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In the paper an answer to a problem posed by A.I. Sozutov in the Kourovka
Notebook is given. The solution is based on some modification of the method
that was proposed for constructing a non-abelian analogue of the additive group
of rational numbers, i.e. a group whose center is an infinite cyclic group and
any two non-trivial subgroups of which have a non-trivial intersection.
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Introduction. It is well known that if in an abelian group any two non-trivial
subgroups have a non-trivial intersection, then this group is locally cyclic and, there-
fore, it is isomorphic to a quotient group of the additive group of rational numbers.
First examples of non-abelian groups, in which any two non-trivial subgroups have
a non-trivial intersection, were constructed in [1] (the solution of the problem of
P.G. Kontorovich see [2], Q. 1.63). Constructed non-abelian analogs of the group
of rational numbers, denoted by A(m,n) are central extensions of the free Burnside
group B(m,n) with an infinite center generated by a new generating element d of
infinite order. Recall that the free Burnside group B(m,n) of period n and rank m has
the following presentation

B(m,n) = 〈a1,a2, . . . ,am | Xn = 1〉,
where X runs through the set of all words in the alphabet {a±1

1 ,a±1
2 , . . . ,a±1

m }. If
we add one more generation d to the set of generators B(m,n), which commutes
with each generator ai of B(m,n), i = 1,2, . . . ,m, and if we replace the relations
{An = 1|A ∈ E} by {An = d|A ∈ E}, then we get the group A(m,n).

If to the defining relations of the group A(m,n) add another defining relation
dk = 1, then in the obtained group A′(m,n) the center generated by d will have
order k. Group A′(m,n) has an interesting property: group A′(m,n) admits only
the discrete topology. The existence of an untopologizable countable group was
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posed by A.A. Markov and remained open for several decades. Among the various
applications of groups A(m,n) note also the recent work [4], where was used the
groups A(m,n) for a description of {2,3}-group, which act freely on some non-trivial
abelian group. We also note the paper [5], where some automorphisms of the groups
AD(m,n) are investigated (the definition of AD(m,n) see below).

A modification of the definition of the groups A(m,n) allows to construct a
group, whose center coincides with a given abelian group D, and the factor group
by subgroup D is isomorphic to the free Burnside group B(m,n) of an arbitrary fixed
rank m > 1.

We proceed to precise definitions. Let the integer m > 1 and odd n ≥ 665
be fixed. Consider the set of elementary words

E=
∞⋃

α=1

Eα . (1)

which is defined in [3, VI.2.1]. The set E is countable (Theorem 2.13 of Chap. VI
[3]), that is, its element can be numbered by natural numbers. We fix some numbering
and let E= {A j| j ∈ N} (N is the set of all natural numbers).

We also fix an arbitrary at most countable abelian group D, given by the
generators and defining relations:

D= 〈d1,d2, . . . ,di, . . . | r = 1, r ∈ R〉, (2)

where R is some set of words in the group alphabet d1,d2, . . . ,di, . . .
Denote by AD(m,n) the group given by the system of generators two kinds

a1,a2, . . . ,am (3)

and
d1,d2, . . . ,di, . . . , (4)

and the system of defining relations:

r = 1 for all r ∈ R, aid j = d jai, (5)

An
j = d j for all A j ∈ E, i = 1,2, . . . ,m and j,k ∈ N. (6)

We note, that if as the group D we take the infinite cyclic group

D0 = 〈d1,d2, . . . ,di, . . . |d jd−1
k = 1, j,k ∈ N〉, (7)

then the obtained group AD0(m,n) will exactly coincide with the group A(m,n).
From the relations (6) follows that the groups AD(m,n) are m-generated groups

with generators (3). For groups AD(m,n) for any m > 1 and odd n≥ 665 and for any
abelian group D (2) the following assertions hold.

P r o p o s i t i o n A . (see [6]) .
1. In the group AD(m,n) the identity holds [xn,y] = 1.
2. The verbal subgroup of AD(m,n) corresponding to the word xn coincides

with abelian group D.
3. The center of AD(m,n) coincides with D.
4. The factor group of the group AD(m,n) with respect to the subgroup D is

the free Burnside group B(m,n).
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We draw the attention of the reader to a certain freedom in the construction of
groups AD(m,n). First, there is a certain arbitrariness in the order of the numbering
of elementary periods A j ∈ E, j ∈ N. Second, we have a large degree of freedom
when choosing the presentation (2) of the abelian group D. Thus, by the defining
relations of the form (6), for a fix group D we will get different groups AD(m,n).
In this case, assertions 1–4 hold for each of them.

Sozutov in the Kourovka Notebook posed the question (Q. 18.94 [2]):
Let G be a group without involutions, a be an element of it that is not a square of any
element of G and k be an odd positive integer. Is it true that the quotient G/〈(ak)G〉
does not contain involutions.

Using Proposition A, we construct a counter-example to the indicated problem
of A.L. Sozutov. Consider the direct product of an infinite cyclic group with an
additive group of rational numbers:

Z×Q= 〈d1,d2 . . . ,di, . . . | di−1
i = di−1, i≥ 3〉. (8)

T h e o r e m . There exists a central extension G of direct product Z×Q by
a free Burnside group such that G does not contain involutions, an element a1 ∈ G is
not square of any element of G and any equation of the form xk = 1 (k > 1) in the
factor group G/〈(a3

1)
G〉 has a non trivial solution.

Proof of the Main Result. To simplify the proof of the Theorem suppose that
n≥ 665 is an odd number that is divisible by 3.

The following lemma follows directly from the definition of the notion of
elementary period.

L e m m a 1. A word in the group alphabet a2, . . . ,am is an elementary
period of some rank α if and only if it is an elementary period of rank α among
the words in the group alphabet a1,a2, . . . ,am.

Let m≥ 3. We denote by E(a1, . . . ,am) and E(a2, . . . ,am) the set of elementary
words (1) in the alphabets a1, . . . ,am and a2, . . . ,am respectively. From Lemma 1 and
from the definition (1) it follows that

L e m m a 2. The sets E(a1, . . . ,am) and E(a2, . . . ,am) can be constructed
so that E(a1, . . . ,am)⊃ E(a2, . . . ,am).

By the Lemma 2 the set E(a1, . . . ,am) can be represented as a disjoint union
E(a1, . . . ,am) = E′ ∪E(a2, . . . ,am), where E′ contains those elementary periods, in
which the letter a1 participates. Further suppose that, the elements of E′ are num-
bered by odd natural numbers, and the elements of E(a2, . . . ,am) are numbered by
even numbers. The words a±1

1 and [a3
1,a2] = a3

1a2a−3
1 a−1

2 are obviously elementary
periods of rank 1 and are not conjugate in rank 0, therefore they can be included in E′.
For definiteness, we denote A1 = a1 and A3 = [a3

1,a2].
Now adding the relation d2 = 1 to the defining relations of the group Q, we

construct its factor group Q1:

Q1 = 〈d2, . . . ,di, . . . |d2 = 1, di
i = di−1, i≥ 3〉. (9)

We construct two groups AD(m,n) for the groups D=Q1 and the direct product
D = Z×Q (8) by the scheme (3)–(6).
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We define the first group in the following way:

AQ1(m−1,n) = 〈a2, . . . ,am | An
2 j = d j+1, j ≥ 1〉. (10)

From Proposition A and the definition of the group Q1 it follows that the center of
the group AQ1(m− 1,n) is the group Q1. If in every word An

2k−1, where A2k−1 ∈ E′

and k≥ 3, remove all occurrences of a1, then we obtain a certain word in the alphabet
a2, . . . ,am, which (by Proposition A) in group AQ1(m−1,n) is equal to some element
zk from the center Q1. We fix this element zk and construct second group AZ×Q(m,n):

AZ×Q(m,n) =
= 〈a1,a2, ...,am | An

1 = d1, An
3 = d2, An

2k−1 = zk, k ≥ 3, An
2 j = d j+1, j ≥ 1〉. (11)

L e m m a 3. Every finite subgroup of AZ×Q(m,n) is contained in some cyclic
subgroup of order n, and the order of any element is either infinite or divides n.

P r o o f . Replacing the group A(m,n) by AZ×Q(m,n), repeating the arguments
of [5], Chapter VII, we verify that every finite subgroup of the group AZ×Q(m,n) is
contained in some cyclic subgroup of order n, and, hence, the order of any element is
either infinite or divides n. �

Thus, by Lemma 3 the group AZ×Q(m,n) does not contain involutions.
Assume that the square of some element Xd is equal to a1 in AZ×Q(m,n),

where X is a word in the alphabet (3) and d ∈ Z×Q. Then X2 = a1 in B(m,n) and,
by virtue of Theorem 3.3 of chapter VI [3], X = ak

1 for some integer k.
From the Proposition A it follows that for any words X and Y in alphabet

(3) the equality X = Y is satisfied in B(m,n) if and only if there exists an element
d ∈ Z×Q such that Xd = Y in the group AZ×Q(m,n). Therefore, a2k

1 z2 = a1 in
AZ×Q(m,n) for some z ∈ Z×Q. By item 4 of Proposition A, we have 2k− 1 = nt
for some integer t, and by virtue of relations (11) we have dt

1 = z−2. Since t is an
odd number and Z×Q is the group without torsion, the equality dt

1 = z−2 in Z×Q
is possible only for z = 1 and t = 0, which leads to the incorrect equality 2k−1 = 0.
Thus, a1 is not the square of any element.

To complete the proof of the Theorem, it remains to show that in the quotient
group G/〈〈a3〉〉, the equation xk = 1 has a nontrivial solution for any natural number
k > 1 where G = AZ×Q(m,n) and 〈〈a3〉〉 is the normal closure of the element a3

1 in G.
A direct calculation shows that the groups G/〈〈a3〉〉 and AQ1(m− 1,n) have

the same sets of generators and defining relations, i.e. G/〈〈a3〉〉 = AQ1(m− 1,n).
Subgroup Q1 of the group AQ1(m− 1,n) is obtained from the full group of rational
numbers by adding defining relation d2 = 1. It is easy to understand that in every
quotient group of the additive group of rational numbers obtained by adding one
relation, each equation xk = 1 (k > 1) has a nontrivial solution.
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