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ON A UNIQUENESS THEOREM FOR THE FRANKLIN SYSTEM

K. A. NAVASARDYAN *

Chair of Numerical Analysis and Mathematical Modelling YSU, Armenia

In this paper we prove that there exist a nontrivial Franklin series and a
sequence M, such that the partial sums Sy, (x) of that series converge to 0
almost everywhere and A - mes{x : sup|Sy, (x)| > A} — 0 as A — —+oo. This

n

Mn+l

shows that the boundedness assumption of the ratio , used for the proofs

of uniqueness theorems in earlier papers, can not be omitted.
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Introduction. The orthonormal Franklin system consists of piecewise linear
and continuous functions. This system was constructed by Franklin [1]] as the first
example of a complete orthonormal system, which is a basis in the space of
continuous functions on [0, 1]. However, a more detailed study of this system began
with the papers of Ciesielski [2||3], where, in particular, the famous exponential
estimates were obtained. Later, this system was studied by many authors. In order to
formulate earlier, as well as new results, let’s recall some definitions.

Let n=2"+v, u>0, where 1 <v <2, Denote

i
U+l

for 0<i<2v,

Sn,i =

i—v

2u
Let S, denote the space of functions continuous and piecewise linear on [0, 1] with
nodes {sn,i}?:()’ ie. feS,if fe€C[0,1] and is linear on each closed interval
[Sni—1,8ni], i = 1,2,...,n. It is clear, that dimS, = n+ 1 and the set {smi}?:o is

for 2v<i<n.

obtained by adding the point s, 2y to the set {sn,l,i}:.:ol . Therefore, there exists a
unique function f,, € S, which is orthogonal to S,,_1, || fu|l2 = 1 and f,,(sp2v—1) > 0.
Setting fo(x) = 1, fi(x) = v/3(2x — 1), x € [0, 1], we obtain the orthonormal system
{fu(x) }::0, which was defined equivalently by Franklin [/1]].
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In a number of papers, uniqueness theorems for series in the Franklin system
were considered. In particular in [4] the following theorem was proved.

Theorem A. For the series Z ay fn(x) to be a Fourier—Franklin series of

n=
an integrable function f, it is necessary and sufficient that this series converge almost

everywhere (a.e.) to f and
N
liminf (l -mes {x: sup [ Y anfu(x)| > l}) =0.

A—poo N |1=0

Let d be a natural number and

Y dmfm(X) (1)
meNg
be a multiple Franklin series, where m = (m;,mo,...,my) € Ng is a vector with non-

negative integer coordinates, X = (x1,...,x7) € [0,1]¢, and fm(X) = fon, (x1) -+ fin, (Xa)-
Denote by 0, (x) the n-th square partial sum of the series (I)), i.e.
on(x) = Z am fm(X).
m: m;<n, i=1,....d
The following theorem for multiple Franklin series was proved in [5]].
Theorem B. If the sums 0:(X) converge in measure to an integrable
function f and
liminf (l -mes{x € [0,1] : sup|o(x)| > l}) =0,
A—roo n
then (I) is the Fourier—Franklin series of f.
The following theorem was proved in [6].
Theorem C.Let{M,} be an increasing sequence of natural numbers such

. M,
that the ratio —-

is bounded. If the sums oy, (X) converge in measure to a function

f and for some sré:quence Ax — oo it holds the condition:
]}im <7Lk~mes{x €[0,1)9: sup|op, (x)| > lk}> =0,
—oo n
then for any m € Ng
am = lim [ [f(x)]3, fm(x)dX,

k—-o0
[0,1]4
where  [f(x)], :{ g’(x)’ g l?ggi ii’

Note that taking M,, = 2" in the Theorem C we obtain the result, which was
proved by Gevorkyan and Poghosyan in [7]]. Other uniqueness theorems for Franklin
system one can find in [8H10].

Similar problems for Haar series were considered in [[11]]. For Vilenkin system
of bounded type and generalized Haar systems similar problems were considered
in [[12}/13]] and for the general Vilenkin systems in [[14].

M1

In this paper we prove that in the Theorem C boundness condition on
can not be omitted. The following theorem holds: !
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Theorem 1. There exist a Franklin series Z anfu(x) with ap = 1 and an
=0
increasing sequence of natural numbers {M; } such that

Sm, (x Z anfn(x) =0 ae.

and limy ., (/l-mes{x €[0,1] : supy|Sp, (x)| > k}) =0.
Auxiliary Lemmas. Let Ny be the set of all nonnegative integers. For any

C i
neNpandie€{0,1,...,2 —l}denoteA() [21’1’1; >and
(20)
1, if xeA” T
@)= -1, it vealY, @)
: (i)
0, if x¢A,
kn
Suppose that {P,} is a sequence of functions of the form P, (x Z piim) ), where

m=1
0 <ip <ipp < -+ <lip, <2", then the following proposition holds.
Lemma 1. If g is a continuous function defined on [0, 1], then

lim(g,P,) := lim g( )Py (x)dx = 0.

n—oo n—oo
Proof.ForanyneNpandie {0,1,..., — 1} denote
- 1
mes(A,”) f
A
on_q .
and consider the step function g,(x Z Oc,, A() ), where I A0 (x) is the

(i)

characteristic function of the interval A,’. It is clear that (g, P,) = 0 for any n € N.
Therefore, according to (2) and the definition of P,, we obtain that

|(gaPn)’ = |(g_gn7Pn)| < sl;p\g(X) _gn(x)|’

which completes the proof of Lemma |1} since g, (x) converges to g(x) uniformly as
n — oo, g

For any integrable function F denote by c,(F) the n-th Fourier—Franklin
coefficient of F.

1
Lemma 2. Let A .= [S ST

AT
numbers M, k and for each positive number o there exist a step function H and a
set E C A such that

> be a dyadic interval. For any natural

2 if x€E,
l.H(x)—HIA(x):{ 0. if r&E:
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mes(A)
2k ’

2. E is a union of dyadic intervals and mes(E) =

3. co(H)=0 and Z|c,, fulx)| <a Vxelo,l1].

=0
Proof. In view of Lemma |I] l one can choose a natural number m > r

such that for the function
k 1 2)71 r__

2! 2"’! I'+
H( Z 2l Z herts j x)
the following inequality holds
Z|cn x)| <o Vxel0,1].

It is easily seen from (2), that for any natural p, 0<p <2,
PP 1
2k—1, if xe o 2m+2m+k>7
. [ p 1 p+1
ZthH —l, if X e 2m+2m+k’2m>’
(p p+1
om? gm )

0, if x¢

\

2/11*"_1 _ . _ .
) 2" 4 oS24 1
E:= LJ() |: om ? om + om+k |7
Jj=

Therefore, setting

we get that
2 if x€E,
H(x)+1Ia(x) :{ 0 lif ))chE for any xe|0,1].

A
It is clear also that mes(E) = mezslg ) and co(H) =0. O

Lemma 3. Let g be a nonnegative step function defined on [0,1) and let
E := supp(g) be a finite union of dyadic intervals. Then for any natural number M
and for any positive numbers o and € there exists a step function P such that:

1) supp(P) C E;
2) mes(supp(P+g)) < o

3) min{P(x) +g(x) : Plx ) g(x) #0} >4 m[g>1<)g( x);

4) A-mes{x: P(x)+g(x) > A} <€ forany positive number A;

M
5) co(P)=0 and Y |c,(P)fu(x)| < & forall x € [0,1];

n=0
6) forany 0 >0 there exists aset G C [0,1] such that mes(G) >1—3J and

the series Z cn(P+g)fn(x) uniformly converges to P+ g on the set G;
n=0
7) there exists My € N suchthat Y |c,(P+g)fu(x)| <a VxeG.
l’l:Ml
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Proof. Let o, € and 8 be positive numbers. Suppose that E = supp(g) is
a finite union of dyadic intervals, and let & be the length of the smallest of them.
Denote y := max g(x) and fix a natural number d satisfying to the inequality
X

1 h €
2d <mln{(x,2,2’y}. (3)

mn
Let us represent E in the form E = UAi’ where A;, i = 1,2,...,m, are disjoint
i=1
dyadic intervals with length mes(4A;) = zid
Note, that g is constant on each interval A;, i = 1,2,...,m. Denote by
% the value of g on the interval A;. Let’s successively choose natural numbers
ki < kp < --- < ky, satisfying the inequalities:

2k1Yl >4’}/7 2ki’)/i>2ki71’)/i717 i:2>37"'>m' (4)

Applying Lemma 2] to each A;, we obtain step functions Hi,H,,...,H,, and sets
(unions of dyadic intervals) E1, E, ..., E,, with properties:

2k if x€eE,
H;(x) + 1 (x) :{ 0. if x¢E 5)
A; 1
mes(E;) = mezsli ) = Sark (6)
M o
co(H;) =0, Y len(Hi) fu(x)] < 2, Vx € [0,1]. (7
Denote "
=Y %iHi(x). (8)
i=1

It is clear (see (9)) that
[ w2 if x€E, i=1,2,...,m,
From (3)), (6) and (9) we immediately obtain that

1 2 1
mes(supp(P+g)) = mes (UE) 22d+k < garl <5a <&

Thus, P(x) satisfies assertions 1)-3) of Lemma[3] The assertion 5) follows from

and (8).

Let A be a positive number. If A < ¥,,2%", then, putting s := min{i: A < y2k}
m

and using @) and (9), we get {x € [0,1] : P(x)+g(x) > A} = UEi' Therefore,

according to (3)) and (6), we obtain

m 1 2 e
A -mes{x € [0,1]: P(x)+g(x)>l}<)’z’2d+ki 21; = 2731/<8




98 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2018, 52(2), p. 93

In the case when A > 1/,,,2"‘", the assertion 4) is obvious, since
{x: P(x)+g(x)>A} =0 (see @) and ()).

Assertions 6) and 7) of the Lemma 3] follow from the results obtained in [15],
where in particular the following theorem was proved:

Theorem D. (Theorem 3.2 [15]). Let ¢,y € Li[0,1]. If ¢(x) = y(x)
when x € [a, ], then for any interval [@’, B'] C (o, B) the series

iowcn<<p>—cn<w>||fn<x>|

converges uniformly on [a, B']. O

Proof of Theorem 1. Let gy be the characteristic function of Ey := [0,1] and

My := 1. Successively applying the Lemma[3|for g = g1, M = My_ and E = E}_,

for any natural number k we obtain a step function P, a natural number M; and a set
Gy C [0, 1] with properties

supp(Py) C Ey_1, (10)

n&in{gk(x) :gr(x) #0} > 4m§1xgk,1(x), where  gi(x) := Pe(x) +gx—1(x), (11)

mes(Ey) < 2 where  Ej := supp(gx), (12)
1
A-mes{x: gr(x) >A} < 2 VA >0, (13)
My, 1
Z len(Pe) fu(X)| < oL Vx€[0,1] and co(P) =0, (14)
n=0
mes(Gy) > 1— ST where I} := mfxgk(x), (15)
Z cn(gr) fu(x) uniformly converges to g on the set Gy, (16)
n=0
- 1
Y len(g) fu(x)] < s vV xé€ Gy (17)
}’l:Mk
Thus we obtain sequences {P}, {gx}, {Mi} and {Gy} satisfying (10)—(17).
Set .
X:=J ()X, where Xi:=GiNEf, k=12,... (18)
n=1k=n

According to and (15), we get that mes(Xy) > 1

in view of (I8]), we conclude that mes(X) = 1.
It is easily seen from that for any fixed n € N, if k is sufficiently large,

~ o k=1,2,..., hence,

1
then |c,(P)| < R Therefore for any natural n the series ];cn(Pk) absolutely

converges. Now we denote Ag:=1, A, =Y cn(P), n= 1,27. .., and prove that
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the partial sums Sy, (x) of the series Z Anfn(x) converge to O at any point x € X, as
n=0
q — 0. First we observe from the definition of g (see (T1)) that for any x € [0, 1]

x) = Z(IE)Anfn ch 8q ) fu(x Z ( i Cn(Pk)) Ju(x). (19)

k=q+1
In view of (14), we have that for any x € [0, 1]

Y (5 o) o

=1
ZZ|CnPkfn < Y < Q0

k q+1n= k=q+1
Therefore, according to (I6), (17), (I9) and (20), we obtain that for any x € G,
- 1 1 1 1
| S, (x) — g4 (x)] < ZM len(8)n @)+ 507 < 503 T 501 < 30 21

Let x € X. Then there exists a natural number ng such that x € X, = G, ﬂEg

1
for all g > ng. Hence, using also (12), we get that Sy, (x)| < > for any g > no,

which means that
Sm,(x) >0 VxeX.

Let A be a positive number grater than I',. Then 4I°;_; < A < 4I", for some
natural number q.

Note that if k < g, then gi(x) < Iy < Ty for all x € [0,1]. Therefore,
according to the famous result obtained in [3[], we get that

<3, Vxelo,1].

My
;)Cn(gk)fn (x)

Hence from (19) and (20) we observe that
{x: [Sy,(x)| >A} =0 Vk<q.

and, therefore,

{+ suplsu (9 >A} U{x S (1 > 23, @)

Combining with 1), (13), (13), we obtaln that
),‘mes{x: sup | Sy, (x)] > QL} <A- Zmes{x: ISum, ()| > A} <
k

k=q

> A ‘) 2
<Y (mes{x: gr(x) > 2}—|—mes(G ) < Z <2k+k2k+21“k) < 2

k=q
which completes the proof.

Received 22.02.2018
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