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THE NON-CLASSICAL PROBLEM OF AN ELASTICALLY CLAMPED
ORTHOTROPIC BEAM OF VARIABLE THICKNESS UNDER THE
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On the basis of the refined theory of orthotropic plates of variable thick-
ness, the equations of the beam bending problem are obtained with the simul-
taneous action of compressive forces and transverse load. It is accepted that
the edges of the beam have an elastically clamped support and the reduction
of the compressive force by the support due to friction is taking into account.
Passing to dimensionless quantities, a certain problem is solved. The stability
of a beam is discussed. Based on the results obtained, conclusions are drawn.
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Introduction. In modern structures and devices there are often cases when
thin-walled elements of variable thickness are simultaneously acted upon by trans-
verse and longitudinal loads. The questions of the stress-strain state and the stabil-
ity of such elements are investigated in several papers within the framework of the
classical theory of mechanics (f.e. [1, 2]).

The use of modern materials has led to the need for carrying out the mentioned
studies with refined theories, which take into account the influence of those factors
that are neglected in classical theory.

In the present investigation an attempt of filling this gap is done.
Theoretical Part. Consider an orthotropic beam of length l, constant width

b and variable thickness h in the right-hand Cartesian coordinate system. The main
directions of the anisotropy of the material are parallel to the coordinate axes. The
ends of the beam of small length 2a and constant thickness h0 are inserted into the
elastic array, forming an elastically clamped support [3–12]. At the ends of the beam
compressive forces of the axial direction P act and the beam simultaneously carries a
uniformly distributed transverse load of constant surface intensity q (Fig. 1).
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By using the refined theory of orthotropic plates of variable thickness [13], we
obtain the following differential equations for the bending problem of the beam under
consideration:
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(1)

Here, because of the lack of voltage σy and neglecting of the voltage σz, the
material parameter B11 is replaced by the Young modulus of the material of the axial
voltage E. The number a55 is a known constant of elasticity material [14], connecting
the deformation of transverse shift exz and tangential voltage τxz. The quantity w is
the deflection, ϕ1 is a function characterizing the distribution of the tangential voltage
τxz in the middle plane of the beam z = 0. The coefficient β takes into account the
decrease in the compressive force P, which occurs as a result of the friction of the
inserted part of the beam with the elastic mass.

The coefficient β varies within the limits 0 ≤ β ≤ 1, which depends on the
rigidity of the elastically clumped support. The case β = 0 corresponds to an abso-
lutely rigid support. Then the self-support takes all the external force and the pinch
force does not act on the rod. As the parameter β increases, the support weakens,
as a result of which the part of the external force acting on the rod proportionately
increases. The case β = 1 corresponds to the lack of support. Then all the force P
applied acts on the rod. Therefore, by generalizing the above mentioned, we can say
that the compressive force βP acts on the rod.

Note that in the expression of the load term Z2 [14], the intensity of the lateral
load is added to the intensity of the transverse load q that results from the compression
of the curved beam.

We use the following dimensionless notation:
x = lx̄, h = h0H, h0 = m1l, b = m2l, w = h0w̄, Ea55 = χ,

ϕ1 = Eϕ̄, q = Eq̄m3
1, P = Eh2

0P̄, Nx = Eh2
0N̄x, Mx = Eh3

0M̄x.
(2)

The parameter χ takes into account the effect of the transverse shift ex z. When
neglecting this influence, we must set χ = 0. Eq. (1) in the notation of (2) take the
following form:
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Let us mention that in order to obtain expressions for the lateral force Nx of the
beam and the bending moment Mx we must multiply the corresponding expressions
of the plate [13] by the width of the beam b. Thus for the dimensionless transverse
force N̄x and the bending moment M̄x, taking into account the notation (2), we obtain:

N̄x =
m2H
12m1

[
8ϕ̄−m2

1H
dH
dx̄

(
m1

d2w̄
dx̄2 −χ

dϕ̄

dx̄

)]
,

M̄x =−
m2H3

12

(
m1

d2w̄
dx̄2 −χ

dϕ̄

dx̄

)
.

(4)

In the presence of an axial compressive force, the elastic pinching condition of
the beam has the form [6]:

w =
(
a−βBP

)dw
dx

+BNx,
dw
dx

= D
(

aNx−Mx +βaP
dw
dx

)
. (5)

The parameters of the support are connected by the relation [9] D =
3B
a2 .

In the notation a = m3l, B =
B̄
El

at x̄ = 0 and x̄ = 1 the boundary conditions
of problem (5) take the form:
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Thus, the solution of the nonclassical bending problem for an elastically
clamped orthotropic beam of variable thickness with the combined effect of
compressive axial forces and a distributed transverse load was reduced to solving
a system of fourth-order differential Eqs. (3) with boundary conditions (6).

Let us mention that when q̄ = 0 we obtain the stability problem of the beam
under consideration.

Computational Part. Consider the case when the thickness of the beam varies
linearly

h = h0 +h1x =⇒ H = 1+ γ x̄, γ =
h1

m1
. (7)

In this case the Eqs. (3) and the boundary conditions (6) take the form:
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(8)

at x̄ = 0 and x̄ = 1.
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Expressions of the dimensionless shear force and bending moment will be:
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It is convenient to solve the problem by collocation method [15]. To this end, the
unknown functions w̄ and ϕ̄ can be represented in the form of polynomials

w̄ = a0 +
n

∑
i=1

aix̄i, ϕ̄ = b0 +
n

∑
i=1

bix̄i. (11)

We divide the interval 0≤ x̄≤ 1 into n parts. Having satisfied the Eqs. (8) at the points
of division and the boundary conditions (9), with respect to unknown constants a0,
ai and b0, bi, we obtain a system 2(n+1) of linear algebraic equations with constant
coefficients. By solving this system, we define the values of the functions w̄ and
ϕ̄ . The calculations will be repeated with increasing number of divisions before the
practical convergence of the computation process.

T a b l e 1

For β =0.25, 0.5, 0.75, 1.00 when B̄=0.5, γ=1, P̄=0.04, q̄=0.01, m1 = m3 =0.1, m2=0.3

χ x̄→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 w̄ 0.049 0.294 0.675 0.959 1.067 0.001 0.803 0.538 0.273 0.079 0.022

0 N̄x 0.855 0.112 -0.07 -0.05 0.014 0.052 0.047 -0.00 -0.09 -0.20 -0.34

0 M̄x -0.15 -0.04 0.047 0.100 0.122 0.112 0.070 -0.00 -0.10 -0.24 -0.39

5 w̄ 0.048 0.297 0.682 0.968 1.075 1.006 0.805 0.537 0.272 0.081 0.030

5 N̄x 1.062 0.229 -0.02 -0.03 0.007 0.032 0.021 -0.03 -0.12 -0.23 -0.36

5 M̄x -0.19 -0.07 0.010 0.063 0.084 0.074 0.032 -0.04 -0.14 -0.27 -0.44

10 w̄ 0.047 0.301 0.691 0.980 1.086 1.013 0.809 0.538 0.272 0.083 0.037

10 N̄x 1.304 0.356 0.043 -0.01 0.002 0.015 -0.00 -0.06 -0.14 -0.25 -0.38

10 M̄x -0.22 -0.11 -0.03 0.025 0.046 0.035 -0.01 -0.08 -0.18 -0.31 -0.48

0 w̄ 0.049 0.303 0.697 0.992 1.104 1.034 0.828 0.553 0.280 0.082 0.025

0 N̄x 0.870 0.123 -0.07 -0.05 0.016 0.056 0.050 -0.00 -0.09 -0.20 -0.34

0 M̄x -0.15 -0.04 0.048 0.105 0.127 0.116 0.072 -0.00 -0.11 -0.24 -0.40
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5 w̄ 0.049 0.313 0.721 1.024 1.135 1.059 0.845 0.562 0.284 0.085 0.033

5 N̄x 1.092 0.245 -0.02 -0.04 0.008 0.036 0.023 -0.03 -0.12 -0.23 -0.36

5 M̄x -0.19 -0.08 0.012 0.068 0.090 0.078 0.034 -0.04 -0.15 -0.28 -0.44

10 w̄ 0.050 0.325 0.749 1.060 1.171 1.089 0.865 0.573 0.289 0.088 0.040

10 N̄x 1.339 0.378 0.043 -0.02 0.003 0.017 -0.00 -0.06 -0.15 -0.26 -0.39

10 M̄x -0.23 -0.11 -0.03 0.030 0.052 0.040 -0.01 -0.08 -0.19 -0.32 -0.48

0 w̄ 0.049 0.311 0.721 1.028 1.143 1.069 0.854 0.569 0.288 0.085 0.028

0 N̄x 0.886 0.135 -0.079 -0.06 0.018 0.062 0.053 -0.01 -0.10 -0.21 -0.33

0 M̄x -0.16 -0.04 0.050 0.109 0.132 0.120 0.073 -0.01 -0.11 -0.25 -0.41

5 w̄ 0.051 0.331 0.766 1.087 1.203 1.119 0.890 0.590 0.297 0.089 0.357

5 N̄x 1.126 0.263 -0.02 -0.04 0.010 0.408 0.025 -0.04 -0.13 -0.24 -0.37

5 M̄x -0.20 -0.08 0.014 0.073 0.096 0.083 0.035 -0.04 -0.15 -0.29 -0.45

10 w̄ 0.052 0.353 0.818 1.155 1.271 1.177 0.930 0.613 0.308 0.094 0.044

10 N̄x 1.381 0.405 0.041 -0.02 0.004 0.021 -0.00 -0.07 -0.16 -0.27 -0.39

10 M̄x -0.23 -0.12 -0.02 0.036 0.058 0.045 -0.00 -0.08 -0.19 -0.33 -0.49

0 w̄ 0.049 0.321 0.747 1.067 1.185 1.107 0.883 0.586 0.296 0.088 0.031

0 N̄x 0.901 0.148 -0.09 -0.06 0.020 0.068 0.057 -0.01 -0.11 -0.22 -0.33

0 M̄x -0.17 -0.04 0.052 0.114 0.138 0.124 0.075 -0.01 -0.12 -0.26 -0.43

5 w̄ 0.052 0.351 0.817 1.159 1.280 1.187 0.941 0.621 0.312 0.094 0.039

5 N̄x 1.165 0.285 -0.03 -0.05 0.012 0.047 0.028 -0.04 -0.14 -0.25 -0.37

5 M̄x -0.20 -0.08 0.016 0.079 0.102 0.088 0.037 -0.05 -0.16 -0.30 -0.46

10 w̄ 0.055 0.388 0.901 1.270 1.391 1.281 1.007 0.660 0.330 0.101 0.048

10 N̄x 1.431 0.439 0.039 -0.03 0.006 0.026 -0.00 -0.07 -0.17 -0.29 -0.40

10 M̄x -0.24 -0.12 -0.02 0.042 0.066 0.050 -0.00 -0.09 -0.20 -0.34 -0.50

T a b l e 2

For B̄=0.5, γ=1, χ=8, q̄=0.02, β=0.75, m1 = m3=0.1, m2=0.3

P̄ x̄→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 w̄ 0.092 0.562 1.288 1.827 2.032 1.904 1.527 1.021 0.519 0.157 0.064

0 q̄′ 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0 N̄x 4.744 1.166 0.085 -0.08 0.004 0.068 0.017 -0.17 -0.49 -0.9 -1.43

0 M̄x -0.41 -0.19 -0.03 0.073 0.114 0.094 0.015 -0.12 -0.32 -0.58 -0.90

0.02 w̄ 0.095 0.598 1.375 1.950 2.163 2.020 1.615 1.075 0.545 0.165 0.069

0.02 q̄′ -2.46 -0.44 0.473 0.771 0.744 0.553 0.289 0.002 -0.28 -0.55 -0.78

0.02 N̄x 4.861 1.232 0.079 -0.094 0.006 0.079 0.021 -0.18 -0.51 -0.94 -1.44

0.02 M̄x -0.42 -0.19 -0.03 0.081 0.123 0.102 0.018 -0.13 -0.33 -0.60 -0.92

0.04 w̄ 0.099 0.639 1.475 2.090 2.312 2.153 1.714 1.137 0.574 0.174 0.075

0.04 q̄′ -5.34 -0.96 1.012 1.649 1.576 1.151 0.576 -0.04 -0.64 -1.19 -1.67

0.04 N̄x 4.995 1.307 0.071 -0.11 0.009 0.091 0.026 -0.20 -0.54 -0.97 -0.46

0.04 M̄x -0.43 -0.20 -0.02 0.090 0.133 0.110 0.020 -0.13 -0.34 -0.61 -0.93
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T a b l e 3

For β =0.25, 0.5, 0.75, 1.00 when B̄=0.5, γ=1, m1 = m3=0.1, m2 = 0.3

χ → 0 10 0 10 0 10 0 10

P̄cr 1.198 0.552 0.599 0.276 0.399 0.184 0.299 0.138

x̄max 0.380 0.310 0.380 0.310 0.380 0.310 0.380 0.310

T a b l e 4

For χ=0, 10 when B̄=0.5, β=0.5, q̄=0.01, γ=1, m1 = m3=0.1, m2=0.3

P̄/P̄cr 0 0.2 0.4 0.6 0.8 1

0.599 w̄max 1.033 1.280 1.690 2.502 4.890 180.860

0.599 x̄max 0.410 0.410 0.400 0.400 0.390 0.380

0.276 w̄max 1.013 1.246 1.628 2.383 4.596 84.609

0.276 x̄max 0.410 0.400 0.390 0.380 0.360 0.310

Based on the results of calculations, Tables of dimensionless calculated quantities are
compiled and for clarity graphs are constructed.
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Conclusion.
1. It can be seen from Tab. 2 and Fig. 2, d, that the intensity of the transverse load q̄′,

which is the sum of the intensities of the applied load q̄ and the load produced by the com-
pression of the curved beam −P̄d2w̄/dx̄2 near the elastically clamped supports, is negative,
and in the rest of the beam, positive. It is easy to get involved that this is a consequence of
the opposite signs of d2w̄/dx̄2.

2. As the parameter β increases, the elastically clamped support weakens as a result
of which the part of the external compressive force acting on the beam proportionately in-
creases. Therefore, as β increases the critical value of the external force P̄cr decreases. The
increase in the parameter χ corresponds to a decrease in the resistance to deformation of the
transverse shear, which, as is known [6], leads to a decrease in the critical force. The above
circumstances are demonstrated by the data of Tab. 3 and the graphs of Fig. 3.

3. With increasing the ratio P̄/P̄cr, the value of the compressive forces acting on the
beam approaches the critical value, which leads to an increase in deflections of the beam.
When this ratio tends to one, even with an insignificant intensity of the lateral load q̄, the
maximum w̄max deflection of the beam sharply increases. This, of course, is a consequence of
the geometrically linear statement of the problem and the assumption of unlimited elasticity
of the material. In fact, a sharp increase in deflections, as a rule, is accompanied by the
appearance of plastic deformations, which usually leads to the destruction of the beam. The
coordinate of the maximum deflection section x̄max always is less than 0.5, i.e. the section of
the maximum deflection is always located to the left of the middle of the span of the beam.
With increasing P̄/P̄cr the section of the maximum deflection is slightly shifted towards the
thin edge x̄ = 0 of the beam. These conclusions follow directly from the data in Tab. 4.

4. It can be seen from Tab. 2 and Fig. 2, that the intensity of the transverse load q̄′ near
the elastically clamped supports has a negative sign, and in the rest of the beam it is positive.
It is not hard to see that this is a consequence of the opposite sign of d2w̄/dx̄2. For the same
reason, the bending moment near the elastically-clamped supports also has a negative sign,
while in the rest of the beam it is positive (Fig. 3).
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