,β ).
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Hence, taking into account (2) and (10), we get

(ΓαΓ
−1
α y)(x) = y(x)+

+(pT (x)− cT (x)U0(x))
∫ x

α

q(t)y(t)dt− cT (x)
∫ x

α

(d(t)−U0(t)q(t))y(t)dt. (11)

Since representation (10) is nondegenerate, from theorem 2, point b) it is
follows that there exists fundamental matrix Φ of the system (1) such that

pT = cT
Φ, qT = Φ

−1d. (12)

So pT − cTU0 = cT (Φ−U0). The columns of the matrix-function Φ−U0 are the
solutions of the system (1) (see Lemma 2) and moreover det(Φ(α)−U0(α)) =
= det(Φ(α)) 6= 0. From this we obtain that Φ−U0 is the fundamental matrix of
the system (1) and, therefore, the vector function (cT (Φ−U0))

T is nondegenerate at
the point x = β . Similarly from (12) it is follows that d−U0q = (p−U0)Φ

−1d and,
therefore, d−U0q is nondegenerate at the point x = α .

So from (11) and identity Γα(Γ
−1
α y) = y the equalities

(Γ̃αy)(x) = y(x)− (pT (x)− cT (x)U0(x))
∫ x

α

q(t)y(t)dt,

(Γ̃αy)(x) = y(x)− cT (x)
∫ x

α

(d(t)−U0(x)q(t))y(t)dt

are two different nondegenerate representation of the same operator Γ̃α and,
therefore, from Theorem 2 it follows that there exists nondegenerate matrix B of
order n×n such that

pT − cTU0 = cT B, d−U0q = Bq,

and so
cTU(d pT ,B) = pT , U(d pT ,B)q = d. (13)

From the first equality of (13) and Lemma 2 it follows that U(d pT ,B) is the
fundamental matrix of the system (1).

It is evident that the same argument can be applied changing the places of
the operators Γα and Γ−1

α . While in (13) we need to change the vector-functions
c, d, p, q to −p, q, −c, d respectively. It is easy to see (by replacing B to A) that
the second equality (13) takes the from U(−qcT ,A)d = q. It remains to apply
Lemma 3. �

C o r o l l a r y 2. Let (2) and (10) be nondegenerate representation of the
operators Γ̃α , Γ−1

α and B be a nondegenerate matrix of order n×n. Then

(U(−qcT ,B−1))−1 =U(d pT ,B).

One Application. Let 0 < p1 < · · · < pn, mk > 0 (k = 1, . . . ,n) and consider
the functions ck(x) = mke−pkx, x > 0. Suppose the functions dk(x), k = 1, . . . ,n,
are defined from the system of linear equations

di(x)+
n

∑
j=1

mim j(pi + p j)
−1e−(pi+p j)xd j(x) = ci(x). (14)
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Denote c = (c1, . . . ,cn)
T , d = (d1, . . . ,dn)

T and

A =

(
δi j +

mim j

pi + p j

)n

i, j=1
, where δi, j is Kroneker’s symbol.

System (14) can be written in the form
U(−ccT ,A)d = c. (15)

It is known [4] that the kernel k(x, t) of the transformation operator K : Lp(0,∞)→
Lp(0,∞) (16 p6 ∞), which acts by the formula

(Ky)(x) = y(x)+
∫

∞

x
k(x, t)y(t)dt

in the case of reflectionless potential with discreet spectrum, which consists of eigen-
values (ipk)

2, and with right normalization coefficients, is defined by an equation
k(x, t) = −cT (t)d(x). In the theory of L-convolution operators [5] the operators of
the form

(Γ0y)(x) = (K∗y)(x) = y(x)− cT (x)
∫ x

0
d(t)y(t)dt

play an important role. Note that U(−ccT ,A)(x) tends to unit matrix when x→ ∞.
Therefore for sufficiently large β , detU(−ccT ,A)(β ) 6= 0. From Lemma 3 it
follows that the matrix-function Φ = [U(−ccT ,A)]−1 is a fundamental matrix of
the system (1). Taking into account the relation ΦT = Φ, it is easy to see that
cT Φ = cT ΦT = dT and Φ−1d = c. So from Theorem 1 in the space Lp(0,∞), Γ

−1
0

acts as follows
(Γ−1

0 y)(x) = y(x)+dT (x)
∫ x

0
c(t)y(t)dt.

Note, that from Theorem 3 it follows that as a fundamental matrix of the system (1)
it can be taken the matrix-function

U(ddT ,En) =

(
δi j +

∫ x

0
di(t)d j(x)dt

)n

i, j=1
.
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