
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2018, 52(2), p. 109–118

I n f o r m a t i c s

ON INCOMPARABILITY OF INTERPRETATION ALGORITHMS
OF TYPED FUNCTIONAL PROGRAMS WITH RESPECT

TO UNDEFINED VALUE

D. A. GRIGORYAN ∗

Chair of Programming and Information Technologies YSU, Armenia

In the paper the interpretation algorithms of typed functional programs are
considered. The interpretation algorithm is based on substitution, β -reduction
and canonical δ -reduction. It is shown that seven known interpretation algo-
rithms (FS (of full substitution), PES (of parallel external substitution), LES
(of left external substitution), PIS (of parallel inner substitution), LIS (of left
inner substitution), ACT (active algorithm), PAS (passive algorithm)) are pair-
wise incomparable with respect to undefined value (⊥-incomparable).

MSC2010: 68N18.

Keywords: typed functional program, canonical δ -reduction, interpretation
algorithm, ⊥-incomparability.

Typed λ -Terms, Canonical Notion of δ -Reduction, Typed Functional
Programs. The definitions of this section can be found in [1–3]. Let M be a partially
ordered set, which has a least element ⊥, which corresponds to the indeterminate
value, and each element of M is comparable only with ⊥ and itself. Let us define the
set of types (denoted by Types):

1. M ∈ Types;
2. If β ,α1,...,αk ∈ Types (k > 0), then the set of all monotonic mappings from

α1× ...×αk into β (denoted by [α1× ...×αk → β]) belongs to Types.
Let α ∈ Types, then the order of type α (denoted by ord(α)) will be a natural

number, which is defined in the following way: if α = M then ord(α) = 0, if
α = [α1 × ...× αk → β], where β ,α1, ...,αk ∈ Types, k > 0, then ord(α) = 1 +
+ max(ord(α1), ..., ord(αk),ord(β)). If x is a variable of type α and constant c ∈ α ,
then ord(x) = ord(c) = ord(α).

Let α ∈ Types and Vα be a countable set of variables of type α , then V =⋃
α∈Types

Vα is the set of all variables. The set of all terms, denoted by Λ =
⋃

α∈Types
Λα ,

where Λα is the set of terms of type α , is defined as follows:
∗ E-mail: david.grigoryan.a@gmail.com

110 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2018, 52(2), p. 109–118.

1. if c ∈ α,α ∈ Types, then c ∈ Λα ;
2. if x ∈Vα , α ∈ Types, then x ∈ Λα ;
3. if τ ∈ Λ[α1×...×αk→β], ti ∈ Λαi , where β ,αi ∈ Types, i = 1, ...,k, k ≥ 1,

then τ(t1, ..., tk) ∈ Λβ (the operation of application, (t1, ..., tk) is the scope of the
applicator τ);

4. if τ ∈ Λβ , xi ∈ Vαi where β ,αi ∈ Types, i 6= j =⇒ xi 6= x j, i, j = 1, ...,k,
k≥ 1 then λx1...xk[τ] ∈ Λ[α1×...×αk→β] (the operation of abstraction, τ is the scope of
the abstractor λx1...xk).

The notion of free and bound occurrences of variables as well as free and
bound variable are introduced in the conventional way. The set of all free variables
in the term t is denoted by FV(t). Terms t1 and t2 are said to be congruent (which is
denoted by t1 ≡ t2) if one term can be obtained from the other by renaming bound
variables. The free occurrence of a variable in the term is called internal if it does not
enter in the applicator, whose scope contains a free occurrence of some variable. The
free occurrence of a variable in the term is called external if it does not enter in the
scope of the applicator that contains a free occurrence of some variable.

Let t ∈ Λα ,α ∈ Types and FV (t) ⊂ {y1, ...,yn},y0 = (y0
1, ...,y

0
n), where

yi ∈ Vβi , y0
i ∈ βi, βi ∈ Types, i = 1, ...,n, n ≥ 0. The value of the term t for the

values of the variables y1, ...yn equal to y0 = (y0
1, ...,y

0
n), is denoted by Valy0(t) and is

defined in the conventional way.
Let terms t1, t2 ∈ Λα , α ∈ Types, FV (t1)∪ FV (t2) = {y1, ...,yn}, yi ∈ Vβi ,

βi ∈ Types, i = 1, ...,n, n≥ 0, then terms t1 and t2 are called equivalent (denoted by
t1 ∼ t2) if for any y0 = (y0

1, ...,y
0
n), where y0

i ∈ Vβi , i = 1, ...,n we have:
Valy0(t1) =Valy0(t2). A term t ∈ Λα ,α ∈ Types, is called a constant term with value
a ∈ α if t ∼ a.

Further, we assume that M is a recursive set and considered terms use
variables of any order and constants of order ≤ 1, where constants of order 1 are
strongly computable, monotonic functions with indeterminate values of arguments.
A function f : Mk → M, k ≥ 1, with indeterminate values of arguments, is said
to be strongly computable if there exists an algorithm, which stops at value
f (m1, ...,mk) ∈M for all m1, ...,mk ∈M [2].

A term t ∈ Λ with a fixed occurrence of a subterm τ1 ∈ Λα , where α ∈ Types,
is denoted by tτ1 and a term with this occurrence but τ1 replaced by τ2, where τ2∈ Λα ,
is denoted by tτ2 . To show mutually different variables of interest x1, ...,xk, k ≥ 1,
of a term t, the notation t[x1, ...,xk] is used. The notation t[t1, ..., tk] denotes the term
obtained by the simultaneous substitution of the terms t1, ..., tk for all free occur-
rences of the variables x1, ...,xk respectively, where xi ∈Vαi , i 6= j⇒ xi 6≡ x j, ti ∈ Λαi ,
αi ∈ Types, i, j = 1, ..,k, k ≥ 1. A substitution is said to be admissible if all free
variables of the term being substituted remain free after the substitution. We will
consider only admissible substitutions.

A term of the form λx1...xk[τ[x1, ...,xk]](t1, ..., tk), where xi ∈Vα , i 6= j⇒ xi 6≡
x j,τ ∈Λ, ti ∈Λαi ,αi ∈ Types, i, j = 1, ...,k, k≥ 1, is called a β -redex. Its convolution
is the term τ[t1, ..., tk]. The set of all pairs (τ0,τ1), where τ0 is a β -redex and τ1 is

Grigoryan D. A. On Incomparability of Interpretation Algorithms of. . . 111

its convolution, is called a notion of β -reduction and is denoted by β . A one-step
β -reduction (→β) and β -reduction (→→β) are defined in the conventional way. A
term containing no β -redexes is called a β -normal form. The set of all β -normal
forms is denoted by β -NF .

δ -redex has a form f (t1, ..., tk), where f ∈ [Mk→M], ti ∈ ΛM, i = 1, ...,k,
k≥ 1, and its convolution is either m∈M and in this case f (t1, ..., tk)∼m or a subterm
ti and in this case f (t1, ..., tk)∼ ti, i = 1, ...,k. A fixed set of term pairs (τ0,τ1), where
τ0 is a δ -redex and τ1 is its convolution, is called a notion of δ -reduction and is
denoted by δ . A one-step δ -reduction (→δ) and δ -reduction (→→δ) are defined in
the conventional way.

A one-step βδ -reduction (→βδ) and βδ -reduction (→→βδ) defined in the
conventional way. A term containing no βδ -redexes is called normal form. The set
of all normal forms is denoted by NF .

A notion of δ -reduction is called a single-valued notion of δ -reduction, if δ

is a single-valued relation, i.e. if (τ0,τ1) ∈ δ and (τ0,τ2) ∈ δ , then τ1 ≡ τ2, where
τ0,τ1,τ2 ∈ ΛM. A notion of δ -reduction is called an effective notion of δ -reduction
if there exists an algorithm, which for any term f (t1, ..., tk), where f ∈ [Mk → M],
ti ∈ ΛM, i = 1, ...,k, k ≥ 1, gives its convolution if f (t1, ..., tk) is a δ -redex and stops
with a negative answer otherwise.

D e f i n i t i o n 1. [3] An effective, single-valued notion of δ -reduction is
called a canonical notion of δ -reduction if:

1. t ∈ β -NF , t ∼ m, m ∈M \{⊥}⇒ t→→ δ m;
2. t ∈ β -NF , FV (t) =∅, t ∼⊥⇒ t→→δ ⊥;
Typed functional program P is the following system of equations:

P


F1 = t1[F1, ...,Fn],

...

Fn = tn[F1, ...,Fn],

(1)

where Fi ∈ Vαi , i 6= j⇒ Fi 6≡ Fj, ti[F1, ...,Fn] ∈ Λαi , FV(ti[F1, ...,Fn]) ⊂ {F1, ...,Fn},
α i ∈ Types, i, j = 1, ...,n, n≥ 1, α1 = [Mk→M], k ≥ 1.

Every typed functional program P has the least solution. Let (f1, ..., fn) ∈
α1× ...×αn be the least solution of P, then the first component f1 ∈ [Mk→M] of
the least solution is said to be the basic semantics of the program P and is denoted by
fp [1].

Fix(P)= {(m1, ...,mk,m)| fp(m1, ...,mk)=m, where m,m1, ...,mk ∈M, k≥ 1}.
Interpretation Algorithms, ⊥-Incomparability. The input of the interpre-

tation algorithm A is a program P of the form (1), a term F1(m1, ...,mk), where
mi ∈ M, i = 1, ...,k, k ≥ 1, and a canonical notion of δ -reduction. The algorithm
A stops with result m ∈ M or works infinitely. The algorithm A uses three kinds
of operations: substitution of the terms t1, ..., tn instead of some free occurrences of
variables F1, ...,Fn, one-step β -reduction and one-step δ -reduction.

ProcA(P) = {(m1, ...,mk,m)| the algorithm A stops for the program P and the
term F1(m1, ...,mk) with result m, where m,m1, ...,mk ∈M, k ≥ 1}.

112 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2018, 52(2), p. 109–118.

Interpretation algorithm A is consistent, if for any program P and for any
canonical notion of δ -reduction we have: ProcA(P)⊂ Fix(P).

T h e o r e m 1. Every interpretation algorithm A is consistent.
P r o o f . Follows from the results of [4]. �
D e f i n i t i o n 2. Let A and B be interpretation algorithms, then A≺⊥ B, if

for any program P, any canonical notion of δ -reduction and any m1, ...,mk ∈M, k≥ 1
we have: if (m1, ...,mk,⊥) ∈ ProcA(P), then (m1, ...,mk,⊥) ∈ ProcB(P).

D e f i n i t i o n 3. Interpretation algorithms A and B are ⊥-incomparable, if
A 6≺⊥ B and B 6≺⊥ A.

To show a sequence Fi1 , ...,Fis , s ≥ 1, of some free occurences of variables
of the set {F1, ...,Fn} in the term t, the notion t < Fi1 , ...,Fis > is used. The notion
t < ti1 , ..., tis > denotes the term obtained by the simultaneous substitution of the terms
ti1 , ..., tis for free occurences Fi1 , ...,Fis respectively.

D e f i n i t i o n 4. (Interpretation algorithms) Input of the interpretation al-
gorithms FS, PES, LES, PIS, LIS, PAS, ACT is a program P of the form (1), term
t ∈ Λ and canoncial notion of δ -reduction.

STEP 1:
FS, PES, LES, PIS, LIS, PAS, ACT: If t ∈ NF and FV (t)∩{F1, ...,Fn} = ∅

then t. else go to STEP 2.
STEP 2:
FS, PES, LES, PIS, LIS: If t ≡ tτ where τ is leftmost redex (δ -redex or

β -redex), then A(P, tτ ′), where τ ′ is the convolution of the τ , A ∈ {FS, PES, LES,
PIS, LIS}, else go to STEP 3.

ACT, PAS: If t ≡ tFi , 0 ≤ i ≤ n, where tFi is the term t with a fixed leftmost
free occurrence of a variable of the set {F1, ...,Fn} which is located to the left of the
leftmost redex, then A(P, tti), where A ∈ {ACT,PAS}, else go to STEP 3.

STEP 3:
FS: If t ≡ t[F1, ...,Fn], then FS(P, t[t1, ..., tn]).
PES: If t ≡ t < Fi1 , ...,Fik >, where Fi1 , ...,Fik ,k > 0 is the sequence of all exter-

nal free occurrences of variables of the set {F1, ...,Fn}, then PES(P, t < ti1 , ..., tik >).
LES: If t ≡ tFi , where Fi is the leftmost external free occurrence of a variable

of the set {F1, ...,Fn}, then LES(P, tti).
PIS: If t ≡ t < Fi1 , ...,Fik >, where Fi1 , ...,Fik ,k > 0 is the sequence of all inter-

nal free occurrences of variables of the set {F1, ...,Fn}, then PIS(P, t < ti1 , ..., tik >).
LIS: If t ≡ tFi , where Fi is the leftmost internal free occurrence of a variable of

the set {F1, ...,Fn}, then LIS(P, tti).
ACT: If t ≡ tτ , where τ ≡ λx1...xr[τ[x1, ...,xr]](τ1, ...,τr) and τ is leftmost re-

dex, then ACT(P, tτ[ACT(P,τ1),...,ACT(P,τr)]), else go to step 4.
PAS: If t ≡ tτ , where τ ≡ λx1...xr[τ[x1, ...,xr]](τ1, ...,τr) and τ is leftmost re-

dex, then PAS(P, tτ[τ1,...,τr]), else go to STEP 4.
STEP 4:
ACT, PAS: If t ≡ tτ , where τ is leftmost redex, which is a δ -redex, then

A(P, tτ ′), where τ ′ is the convolution of the τ , A ∈ {ACT, PAS}.

Grigoryan D. A. On Incomparability of Interpretation Algorithms of. . . 113

T h e o r e m 2. Interpretation algorithms FS, PES, LES, PIS, LIS, PAS and
ACT are pairwise ⊥-incomparable.

P r o o f . Let us fix M = N ∪ {⊥}, where N = {0,1,2, ...} and
C = {not eq,numbers}, where not eq,numbers ∈ [M2 → M] are built-in functions
and for every m1,m2 ∈M, we have:

not eq(m1,m2) =

{
1, m1,m2 ∈ N, m1 6= m2,

⊥, otherwise,

numbers(m1,m2) =

{
1, m1,m2 ∈ N,

⊥, otherwise.

It is easy to see that not eq and numbers are strongly computable, naturally extended
functions with indeterminate values of arguments. Let us fix canonical notions of
δ -reduction δ for the set C.
δ is: (not eq(n1,n2),1) ∈ δ , where n1,n2 ∈ N and n1 6= n2

(not eq(t, t),⊥) ∈ δ , where t ∈ ΛM

(not eq(t,⊥),⊥) ∈ δ , where t ∈ ΛM

(not eq(⊥, t),⊥) ∈ δ , where t ∈ ΛM

(numbers(n1,n2),1) ∈ δ , where n1,n2 ∈ N
(numbers(⊥, t),⊥) ∈ δ , where t ∈ ΛM

(numbers(t,⊥),⊥) ∈ δ , where t ∈ ΛM

(numbers(numbers(t1, t2),numbers(t2, t1)),numbers(t2, t1)) ∈ δ ,
where t1, t2 ∈ ΛM.

Let x,y,z ∈VM,F,F1,F2,F3,F4,F5 ∈V[M→M].
To show that A 6≺⊥ B, where A ∈ {LES, PAS, LIS, ACT}, B ∈ {FS, PES, PIS}

we take program P1:

P1


F1 = λx[not eq(F2(x),F3(x))]
F2 = λx[F3(x)]
F3 = λx[F2(x)]

For LES, PAS, ACT, LIS we have: F1(0); λx[not eq(F2(x),F3(x))](0)→β

not eq(F2(0),F3(0));not eq(λx[F3(x)](0),F3(0))→β not eq(F3(0),F3(0))→δ⊥;
For FS, PES, PIS we have:
F1(0);λx[not eq(F2(x),F3(x))](0)→β not eq(F2(0),F3(0));
not eq(λx[F3(x)](0),λx[F2(x)](0))→→β not eq(F3(0),F2(0));
not eq(λx[F2(x)](0),λx[F3(x)](0))→→β not eq(F2(0),F3(0)); and so on.

To show that PIS 6≺⊥ LIS, PIS 6≺⊥ ACT we take program P2:

P2


F1 = λx[not eq(F2(x),F3(x))]
F2 = λx[F2(x)]
F3 = λx[F2(x)]

For PIS we have: F1(0);λx[not eq(F2(x),F3(x))](0)→β not eq(F2(0),F3(0));
not eq(λx[F2(x)](0),λx[F2(x)](0))→→β not eq(F2(0),F2(0))→δ⊥.

114 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2018, 52(2), p. 109–118.

For LIS, ACT we have: F1(0);λx[not eq(F2(x),F3(x))](0)→β not eq(F2(0),F3(0));
not eq(λx[F2(x)](0),F3(0))→β not eq(F2(0),F3(0)); and so on.

To show that LIS 6≺⊥ ACT we take program P3:

P3


F1 = λx[not eq(F3(x),F2(x))]
F2 = λy[λx[x](F2(y))]
F3 = λy[λx[x](F2(y))]

For LIS we have: F1(0);λx[not eq(F3(x),F2(x))](0)→β not eq(F3(0),F2(0));
not eq(λy[λx[x](F2(y))](0),F2(0))→→β not eq(F2(0),F2(0))→δ⊥.
For ACT we have: F1(0);λx[not eq(F3(x),F2(x))](0)→β not eq(F3(0),F2(0));
not eq(λy[λx[x](F2(y))](0),F2(0))→β not eq(λx[x](F2(0)),F2(0));
Now we must apply ACT to the term F2(0);λy[λx[x](F2(y))](0)→β λx[x](F2(0));
Now we must apply ACT to the term F2(0) and so on.

To show that ACT 6≺⊥LIS we take program P4:

P4


F1 = λ z[not eq(F2(z),λx[0](F2(z)))]
F2 = λy[λF [F(F2(y))](F3)]

F3 = λx[0]

For ACT we have: F1(0);λ z[not eq(F2(z),λx[0](F2(z)))](0)→β

not eq(F2(0),λx[0](F2(0)));not eq(λy[λF [F(F2(y))](F3)](0),λx[0](F2(0)))→β

not eq(λF [F(F2(0))](F3),λx[0](F2(0)));
not eq(λF [F(F2(0))](λx[0]),λx[0](F2(0)))→β

not eq(λx[0](F2(0)),λx[0](F2(0)))→δ⊥.
For LIS we have: F1(0);λ z[not eq(F2(z),λx[0](F2(z)))](0)→→β not eq(F2(0),0);
not eq(λy[λF [F(F2(y))](F3)](0),0)→→β not eq(F3(F2(0)),0);
not eq(F3(λy[λF [F(F2(y))](F3)](0)),0)→→β not eq(F3(F3(F2(0))),0);
not eq(F3(F3(λy[λF [F(F2(y))](F3)](0))),0)→→β

not eq(F3(F3(F3(F2(0)))),0); and so on.
Let A ∈ {PIS, LIS} and B ∈ {PES, LES, PAS}. To show that A 6≺⊥ B, we take

program P5:

P5


F1 = λx[not eq(F3(F2(x)),F3(F3(x)))]
F2 = λx[F3(x)]
F3 = λx[F3(x)]

For PIS we have: F1(0); λx[not eq(F3(F2(x)),F3(F3(x)))](0)→β

not eq(F3(F2(0)),F3(F3(0)));not eq(F3(λx[F3(x)](0)),F3(λx[F3(x)](0)))→→β

not eq(F3(F3(0)),F3(F3(0)))→δ⊥;
For LIS we have: F1(0); λx[not eq(F3(F2(x)),F3(F3(x)))](0)→β

not eq(F3(F2(0)),F3(F3(0)));not eq(F3(λx[F3(x)](0)),F3(F3(0)))→β

not eq(F3(F3(0)),F3(F3(0)))→δ⊥;
For PES we have: F1(0); λx[not eq(F3(F2(x)),F3(F3(x)))](0)→β

not eq(F3(F2(0)),F3(F3(0)));not eq(λx[F3(x)](F2(0)),λx[F3(x)](F3(0)))→→β

not eq(F3(F2(0)),F3(F3(0))); and so on.

Grigoryan D. A. On Incomparability of Interpretation Algorithms of. . . 115

For LES, PAS we have: F1(0);λx[not eq(F3(F2(x)),F3(F3(x)))](0)→β

not eq(F3(F2(0)),F3(F3(0)));not eq(λx[F3(x)](F2(0)),F3(F3(0)))→β

not eq(F3(F2(0)),F3(F3(0))); and so on.
To show that A 6≺⊥ B, where A ∈ {PES, LES, PAS}, B ∈ {PIS, LIS}, we take

program P6:

P6


F1 = λx[not eq(F2(F3(x)),F3(F3(x)))]
F2 = λx[F3(x)]
F3 = λx[F3(x)]

For PES we have: F1(0); λx[not eq(F2(F3(x)),F3(F3(x)))](0)→β

not eq(F2(F3(0)),F3(F3(0)));not eq(λx[F3(x)](F3(0)),λx[F3(x)](F3(0)))→→β

not eq(F3(F3(0)),F3(F3(0)))→δ⊥
For LES, PAS we have: F1(0);λx[not eq(F2(F3(x)),F3(F3(x)))](0)→β

not eq(F2(F3(0)),F3(F3(0)));not eq(λx[F3(x)](F3(0)),F3(F3(0)))→β

not eq(F3(F3(0)),F3(F3(0)))→δ⊥;
For PIS we have: F1(0); λx[not eq(F2(F3(x)),F3(F3(x)))](0)→β

not eq(F2(F3(0)),F3(F3(0))); not eq(F2(λx[F3(x)](0)),F3(λx[F3(x)](0)))→→β

not eq(F2(F3(0)),F3(F3(0))); and so on.
For LIS we have: F1(0); λx[not eq(F2(F3(x)),F3(F3(x)))](0)→β

not eq(F2(F3(0)),F3(F3(0)));not eq(F2(λx[F3(x)](0)),F3(F3(0)))→β

not eq(F2(F3(0)),F3(F3(0))); and so on.
To show that FS6≺⊥ B, where B ∈ {PES, LES, PIS, LIS, PAS, ACT}, we take

program P7:

P7



F1 = λx[not eq(F2(F3(x)),F4(F5(x)))]
F2 = λx[F4(x)]
F3 = λx[F5(x)]
F4 = λx[F4(x)]
F5 = λx[F5(x)]

For FS we have:
F1(0); λx[not eq(F2(F3(x)),F4(F5(x)))](0)→β not eq(F2(F3(0)),F4(F5(0)));
not eq(λx[F4(x)](λx[F5(x)](0)),λx[F4(x)](λx[F5(x)](0)))→→β

not eq(F4(F5(0)),F4(F5(0))))→δ⊥.
For PES we have:
F1(0);λx[not eq(F2(F3(x)),F4(F5(x)))](0)→β not eq(F2(F3(0)),F4(F5(0)));
not eq(λx[F4(x)](F3(0)),λx[F4(x)](F5(0)))→→β not eq(F4(F3(0)),F4(F5(0)));
not eq(λx[F4(x)](F3(0)),λx[F4(x)](F5(0))); and so on.
For LES, PAS we have:
F1(0); λx[not eq(F2(F3(x)),F4(F5(x)))](0)→β

not eq(F2(F3(0)),F4(F5(0)));not eq(λx[F4(x)](F3(0)),F4(F5(0)))→β

not eq(F4(F3(0)),F4(F5(0)));not eq(λx[F4(x)](F3(0)),F4(F5(0))); and so on.
For LIS we have:
F1(0); λx[not eq(F2(F3(x)),F4(F5(x)))](0)→β not eq(F2(F3(0)),F4(F5(0)));

116 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2018, 52(2), p. 109–118.

not eq(F2(λx[F5(x)](0)),F4(F5(0)))→β not eq(F2(F5(0)),F4(F5(0)));
not eq(F2(λx[F5(x)](0)),F4(F5(0))); and so on.
For PIS we have:
F1(0); λx[not eq(F2(F3(x)),F4(F5(x)))](0)→β not eq(F2(F3(0)),F4(F5(0)));
not eq(F2(λx[F5(x)](0)),F4(λx[F5(x)](0)))→→β not eq(F2(F5(0)),F4(F5(0)));
not eq(F2(λx[F5(x)](0)),F4(λx[F5(x)](0))); and so on.
For ACT we have:
F1(0); λx[not eq(F2(F3(x)),F4(F5(x)))](0)→β not eq(F2(F3(0)),F4(F5(0)));
not eq(λx[F4(x)](F3(0)),F4(F5(0))); now me must apply algorithm ACT to the term
F3(0);λx[F5(x)](0)→β F5(0);λx[F5(x)](0)→β F5(0); and so on.

Let A =PES and B ∈ {PS, LES, PAS, ACT}. To show that A 6≺⊥ B, we take
program P8:

P8



F1 = λx[not eq(F2(F3(x)),F4(x))]
F2 = λx[F2(x)]
F3 = λx[F5(x)]
F4 = λx[F2(F3(x))]
F5 = λx[F3(x)]

For PES we have: F1(0);λx[not eq(F2(F3(x)),F4(x))](0)→β

not eq(F2(F3(0)),F4(0));not eq(λx[F2(x)](F3(0)),λx[F2(F3(x))](0))→→β

not eq(F2(F3(0)),F2(F3(0)))→δ⊥
For FS we have: F1(0);λx[not eq(F2(F3(x)),F4(x))](0)→β

not eq(F2(F3(0)),F4(0));
not eq(λx[F2(x)](λx[F5(x)](0)),λx[F2(F3(x))](0))→→β

not eq(F2(F5(0)),F2(F3(0)));
not eq(λx[F2(x)](λx[F3(x)](0)),λx[F2(x)](λx[F5(x)](0)))→→β

not eq(F2(F3(0)),F2(F5(0)));
not eq(λx[F2(x)](λx[F5(x)](0)),λx[F2(x)](λx[F3(x)](0)))→→β

not eq(F2(F5(0)),F2(F3(0))); and so on.
For LES, PAS we have:
F1(0);λx[not eq(F2(F3(x)),F4(x))](0)→β not eq(F2(F3(0)),F4(0));
not eq(λx[F2(x)](F3(0)),F4(0))→β not eq(F2(F3(0)),F4(0)); and so on.
For ACT we have:
F1(0);λx[not eq(F2(F3(x)),F4(x))](0)→β not eq(F2(F3(0)),F4(0));
not eq(λx[F2(x)](F3(0)),F4(0)); now we must apply ACT to the term F3(0);
λx[F5(x)](0)→β F5(0);λx[F3(x)](0)→β F3(0); now we must apply ACT to the term
F3(0); and so on.

Let A = ACT and B ∈ {PES, LES, PAS}. To show that A 6≺⊥ B, we take
program P9:

P9


F1 = λx[not eq(F2(F3(x)),F2(x))]
F2 = λx[F2(x)]
F3 = λx[x]

Grigoryan D. A. On Incomparability of Interpretation Algorithms of. . . 117

For ACT we have: F1(0);λx[not eq(F2(F3(x)),F2(x))](0)→β

not eq(F2(F3(0)),F2(0));not eq(λx[F2(x)](F3(0)),F2(0)); now we must apply algo-
rithm ACT to the term F3(0);λx[x](0)→β 0; Algorithm continues work on the term
not eq(F2(0),F2(0))→δ⊥
For PES we have:
F1(0);λx[not eq(F2(F3(x)),F2(x))](0)→β not eq(F2(F3(0)),F2(0));
not eq(λx[F2(x)](F3(0)),λx[F2(x)](0))→→β not eq(F2(F3(0)),F2(0)); and so on.
For LES, PAS we have:
F1(0);λx[not eq(F2(F3(x)),F2(x))](0)→β not eq(F2(F3(0)),F2(0));
not eq(λx[F2(x)](F3(0)),F2(0))→β not eq(F2(F3(0)),F2(0)); and so on.

To show that PIS6≺⊥ FS, we take program P10:

P10



F1 = λx[not eq(F2(F3(x)),F4(x))]
F2 = λx[F5(x)]
F3 = λx[F5(x)]
F4 = λx[F2(F5(x))]
F5 = λx[F2(x)]

For PIS we have: F1(0);λx[not eq(F2(F3(x)),F4(x))](0)→β

not eq(F2(F3(0)),F4(0));not eq(F2(λx[F5(x)](0)),λx[F2(F5(x))](0))→→β

not eq(F2(F5(0)),F2(F5(0)))→δ⊥;
For FS we have: F1(0);λx[not eq(F2(F3(x)),F4(x))](0)→β

not eq(F2(F3(0)),F4(0));
not eq(λx[F5(x)](λx[F5(x)](0)),λx[F2(F5(x))](0))→→β

not eq(F5(F5(0)),F2(F5(0)));
not eq(λx[F2(x)](λx[F2(x)](0)),λx[F5(x)](λx[F2(x)](0)))→→β

not eq(F2(F2(0)),F5(F2(0)));
not eq(λx[F5(x)](λx[F5(x)](0)),λx[F2(x)](λx[F5(x)](0)))→→β

not eq(F5(F5(0)),F2(F5(0))); and so on.
To show that LES 6≺⊥ PAS, we take program P11:

P11


F1 = λx[not eq(F2(x),λy[y](F3(x)))]
F2 = λx[F3(x)]
F3 = λx[F3(x)]

For LES we have: F1(0);λx[not eq(F2(x),λy[y](F3(x)))](0)→→β

not eq(F2(0),F3(0));not eq(λx[F3(x)](0),F3(0))→β not eq(F3(0),F3(0))→δ⊥ .
For PAS we have:
F1(0);λx[not eq(F2(x),λy[y](F3(x)))](0)→β not eq(F2(0),λy[y](F3(0)));
not eq(λx[F3(x)](0),λy[y](F3(0)))→β not eq(F3(0),λy[y](F3(0)));
not eq(λx[F3(x)](0),λy[y](F3(0)))→β not eq(F3(0),λy[y](F3(0))); and so on.

To show that LES 6≺⊥ ACT and PAS6≺⊥ACT, we take program P12:

P12


F1 = λx[not eq(F2(F3(x)),F3(F3(x)))]
F2 = λy[λx[x](F3(y))]
F3 = λy[λx[x](F2(y))]

118 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2018, 52(2), p. 109–118.

For LES, PAS we have: F1(0);λx[not eq(F2(F3(x)),F3(F3(x)))](0)→β

not eq(F2(F3(0)),F3(F3(0)));not eq(λy[λx[x](F3(y))](F3(0)),F3(F3(0)))→→β

not eq(F3(F3(0)),F3(F3(0)))→δ⊥.
For ACT we have:
F1(0); λx[not eq(F2(F3(x)),F3(F3(x)))](0)→β not eq(F2(F3(0)),F3(F3(0)));
not eq(λy[λx[x](F3(y))](F3(0)),F3(F3(0))); we must apply algorithm ACT to the
term F3(0);
λy[λx[x](F2(y))](0) →β λx[x](F2(0)); now we must algorithm apply ACT to
the term F2(0);
λy[λx[x](F3(y))](0)→β λx[x](F3(0)); and so on.

To show that PAS 6≺⊥ LES, we take program P13:

P13


F1 = λx[numbers(numbers(F2(x),F3(x)),numbers(F3(x),λx[F2(x)](0)))]
F2 = λx[not eq(x,0)]
F3 = λx[F3(x)]

For PAS we have: F1(0);
λx[numbers(numbers(F2(x),F3(x)),numbers(F3(x),λx[F2(x)](0)))](0)→β

numbers(numbers(F2(0),F3(0)),numbers(F3(0),λx[F2(x)](0)));
numbers(numbers(λx[not eq(x,0)](0),F3(0)),numbers(F3(0),λx[F2(x)](0)))→β

numbers(numbers(not eq(0,0),F3(0)),numbers(F3(0),λx[F2(x)](0)))→δ

numbers(⊥,numbers(F3(0),λx[F2(x)](0)))→δ⊥.
For LES we have:
F1(0); λx[numbers(numbers(F2(x),F3(x)),numbers(F3(x),λx[F2(x)](0)))](0)→→β

numbers(numbers(F2(0),F3(0)),numbers(F3(0),F2(0)))→δ numbers(F3(0),F2(0));
numbers(λx[F3(x)](0),F2(0))→β numbers(F3(0),F2(0)); and so on.

It is shown that for each pair of different algorithms A,B∈{FS, PES, LES, PIS,
LIS, PAS, ACT} the following holds: A 6≺⊥ B and B 6≺⊥ A. Therefore, interpretation
algorithms FS, PES, LES, PIS, LIS, PAS, ACT are pairwise ⊥-incomparable. �

Received 07.05.2018

R E F E R E N C E S

1. Nigiyan S.A. Functional Languages. // Programming and Computer Software, 1992,
v. 17, № 5, p. 290–297.

2. Nigiyan S.A. On Non-classical Theory of Computability. // Proceedings of the YSU.
Physical and Mathematical Sciences, 2015, № 1, p. 52–60.

3. Nigiyan S.A., Khondkaryan T.V. On Canonical Notion of δ -Reduction and on
Translation of Typed λ -Terms into Untyped λ -Terms. // Proceedings of the YSU.
Physical and Mathematical Sciences, 2017, № 1, p. 46–52

4. Hakopian R.Yu. On Procedural Semantics of Strong Typed Functional Programs. //
Proceedings of YSU, 2008, № 3, p. 59–69 (in Russian).

