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In this paper the interpretation algorithms for typed and untyped functional
programs are considered. Typed functional programs use variables of any order
and constants of order≤ 1, where constants of order 1 are strongly computable,
monotonic functions with indeterminate values of arguments. The basic seman-
tics of the typed functional program is a function with indeterminate values
of arguments, which is the main component of its least solution. The inter-
pretation algorithms of typed functional programs are based on substitutions,
β -reduction and canonical δ -reduction. The basic semantics of the untyped
functional program is the untyped λ -term, which is defined by means of the
fixed point combinator. The interpretation algorithms of untyped functional
programs are based on substitutions and β -reduction. Interpretation algorithms
are examined for completeness and comparability. It is investigated how the
“behavior” of the interpretation algorithm changes after translation of typed
functional program into untyped functional program.
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Introduction. The paper is devoted to typed and untyped functional programs.
A typed functional program is a system of equations (with separating variables) in the
monotonic models of typed λ -calculus. Typed functional programs use variables of
any order and constants of order ≤ 1, where constants of order 1 are strongly com-
putable functions with indeterminate values of arguments. The basic semantics of
the typed functional program is a function with indeterminate values of arguments,
which is the main component of its least solution (see [1–5]). The interpretation
algorithms of typed functional programs are based on substitutions, β -reduction and
canonical δ -reduction [6]. An untyped functional program is a system of equations
(with separating variables) in the untyped λ -calculus. The basic semantics of the un-
typed functional program is the untyped λ -term, which is defined by means of the
∗ E-mail: nigiyan@ysu.am
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fixed point combinator (see [5, 7, 8]). The interpretation algorithms of untyped func-
tional programs are based on substitutions and β -reduction. In [5] an algorithm that
translates the typed functional program P into the untyped functional program P′

is suggested. It is proved that the basic semantics of the program P′ λ -defines the
basic semantics of the program P. For typed and untyped functional programs, the
four classical interpretation algorithms are examined for completeness and compa-
rability. Those algorithms are the followings: FSRNF (algorithm of full substitution
and reduction to the normal form); LSRNF (algorithm of left substitution and
reduction to the normal form); ACT (active algorithm); PAS (passive algorithm).
It is investigated how the “behavior” of these interpretation algorithms changes after
the translation of typed functional program P into untyped functional program P′.

Interpretation of Typed Functional Programs. The definitions of this
section can be found in [1–6]. A partially ordered set is said to be complete, if each
of its linear ordered subsets has the least upper bound. It is easy to see that every
complete set has the least element. Let A,B be nonempty partially ordered sets.
A mapping ϕ : A→ B is said to be monotonic, if a v b implies ϕ(a) v ϕ(b) for
all a,b ∈ A (v is the symbol of partial ordering relation).

Let M be a partially ordered set, which has an element⊥, which corresponds to
the indeterminate value. Each element of M is comparable only with itself and with
⊥, which is the least element of M. Let us define the set of types (denoted by Types).

1. M ∈ Types;
2. If β ,α1, . . . ,αk ∈ Types (k > 0), then the set of all monotonic mappings

from α1× . . .×αk into β
(
denoted by [α1× . . .×αk→ β ]

)
belongs to Types.

Let α ∈ Types, then the order of type α
(
denoted by ord(α)

)
will be a natural

number, which is defined in the following way: if α = M, then ord(α) = 0,
if α = [α1 × . . . × αk → β ], where β ,α1, . . . ,αk ∈ Types, k > 0, then
ord(α) = 1+max(ord(α1), . . . ,ord(αk),ord(β )). If x is a variable of type α and a
constant c ∈ α , then ord(x) = ord(c) = ord(α). Every type α ∈ Types is a
complete set (see [1]).

Let α ∈ Types and V T
α be a countable set of variables of type α , then

V T =
⋃

α∈Types
V T

α is the set of all variables. The set of all terms, denoted by

ΛT =
⋃

α∈Types
ΛT

α , where ΛT
α is the set of terms of type α , is defined by:

1. If c ∈ α , α ∈ Types, then c ∈ ΛT
α ;

2. If x ∈V T
α ,α ∈ Types, then x ∈ ΛT

α ;
3. If τ ∈ΛT

[α1×...×αk→β ], ti ∈ΛT
αi

, where β ,αi ∈ Types, i = 1, . . . ,k, k≥ 1, then
τ(t1, . . . , tk) ∈ ΛT

β
(the operation of application);

4. If τ ∈ ΛT
β
,xi ∈ V T

αi
, where β ,αi ∈ Types, i 6= j⇒ xi 6= x j, i, j = 1, . . . ,k,

k ≥ 1, then λx1 . . .xk[τ] ∈ ΛT
[α1×...×αk→β ] (the operation of abstraction).

The notions of free and bound occurrences of variables in terms as well as
the notion of a free variable are introduced in the conventional way. The set of all
free variables of a term t is denoted by FV (t). A term, which does not contain free
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variables is called a closed term. Terms t1 and t2 are said to be congruent (which is
denoted by t1 ≡ t2), if one term can be obtained from the other by renaming bound
variables. In what follows, congruent terms are considered identical.

Let t ∈ ΛT
α , α ∈ Types and FV (t) ⊂ {y1, . . . ,yn}, ȳ0 = 〈y0

1, . . . ,y
0
n〉, where

yi ∈ V T
βi
, y0

i ∈ βi, βi ∈ Types, i = 1, . . . ,n, n ≥ 0. The value of the term t for the
values of the variables y1, . . . ,yn equal to ȳ0 = 〈y0

1, . . . ,y
0
n〉 is denoted by Valȳ0(t)

and is defined in the conventional way (see [1]). It follows from [1], that for any
ȳ0 =< y0

1, . . . ,y
0
n > and ȳ1 =< y1

1, . . . ,y
1
n > such that ȳ0 v ȳ1, where y0

i ,y
1
i ∈ βi

(1≤ i≤ n), we have the following: Valȳ0(t) ∈ α and Valȳ0(t)vValȳ1(t).
Let terms t1, t2 ∈ ΛT

α , α ∈ Types, FV (t1)∪FV (t2) = {y1, . . . ,yn}, yi ∈ V T
βi
,

βi ∈ Types, i = 1, . . . ,n, n≥ 0, then terms t1 and t2 are called equivalent (denoted by
t1 ∼ t2), if for any ȳ0 = 〈y0

1, . . . ,y
0
n〉, where y0

i ∈ βi, i = 1, . . . ,n, we have:
Valȳ0(t1) =Valȳ0(t2). A term t ∈ ΛT

α ,α ∈ Types, is called a constant term with value
a ∈ α if t ∼ a.

To show mutually different variables of interest x1, . . . ,xk,k ≥ 1, of a term t,
the notation t[x1, . . . ,xk] is used. The notation t[t1, . . . , tk] denotes the term obtained
by the simultaneous substitution of the terms t1, . . . , tk for all free occurrences of
the variables x1, . . . ,xk respectively, where xi ∈ V T

αi
, i 6= j ⇒ xi 6≡ x j, ti ∈ ΛT

αi
,

αi ∈ Types, i, j = 1, . . . ,k, k ≥ 1. A substitution is said to be admissible, if all free
variables of the term being substituted remain free after the substitution. We will
consider only admissible substitutions.

A term t ∈ΛT with a fixed occurrence of a subterm τ1 ∈ΛT
α , where α ∈ Types,

is denoted by tτ1 , and a term with this occurrence of τ1 replaced by τ2, where τ2 ∈ΛT
α ,

is denoted by tτ2 .
Further, we assume that M is a recursive set and considered terms use

variables of any order and constants of order ≤ 1, where constants of order 1 are
strongly computable, monotonic functions with indeterminate values of arguments.
A function f : Mk →M,k ≥ 1, with indeterminate values of arguments is said to be
strongly computable, if there exists an algorithm, which stops with value f (m1, ...,mk)
for all m1, . . . ,mk ∈M (see [3, 4]). Suppose that each strongly computable function
with indeterminate values of arguments is given by its algorithm. Hereafter, all such
terms will be denoted by ΛT and all such terms of type α will be denoted by ΛT

α .
A term of the form λx1 . . .xk[τ[x1, . . . ,xk]](t1, . . . , tk), where xi ∈ V T

αi
,

i 6= j ⇒ xi 6≡ x j, τ ∈ ΛT , ti ∈ ΛT
αi
, αi ∈ Types, i, j = 1, . . . ,k, k ≥ 1, is called

a β -redex, its convolution is the term τ[t1, . . . , tk]. A one-step β -reduction (→β ) and
β -reduction (→→β ) are defined in the conventional way (see [5, 6]). A term
containing no β -redexes is called a β -normal form. The set of all β -normal forms is
denoted by β −NFT .

δ -redex has a form f (t1, . . . , tk), where f ∈ [Mk → M], ti ∈ ΛT
M, i = 1, . . . ,k,

k ≥ 1, its convolution is either m ∈ M and in this case f (t1, . . . , tk) ∼ m or a sub-
term ti and in this case f (t1, . . . , tk) ∼ ti,1 ≤ i ≤ k. A one-step δ -reduction (→δ )
and δ -reduction (→→δ ) are defined in the conventional way (see [5, 6]). A term
containing no δ -redexes is called a δ -normal form.
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A one-step βδ -reduction (→βδ ) and βδ -reduction(→→βδ ) are defined in the
conventional way (see [5, 6]). It follows from [9], that if t1 →→βδ t2, then t1 ∼ t2,
where t1, t2 ∈ ΛT

α , α ∈ Types. A term containing no βδ -redexes is called a normal
form. The set of all normal forms is denoted by NFT . For every term t ∈ Λ there
exists a term τ ∈ NFT such that t→→βδ τ (see [9]).

A notion of δ -reduction is called a single-valued notion of δ -reduction, if
δ is a single-valued relation, i.e. if 〈τ0,τ1〉 ∈ δ and 〈τ0,τ2〉 ∈ δ , then τ1 ≡ τ2, where
τ0,τ1,τ2 ∈ ΛT

M.
A notion of δ -reduction is called an effective notion of δ -reduction, if there

exists an algorithm, which for any term f (t1, . . . , tk), where f ∈ [Mk → M],
ti ∈ ΛT

M, i = 1, . . . ,k, k ≥ 1, gives its convolution if f (t1, . . . , tk) is a δ -redex and
stops with a negative answer otherwise.

D e f i n i t i o n 1 [6]. An effective, single-valued notion of δ -reduction is
called a canonical notion of δ -reduction, if:

1. t ∈ β −NFT , t ∼ m, m ∈M \{⊥}⇒ t→→δ m;

2. t ∈ β −NFT , FV (t) = /0, t ∼⊥⇒ t→→δ ⊥.

In [6] it was proved, that for every recursive set of strongly computable, mono-
tonic functions with indeterminate values of arguments, there exists a canonical
notion of δ -reduction. Further, we will only use the canonical notion of δ -reduction.

Typed functional program P is the following system of equations:

F1 = t1[F1, . . . ,Fn],
. . .

Fn = tn[F1, . . . ,Fn],
(1)

where Fi ∈V T
αi
, i 6= j⇒Fi 6≡Fj, ti[F1, ...,Fn]∈ΛT

αi
, FV (ti[F1, . . . , .Fn])⊂{F1, . . . ,Fn},

αi ∈ Types, i, j = 1, . . . ,n, n≥ 1, α1 = [Mk→M], k ≥ 1.
We consider the mapping ΨP : α1× . . .×αn→ α1× . . .×αn, which is defined

as follows: if ḡ = 〈g1, . . . ,gn〉, where gi ∈ αi, i = 1, . . . ,n, then ΨP(ḡ) =
〈Valḡ(t1[F1, . . . ,Fn]), . . . ,Valḡ(tn[F1, . . . ,Fn])〉. ḡ is said to be a solution of the pro-
gram P, if ΨP(ḡ) = ḡ, i.e. 〈Valḡ(t1[F1, . . . ,Fn]), . . . ,Valḡ(tn[F1, ...,Fn])〉= 〈g1, ...,gn〉.
Every typed functional program P has a least solution (see [1]). Let 〈 f1, . . . , fn〉 ∈
α1× . . .×αn be the least solution of P, then the first component f1 ∈ [Mk →M] of
the least solution is said to be the basic semantics of the program P and is denoted by
fP. Fix(P) = {(m1, . . . ,mk,m)| fP(m1, . . . ,mk) = m, where m,m1, . . . ,mk ∈M,k≥ 1}.

T h e o r e m 1 (on basic semantics of typed functional programs). Let
fP ∈ [Mk → M], k ≥ 1, be the basic semantics of a typed functional program P
of the form (1), then for all m1, . . . ,mk ∈M we have:

fP(m1, . . .mk) = sup{Ψs
P(Ω̄)1(m1, . . . ,mk) | s < ω},

where Ω̄ is the least element of the set α1× . . .×αn, Ψ0
P(Ω̄) = Ω̄, Ψ

s+1
P (Ω̄) =

ΨP(Ψ
s
P(Ω̄)) and Ψs

P(Ω̄)1 is the first component of the Ψs
P(Ω̄), s < ω , ω is the ordinal

corresponding to the set of natural numbers.
P r o o f . Proof follows from [2]. �
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T h e o r e m 2 (on substitutions for typed functional programs) [5]. Let
fP ∈ [Mk →M], k ≥ 1, be the basic semantics of a typed functional program P of
the form (1), let δ be a canonical notion of δ -reduction, then for all m1, . . . ,mk ∈M
we have: fP(m1, . . . ,mk) = m 6= ⊥⇔ ∃s ≥ 1, ts

1[F1, . . . ,Fn](m1, . . . ,mk)→→βδ m 6=
⊥, where t0

i [F1, . . . ,Fn] ≡ Fi, tr
i [F1, . . . ,Fn] ≡ ti[tr−1

1 [F1, . . . ,Fn], . . . , tr−1
n [F1, . . . ,Fn]],

r ≥ 1, i = 1, . . . ,n, n≥ 1.
Interpretation Algorithms. The input of the interpretation algorithm A is a

program P of the form (1), a term t ∈ ΛT , and a canonical notion of δ -reduction.
Algorithm A stops with result A(P, t) ∈ NFT , FV (A(P, t)) ∩ {F1, . . . ,Fn} = /0
or works infinitely. Algorithm A uses three kinds of operations:

1. substitution of the terms t1, . . . tn instead of some free occurrences of the
variables F1, . . . ,Fn;

2. one-step β -reduction;

3. one-step δ -reduction.

ProcA(P) = {(m1, . . . ,mk,m)| algorithm A stops for program P and term
F1(m1, . . . ,mk) with a result m, where m,m1, . . . ,mk ∈M,k ≥ 1}.

Interpretation algorithm A is consistent, if for any program P and for any
canonical notion of δ -reduction we have: ProcA(P)⊂ Fix(P).

T h e o r e m 3 . Every interpretation algorithm is consistent.
P r o o f . Proof follows from the results of [10]. �
Interpretation algorithm A is complete, if for any program P of the form (1)

and for any canonical notion of δ -reduction we have: if (m1, . . . ,mk,m)∈ Fix(P) and
m 6=⊥, then (m1, . . . ,mk,m) ∈ ProcA(P), m,m1, . . . ,mk ∈M,k ≥ 1.

Let A and B be interpretation algorithms, then A<B, if for any program P
and any canonical notion of δ -reduction we have: if (m1, . . . ,mk,m) ∈ ProcA(P) and
m 6=⊥, then (m1, . . . ,mk,m) ∈ ProcB(P), m,m1, . . . ,mk ∈M, k ≥ 1.

Interpretation algorithms A and B are incomparable, if A≮ B and B≮A.
Interpretation algorithm A depends on canonical notion of δ -reduction, if there

exist a program P, m1, . . . ,mk ∈ M, k ≥ 1, and canonical notions of δ -reduction δ1
and δ2 such, that A stops on P and F1(m1, . . . ,mk) with a result m ∈ M,m 6= ⊥,
for δ1 and works infinitely for δ2.

We explore four classical interpretation algorithms: FSRNF (algorithm of full
substitution and reduction to the normal form); LSRNF (algorithm of left substitution
and reduction to the normal form); ACT (active algorithm); PAS (passive algorithm).

Algorithm FSRNF.

1. If t ∈ NFT and FV (t)∩{F1, . . . ,Fn}= /0, then t else go to 2.

2. If t /∈ NFT and t ≡ tτ , where τ is leftmost redex (β -redex or δ -redex), then
FSRNF(P, tτ ′), where τ ′ is the convolution of the redex τ , else go to 3.

3. If t ≡ t[F1, . . . ,Fn], then FSRNF (P, t[t1, . . . , tn]).

Algorithm LSRNF.

1. If t ∈ NFT and FV (t)∩{F1, . . . ,Fn}= /0, then t else go to 2.
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2. If t /∈ NFT and t ≡ tτ , where τ is leftmost redex (β -redex or δ -redex), then
LSRNF (P, tτ ′), where τ ′ is the convolution of the redex τ , else go to 3.

3. If t ≡ tFi(1 ≤ i ≤ n), where tFi is the term t with a fixed leftmost free
occurrence of a variable of the set {F1, . . . ,Fn}, then LSNFR(P, tti).

Algorithm ACT.

1. If t ∈ NFT and FV (t)∩{F1, . . . ,Fn}= /0, then t, else go to 2.

2. If t ≡ tFi(1 ≤ i ≤ n), where tFi is the term t with a fixed leftmost free
occurrence of a variable of the set {F1, . . . ,Fn}, which is located to the left of the
leftmost redex, then ACT(P, tti) else go to 3.

3. If t ≡ tλx1...xr[τ[x1,...,xr]](τ1,...,τr), where λx1 . . .xr[τ[x1, . . . ,xr]](τ1, . . . ,τr) is the
leftmost redex, then ACT (P, tτ[ACT(P,τ1),...,ACT(P,τr)]) else go to 4.

4. If t ≡ tτ , where τ is the leftmost redex, which is a δ -redex, then ACT(P, tτ ′),
where τ ′ is the convolution of the δ -redex τ .

Algorithm PAS.

1. If t ∈ NFT and FV (t)∩{F1, . . . ,Fn}= /0, then t, else go to 2.

2. If t ≡ tFi(1≤ i≤ n), where tFi is the term t with a fixed leftmost free occur-
rence of a variable of the set {F1, . . . ,Fn} which is located to the left of the leftmost
redex, then PAS(P, tti) else go to 3.

3. If t ≡ tλx1...xr[τ[x1,...,xr]](τ1,...,τr), where λx1 . . .xr[τ[x1, . . . ,xr]](τ1, . . . ,τr) is the
leftmost redex, then PAS(P, tτ[τ1,...,τr]) else go to 4.

4. If t ≡ tτ , where τ is the leftmost redex, which is a δ -redex, then PAS(P, tτ ′),
where τ ′ is the convolution of the δ -redex τ .

T h e o r e m 4 . Interpretation algorithm FSRNF is complete.
P r o o f . Let fP(m1, . . . ,mk) = m 6=⊥, then according to the Theorem 2, there

exists such s≥ 1, that ts
1[F1, . . . ,Fn](m1, . . . ,mk)→→βδ m, therefore, according to [9],

ts
1[F1, . . . ,Fn](m1, . . . ,mk) ∼ m. Let, the following sequence of normal forms

corresponds to FSRNF algorithm: t ′1[F1, . . . ,Fn], t ′2[F1, . . . ,Fn], . . . , t ′s[F1, . . . ,Fn].
Let us show, that for every r = 1, . . . ,s, tr

1[F1, . . . ,Fn](m1, . . . ,mk)∼ t ′r[F1, . . . ,Fn].
t1[F1, . . . ,Fn](m1, . . . ,mk)→→βδ t ′1[F1, . . . ,Fn] and, according to [9],
t1[F1, . . . ,Fn](m1, . . . ,mk)∼ t ′1[F1, . . . ,Fn], and
t2
1 [F1, . . . ,Fn](m1, . . . ,mk)∼ t ′1[t1[F1, ...,Fn], ..., tn[F1, ...,Fn]],

t ′1[t1[F1, ...,Fn], . . . , tn[F1, . . . ,Fn]]→→βδ t ′2[F1, . . . ,Fn] and, according to [9],
t2
1 [F1, . . . ,Fn](m1, . . . ,mk)∼ t ′2[F1, . . . ,Fn], and

t3
1 [F1, . . . ,Fn](m1, . . . ,mk)∼ t ′2[t1[F1, . . . ,Fn], . . . , tn[F1, . . . ,Fn]],

t ′2[t1[F1, . . . ,Fn], . . . , tn[F1, . . . ,Fn]]→→βδ t ′3[F1, . . . ,Fn] and, according to [9],
t3
1 [F1, . . . ,Fn](m1, . . . ,mk) ∼ t ′3[F1, . . . ,Fn], and so on.

Since ts
1[F1, ...,Fn](m1, ...,mk) ∼ t ′s[F1, ...,Fn] and ts

1[F1, ...,Fn](m1, ...,mk) ∼ m,
we have t ′s[F1, ...,Fn]∼m. Since t ′s[F1, ...,Fn]∈NFT , we have t ′s[F1, ...,Fn]∈ β −NFT

and, according to point 1 of Definition 1, t ′s[F1, ...,Fn] →→δ m, but
t ′s[F1, ...,Fn] ∈ NFT , therefore t ′s[F1, ...,Fn]≡ m. �
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Let us fix the set M = N ∪ {⊥}, where N = {0,1,2, . . .}, built-in functions
sg1,sg2 & ∈ [M2→M], and three canonical notions of δ -reduction: δ ,δ1,δ2.

For m1,m2 ∈M we have:
sg1(m1,m2) equals 0, if m1 = 0,

equals 1, if m1 6=⊥ and m1 ≥ 1,
equals ⊥, if m1 =⊥.

sg2(m1,m2) equals 0, if m2 = 0,
equals 1, if m2 6=⊥ and m2 ≥ 1,
equals ⊥, if m2 =⊥.

&(m1,m2) equals 0, if m1 = 0 or m2 = 0,
equals 1, if m1 6=⊥,m2 6=⊥ and m1 ≥ 1,m2 ≥ 1,
equals ⊥, otherwise.

It is easy to see, that sg1,sg2 & are strongly computable, monotonic functions
with indeterminate values of arguments; sg1,sg2 are λ -definable functions, & is not
λ -definable function (see [3, 4]).

Canonical notion of δ -reduction δ :
〈sg1(0, t),0〉 ∈ δ , where t ∈ ΛT

M,

〈sg1(n, t),1〉 ∈ δ , where n ∈ N, n≥ 1, t ∈ ΛT
M,

〈sg1(⊥, t),⊥〉 ∈ δ , where t ∈ ΛT
M,

〈sg2(t,0),0〉 ∈ δ , where t ∈ ΛT
M,

〈sg2(t,n),1〉 ∈ δ , where n ∈ N, n≥ 1, t ∈ ΛT
M,

〈sg2(t,⊥),⊥〉 ∈ δ , where t ∈ ΛT
M,

〈&(0, t),0〉 ∈ δ , where t ∈ ΛT
M,

〈&(t,0),0〉 ∈ δ , where t ∈ ΛT
M,

〈&(n1,n2),1〉 ∈ δ , where n1, n2 ∈ N, n1,n2 ≥ 1,
〈&(⊥,n),⊥〉 ∈ δ , where n ∈ N, n≥ 1,
〈&(n,⊥),⊥〉 ∈ δ , where n ∈ N, n≥ 1,
〈&(⊥,⊥),⊥〉 ∈ δ .

Canonical notion of δ -reduction δ1:
δ1 = δ ∪{〈&(&(t1, t2),&(t2, t1)),&(t1, t2)〉

∣∣ t1, t2 ∈ ΛT
M}.

Canonical notion of δ -reduction δ2:
δ2 = δ ∪{〈&(&(t1, t2),&(t2, t1)),&(t2, t1)〉

∣∣ t1, t2 ∈ ΛT
M}.

T h e o r e m 5. Interpretation algorithms LSRNF, ACT, PAS are not
complete.

P r o o f . Incompleteness of the algorithm ACT is obvious, it already exists for
programs that do not use built-in functions. Incompleteness of the algorithm LSRNF
follows from the results of [11]. Incompleteness of the algorithm PAS follows from
the results of [10]. In [10] and [11] incompleteness of LSRNF and PAS were proved
for the programs that use not λ -definable functions. We will show incompleteness
of the algorithms LSRNF, ACT, PAS for the programs that can use only λ -definable
functions.

Let M = N∪{⊥}, x ∈V T
M , F1,F2,F3,F4 ∈V T

[M→M].
Program P1 is: F1 = λx[F2(F3(x))],
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F2 = λx[0],
F3 = λx[F3(x)].

For all m ∈ M fP1(m) = 0, therefore, (1,0) ∈ Fix(P1). Let us show, that
(1,0) /∈ ProcACT(P1). For ACT we have: F1(1);λx[F2(F3(x))](1) →β F2(F3(1));
λx[0](F3(1)); now we must apply algorithm ACT to the term F3(1);λx[F3(x)](1)→β

F3(1); . . . and so on.
Program P2 is: F1 = λx[F2(F3(x))],

F2 = λx[sg2(F4(x),x)],
F3 = λx[0],
F4 = λx[F4(x)].

For all m ∈ M fP2(m) = 0, therefore, (1,0) ∈ Fix(P2). Let us show, that
(1,0) /∈ ProcLSRNF(P2) and (1,0) /∈ ProcPAS(P2). For LSNFR and PAS we have:
F1(1);λx[F2(F3(x))](1) →β F2(F3(1));λx[sg2(F4(x),x)](F3(1)) →β sg2(F4(F3(1)),
F3(1)); sg2(λx[F4(x)](F3(1)), F3(1))→β sg2(F4(F3(1)),F3(1)); . . . and so on. �

T h e o r e m 6 . Interpretation algorithms LSRNF, ACT, PAS are pairwise
incomparable.

P r o o f . Incomparability of algorithms ACT and PAS, ACT and LSRNF
follows from [10]. In [10] this has been proved for programs that use not λ -definable
functions. We will show incomparability of algorithms ACT and PAS, ACT and
LSRNF for programs that can use only λ -definable functions.

Let us show, that (1,0) /∈ ProcACT(P1),(1,0) ∈ ProcPAS(P1) and (1,0) ∈
ProcLSRNF(P1). From the proof of Theorem 5 it follows that (1,0) /∈ProcACT(P1). Let
us show, that (1,0) ∈ ProcPAS(P1) and (1,0) ∈ ProcLSRNF(P1). For PAS and LSRNF
we have: F1(1); λx[F2(F3(x))](1)→β F2(F3(1)); λx[0](F3(1))→β 0.

Let us show, that (1,0) ∈ ProcACT(P2),(1,0) /∈ ProcPAS(P2) and
(1,0) /∈ ProcLSRNF(P2). From the proof of Theorem 5 it follows that (1,0) /∈
ProcPAS(P2) and (1,0) /∈ ProcLSRNF(P2). Let us show, that (1,0) ∈ ProcACT(P2). For
ACT we have: F1(1);λx[F2(F3(x))](1)→β F2(F3(1));λx[sg2(F4(x),x)](F3(1)); now
we must apply algorithm ACT to the term F3(1);λx[0](1)→β 0; further we have
λx[sg2(F4(x),x)](0)→β sg2(F4(0),0)→δ 0.

Now we show that the algorithms PAS and LSRNF are incomparable.
Program P3 is : F1 = λx[sg2(F2(x),sg2(1,x))],

F2 = λx[F2(x)].
Let us show that (0,0) /∈ ProcPAS(P3) and (0,0) ∈ ProcLSRNF(P3).

For PAS we have: F1(0); λx[sg2(F2(x),sg2(1,x))](0)→β sg2(F2(0),sg2(1,0));
sg2(λx[F2(x)](0),sg2(1,0))→β sg2(F2(0),sg2(1,0)); . . . and so on.

For LSRNF we have: F1(0); λx[sg2(F2(x),sg2(1,x))](0) →β

sg2(F2(0),sg2(1,0))→δ sg2(F2(0),0)→δ 0.
Program P4 is: F1 = λx[&(&(F2(x),F3(x)),&(F3(x),F2(sg1(x,1))))],

F2 = λx[0],
F3 = λx[F3(x)].

Let us show, that (0,0) ∈ ProcPAS(P4) and (0,0) /∈ ProcLSRNF(P4).
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For PAS we have: F1(0);λx[&(&(F2(x),F3(x)),&(F3(x),F2(sg1(x,1))))](0)→β

&(&(F2(0),F3(0)),&(F3(0),F2(sg1(0,1))));
&(&(λx[0](0),F3(0)),&(F3(0),F2(sg1(0,1))))→β

&(&(0,F3(0)),&(F3(0),F2(sg1(0,1))))→δ2 &(0,&(F3(0),F2(sg1(0,1))))→δ2 0.
For LSRNF we have: F1(0);λx[&(&(F2(x),F3(x)),&(F3(x),F2(sg1(x,1))))](0)

→β &(&(F2(0),F3(0)),&(F3(0),F2(sg1(0,1))))→δ2

&(&(F2(0),F3(0)),&(F3(0),F2(0)))→δ2 &(F3(0),F2(0));&(λx[F3(x)](0),F2(0))
→β &(F3(0),F2(0)); . . . and so on. �

T h e o r e m 7 . Interpretation algorithms LSRNF, ACT, PAS depend on
canonical notion of δ -reduction.

P r o o f . Let M = N∪{⊥}, x ∈V T
M , F1,F2,F3 ∈V T

[M→M].

Program P5 is: F1 = λx[&(&(F2(x),F3(x)),&(F3(x),F2(x)))],
F2 = λx[0],
F3 = λx[F3(x)].

Let us show, that (1,0) ∈ ProcLSRNF(P5), (1,0) ∈ ProcPAS(P5),
(1,0) ∈ ProcACT(P5) for δ1, and (1,0) /∈ ProcLSRNF(P5),(1,0) /∈ ProcPAS(P5),
(1,0) /∈ ProcACT(P5) for δ2.

Let us show for LSNFR, PAS, ACT and δ1 :
F1(1);λx[&(&(F2(x),F3(x)),&(F3(x),F2(x)))](1)→β

&(&(F2(1),F3(1)),&(F3(1),F2(1)))→δ1 &(F2(1),F3(1));&(λx[0](1),F3(1))→β

&(0,F3(1))→δ1 0.
Let us show for LSNFR, PAS, ACT and δ2 :

F1(1);λx[&(&(F2(x),F3(x)),&(F3(x),F2(x)))](1)→β

&(&(F2(1),F3(1)),&(F3(1),F2(1)))→δ2 &(F3(1),F2(1));
&(λx[F3(x)](1),F2(1))→β &(F3(1),F2(1)); . . . and so on. �

Interpretation of Untyped Functional Programs. The definitions of this
section can be found in [7, 8]. Let us fix a countable set of variables V . The set
Λ of terms is defined as follows:

1. If x ∈V , then x ∈ Λ;

2. If t1, t2 ∈ Λ, then (t1t2) ∈ Λ (the operation of application);

3. If x ∈V and t ∈ Λ, then (λxt) ∈ Λ (the operation of abstraction).

The following shorthand notations are introduced: a term (...(t1t2)...tk), where
ti ∈Λ, i= 1, . . . ,k, k > 1, is denoted by t1t2 . . . tk, and a term (λx1(λx2(...(λxnt)...))),
where x j ∈V, j = 1, . . . ,n, n > 0, t ∈ Λ, is denoted by λx1x2 . . .xn.t.

The notions of free and bound occurrences of variables in terms as well as
the notion of free variable are introduced in the conventional way. The set of all
free variables of a term t is denoted by FV (t). A term, which does not contain free
variables, is called closed term. Terms t1 and t2 are said to be congruent (which is
denoted by t1 ≡ t2), if one term can be obtained from the other by renaming bound
variables. In what follows, congruent terms are considered identical.

To show mutually different variables of interest x1, . . . ,xk, k ≥ 1, of a term t,
the notation t[x1, . . . ,xk] is used. The notation t[t1, . . . , tk] denotes the term obtained
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by the simultaneous substitution of the terms t1, . . . , tk for all free occurrences of
variables x1, . . . ,xk respectively, i 6= j⇒ xi 6≡ x j, i, j = 1, . . . ,k, k≥ 1. A substitution
is said to be admissible, if all free variables of the term being substituted remain free
after the substitution. We will consider only admissible substitutions.

A term t with a fixed occurrence of a subterm τ1 is denoted by tτ1 , and a term
with this occurrence of τ1 replaced by a term τ2 is denoted by tτ2 .

A term of the form (λx.t[x])τ, where x ∈ V, t,τ ∈ Λ, is called a β -redex and
the term t[τ] is called its convolution. A one-step β -reduction (→β ), β -reduction
(→→β ) and β -equality (=β ) are defined in a standard way [7]. A term containing
no β -redexes is called a normal form. The set of all normal forms is denoted by
NF and the set of all closed normal forms is denoted by NF0. A term t is said to
have a normal form, if there exists a term τ such that τ ∈ NF and t →→β τ . From
the Church–Rosser theorem [7] it follows, that if t→→β τ1, t→→β τ2,τ1,τ2 ∈ NF ,
then τ1 ≡ τ2.

If a term has a form λx1 . . .xk.xt1 . . . tn, where x1, . . . ,xk, x ∈ V, t1, . . . , tn ∈ Λ,
k,n ≥ 0, it is called a head normal form and x is called its head variable. The set of
all head normal forms is denoted by HNF . A term t is said to have a head normal
form, if there exists a term τ , such that τ ∈ HNF and t →→β τ . It is known, that
NF ⊂ HNF , but HNF 6⊂ NF (see [7]).

A term Z ∈ Λ is called a fixed point combinator, if for all terms t ∈ Λ,
Zt =β t(Zt). We introduce notations for some terms: 〈t1, . . . , tn〉 ≡ λx.xt1 . . . tn, where
x ∈ V, ti ∈ Λ, x 6∈ FV (ti), i = 1, . . . ,n, n ≥ 1, Un

i ≡ λx1 . . .xn.xi, where
x j ∈ V, k 6= j ⇒ xk 6≡ x j, k, j = 1, . . . ,n, 1 ≤ i ≤ n, n ≥ 1, Pn

i ≡ λx.xUn
i , where

x ∈V, 1≤ i≤ n, n≥ 1,Ω≡ (λx.xx)(λx.xx), where x ∈V.
Untyped functional program P is the following system of equations:

F1 = t1[F1, . . . ,Fn],
. . .

Fn = tn[F1, . . . ,Fn],
(2)

where Fi ∈ V, i 6= j⇒ Fi 6≡ Fj, ti[F1, . . . ,Fn] ∈ Λ, FV (ti[F1, . . . ,Fn]) ⊂ {F1, . . . ,Fn},
i, j = 1, . . . ,n, n≥ 1. A sequence of terms (τ1, . . . ,τn) will be a solution of program
P, if for all i = 1, . . . ,n we have: τi =β ti[τ1, . . . ,τn].

We consider the solution (τ1, . . . ,τn) of the program P, where
τi ≡ Pn

i (Z(λx.〈t1[Pn
1 x, . . . ,Pn

n x], . . . , tn[Pn
1 x, . . . ,Pn

n x]〉)), x ∈ V, Z ∈ Λ and is a fixed
point combinator, i = 1, . . . ,n. The term τ1 is the basic semantics of the program P
denoted by τP.

Fix(P,Z) = {(υ1, . . . ,υk, t0)|τPυ1 . . .υk →→ t0, t0 ∈ NF0, υ j ∈ NF0 or
υ j ≡Ω, j = 1, . . . ,k, k ≥ 0}.

T h e o r e m 8 (on the invariance of the basic semantics of untyped functional
programs). For any untyped functional program P and for any fixed point combina-
tors Z1,Z2 we have: Fix(P,Z1) = Fix(P,Z2) = Fix(P).

P r o o f . Proof follows from the results of [12]. �
T h e o r e m 9 (on substitutions for untyped functional programs). Let τP be

the basic semantics of an untyped functional program P of the form (2), υ1,υ2, . . . ,υk
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be terms, where υ j ∈ NF0 or υ j ≡ Ω, j = 1, . . . ,k, k ≥ 0, and t0 ∈ NF0, then:
τPυ1 . . .υk→→β t0⇔∃s≥ 1, ts

1[F1, . . . ,Fn]υ1υ2 . . .υk→→β t0,
where t0

i [F1, . . . ,Fn] ≡ Fi, tr
i [F1, . . . ,Fn] ≡ ti[tr−1

1 [F1, . . . ,Fn], . . . , tr−1
n [F1, . . . ,Fn]],

r ≥ 1, i = 1, . . . ,n, n≥ 1.
P r o o f . Proof follows from the results of [8] and [12]. �
Interpretation Algorithms. The input of the interpretation algorithm A is a pro-

gram P of the form (2) and t ∈ Λ. Algorithm A stops with result
A(P, t) ∈ NF,FV (A(P, t))∩{F1, . . . ,Fn} = /0 or works infinitely. Algorithm A uses
two kinds of operations:

1. substitution of the terms t1, . . . , tn instead of some free occurrences
of variables F1, . . . ,Fn;

2. one-step β -reduction.

ProcA(P) = {(υ1, . . . ,υk, t0)| algorithm A stops for program P and the term
F1υ1 . . .υk with result t0 ∈ NF0, where υ j ∈ NF0 or υ j ≡Ω, j = 1, . . . ,k, k ≥ 0}.

Interpretation algorithm A is consistent, if for any program P we have:
ProcA(P)⊂ Fix(P).

T h e o r e m 10. Every interpretation algorithm is consistent.
P r o o f . Proof follows from [8]. �
Algorithm A is complete, if for any program P we have: ProcA(P) = Fix(P).
Let A and B be interpretation algorithms, then A<B, if for any program P, we

have ProcA(P)⊂ ProcB(P).
Interpretation algorithm A and B are incomparable, if A ≮ B and B≮ A.
For untyped functional programs, we explore the same four classical interpre-

tation algorithms: FSRNF (algorithm of full substitution and reduction to the normal
form); LSRNF (algorithm of left substitution and reduction to the normal form);
ACT (active algorithm); PAS (passive algorithm).

Algorithm FSRNF.

1. If t ∈ NF and FV (t)∩{F1, . . . ,Fn}= /0, then t else go to 2.

2. If t /∈ NF and t ≡ tτ , where τ is left β -redex, then FSRNF(P, tτ ′), where τ ′

is the convolution of the β -redex τ else go to 3.

3. If t ≡ t[F1, . . . ,Fn], then FSRNF(P, t[t1, . . . , tn]).

Algorithm LSRNF.

1. If t ∈ NF and FV (t)∩{F1, . . . ,Fn}= /0, then t else go to 2.

2. If t /∈ NF and t ≡ tτ , where τ is left β -redex, then LSRNF(P, tτ ′), where τ ′

is the convolution of the β -redex τ else go to 3.

3. If t ≡ tFi(1 ≤ i ≤ n), where tFi is the term t with a fixed leftmost free
occurrence of a variable of the set {F1, . . . ,Fn}, then LSRNF(P, tti).

Algorithm ACT.

1. If t ∈ NF and FV (t)∩{F1, . . . ,Fn}= /0, then t else go to 2.

2. If t ≡ tFi (1 ≤ i ≤ n), where tFi is the term t with a fixed leftmost free
occurrence of a variable of the set {F1, . . . ,Fn}, which is located to the left of the
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left β -redex, then ACT(P, tti) else go to 3.

3. If t ≡ t(λx.τ[x])τ1 , where (λx.τ[x])τ1 is the left β -redex, then
ACT(P, tτ[ACT(P,τ1)]).

Algorithm PAS.
1. If t ∈ NF and FV (t)∩{F1, . . . ,Fn}= /0, then t else go to 2.

2. If t ≡ tFi(1 ≤ i ≤ n), where tFi is the term t with a fixed leftmost free
occurrence of a variable of the set {F1, . . . ,Fn}, which is located to the left of the
left β -redex, then PAS(P, tti) else go to 3.

3. If t ≡ t(λx.τ[x])τ1 , where (λx.τ[x])τ1 is the left β -redex, then PAS(P, tτ[τ1]).

From the results of [8] the following three theorems follow.
T h e o r e m 11. Interpretation algorithm PAS is complete.
T h e o r e m 12. Interpretation algorithms FSRNF, LSRNF, ACT are not

complete.
T h e o r e m 13. Interpretation algorithms FSRNF, LSRNF, ACT are pairwise

incomparable.
Translation and Interpretation. Let M be a recursive, partially ordered set,

which has a least element ⊥ and every element of M is comparable only with itself
and with ⊥. Every m ∈M is mapped into an untyped term m′ in the following way:

If m ∈ M \ {⊥}, then m′ ∈ NF0 and for any m1,m2 ∈ M \ {⊥}, m1 6= m2 ⇒
m1
′ 6≡ m2

′.

If m≡⊥, then m′ ≡Ω≡ (λx.xx)(λx.xx).
We say that an untyped term Φ ∈ Λ λ -defines (see [3, 4]) the function

f : Mk→M (k≥ 1) with indeterminate values of arguments, if for all m1, . . . ,mk ∈M
we have:

f (m1, . . . ,mk) = m 6=⊥⇒Φm1
′ . . .mk

′→→β m′,
f (m1, . . . ,mk) =⊥⇒Φm1

′ . . .mk
′ does not have a head normal form.

We consider typed terms using the functions from a recursive set C, every f ∈C
is a strongly computable function with indeterminate values of arguments, which has
an untyped term that λ -defines it. From [3] it follows that every f ∈C is a strongly
computable, monotonic function with indeterminate values of arguments. Therefore,
according to [6], there exists a canonical notion of δ -reduction for the set C. Let
us consider the algorithm of translation of any typed term t into the untyped term t ′

studied in [6]:
if t ≡ m ∈M, then t ′ ≡ m′;
if t ∈C, then FV (t ′) = /0 and t ′ λ -defines t;
if t ≡ x ∈V T , then x′ ∈V and for any x1,x2 ∈V T , x1 6≡ x2⇒ x1

′ 6≡ x2
′;

if t ≡ τ(t1, . . . , tk), k ≥ 1, then t ′ ≡ τ ′t1′ . . . tk′;
if t ≡ λx1 . . .xn[τ], n≥ 1, then t ′ ≡ λx1

′ . . .xn
′.τ ′.

Let P be a typed functional program of the form (1) and P′ be the untyped
functional program (the result of the translation) obtained by replacing typed terms
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for corresponding untyped terms in program P. Program P′:
F ′1 = t ′1[F

′
1, . . . ,F

′
n],

. . .
F ′n = t ′n[F

′
1, . . . ,F

′
n].

(3)

T h e o r e m 14 (on translation) [5]. Let fP ∈ [Mk→M], k ≥ 1, be the basic
semantics of a typed functional program P of the form (1) and let τP′ be the basic
semantics of the untyped functional program P′ of the form (3), then for all
m1, . . . ,mk ∈M we have:

fP(m1, . . . ,mk) = m 6=⊥⇒ τP′m′1 . . .m
′
k→→β m′,

fP(m1, . . . ,mk) =⊥⇒ τP′m′1 . . .m
′
k does not have a head normal form.

D e f i n i t i o n 2 . We say, that an interpretation algorithm A can improve
after the translation, if there exist such typed program P of the form (1),
m1, ...,mk ∈ M, and canonical notion of δ -reduction, that A works infinitely on P
and on the term F1(m1, . . . ,mk), and A stops on the untyped program P′ of the form
(3) and on the term F ′1m′1 . . .m

′
k with a result m′, where m ∈M, m 6=⊥.

D e f i n i t i o n 3 . We say, that an interpretation algorithm A can deteriorate
after the translation, if there exist such typed program P of the form (1),
m1, . . . ,mk ∈ M, and canonical notion of δ -reduction, that A stops on P and on the
term F1(m1, . . . ,mk) with a result m, where m ∈M,m 6=⊥, and A works infinitely on
the untyped program P′ of the form (3) and on the term F ′1m′1 . . .m

′
k.

We recall the following notation for some untyped terms to be used in
what follows: I ≡ λx.x,T ≡ λxy.x, F ≡ λxy.y, Ω ≡ (λx.xx)(λx.xx), if t1 then t2
else t3 ≡ t1t2t3, Zero ≡ λx.xT,⊥′ ≡ Ω, 0′ ≡ I,(n+ 1)′ ≡ λx.xFn′, where x,y ∈ V,
t1, t2, t3 ∈ Λ, n ∈ N.

It is easy to see that: the term Ω does not have a head normal form, if T then t2
else t3→→β t2, if F then t2 else t3→→β t3, Zero 0′→→β T, Zero (n+1)′→→β

F, Zero⊥′ does not have a head normal form, term n′ is closed normal form, and if
n1 6= n2, then n′1 and n′2 are not congruent terms, where n,n1,n2 ∈ N.

T h e o r e m 15. Interpretation algorithm FSRNF can deteriorate after the
translation, but cannot improve.

P r o o f . Interpretation algorithm FSRNF cannot improve after the transla-
tion, since FSRNF is complete for typed programs, Theorem 4. Let us show, that
FSRNF can deteriorate after the translation. Let M = N ∪ {⊥}, x ∈ V T

M ,
F1,F2 ∈V T

[M→M].
Program P6 is: F1 = λx[F2(⊥)],

F2 = λx[0].
Program P6

′ is: F1 = λx.F2Ω,
F2 = λx.0′,

where x,F1,F2 ∈V.
Let us show, that (1,0) ∈ ProcFSRNF(P6) and (1′,0′) /∈ ProcFSRNF(P′6).
For P6 and FSRNF we have: F1(1);λx[F2(⊥)](1)→β F2(⊥);λx[0](⊥)→β 0.
For P′6 and FSRNF we have: F11′;(λx.F2Ω)1′ →β F2Ω →β F2Ω →β . . .

and so on. �
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T h e o r e m 16. Interpretation algorithm LSRNF can both improve and
deteriorate after the translation.

P r o o f . Let M = N∪{⊥}, x ∈V T
M , F1,F2,F3 ∈V T

[M→M].

Program P7 is: F1 = λx[sg2(F2(x),F3(x))],
F2 = λx[F2(x)],
F3 = λx[0].

Program P′7 is: F1 = λx.Sg2(F2x)(F3x),
F2 = λx.F2x,
F3 = λx.0′,

where Sg2≡ λxy. if Zero y then 0′ else 1′, x,y,F1,F2,F3 ∈V.
Let us show, that (1,0) /∈ ProcLSRNF(P7) and (1′,0′) ∈ ProcLSRNF(P′7).
For P7 and LSRNF we have: F1(1);λx[sg2(F2(x),F3(x))](1)→β sg2(F2(1),

F3(1));sg2(λx[F2(x)](1),F3(1))→β sg2(F2(1),F3(1)); . . . and so on.
For P′7 and LSRNF we have: F11′;(λx.Sg2(F2x)(F3x))1′→β Sg2(F21′)(F31′)≡

(λxy. if Zero y then 0′ else 1′)(F21′)(F31′)→β (λy. if Zero y then 0′ else 1′)(F31′)→β

if Zero (F31′) then 0′ else 1′ ≡ if (λx.xT )(F31′) then 0′ else 1′→β if (F31′)T then 0′

else 1′; if ((λx.0′)1′)T then 0′ else 1′→β if 0′T then 0′ else 1′→β if T then 0′ else
1′→→β 0′.

It is easy to see that (1,0) ∈ ProcLSRNF(P6) and (1′,0′) /∈ ProcLSRNF(P′6). �
T h e o r e m 17. Interpretation algorithm PAS can improve after the

translation, but cannot deteriorate.
P r o o f . Interpretation algorithm PAS cannot deteriorate after the translation,

since PAS is complete for untyped programs, Theorem 11. It is easy to see that
(1,0) /∈ ProcPAS(P7) and (1′,0′) ∈ ProcPAS(P′7). Therefore, PAS can improve after
the translation. �

T h e o r e m 18. Interpretation algorithm ACT can deteriorate after the trans-
lation, but cannot improve.

P r o o f . First we prove that ACT can deteriorate after the translation.
Let M = N∪{⊥}, x ∈V T

M , F1,F2 ∈V T
[M→M].

Program P8 is: F1 = λx[sg1(F2(x),F3(x))],
F2 = λx[0],
F3 = λx[F3(x)].

Program P′8 is: F1 = λx.Sg1(F2x)(F3x),
F2 = λx.0′,
F3 = λx.F3x,

where Sg1≡ λxy. if Zero x then 0′ else 1′, x,y,F1,F2,F3 ∈V.
Let us show, that (1,0) ∈ ProcACT(P8) and (1′,0′) /∈ ProcACT(P′8).
For P8 and ACT we have: F1(1);λx[sg1(F2(x),F3(x))](1)→β

sg1(F2(1),F3(1));sg1(λx[0](1),F3(1))→β sg1(0,F3(1))→δ 0.
For P′8 and ACT we have: F11′;(λx.Sg1(F2x)(F3x))1′→β Sg1(F21′)(F31′) ≡

(λxy.if Zero x then 0′ else 1′)(F21′)(F31′), now we must apply algorithm ACT to the
term F21′;(λx.0′)1′→β 0′; further, we have (λxy.if Zero x then 0′ else 1′)0′(F31′)→β
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(λy.if Zero 0′ then 0′ else 1′)(F31′), now we must apply the algorithm ACT to the
F31′;(λx.F3x)1′→β F31′; . . . and so on.

Now we prove that ACT cannot improve after the translation. We assume to
the contrary that for some typed program P of the form (1), m1, . . . ,mk ∈M, and for
some canonical notion of δ -reduction ACT works infinitely on P and F1(m1, . . . ,mk),
and ACT stops on the untyped program P′ of the form (3) and on the term F ′1m′1 . . .m

′
k

with a result m′, where m∈M, m 6=⊥ . Therefore, (m′1, . . . ,m
′
k,m

′)∈ProcACT(P′) and
according to Theorem 10 we have (m′1, . . . ,m

′
k,m

′) ∈ Fix(P′) and τP′m′1 . . .m
′
k→→β

m′. According to Theorem 14 fP(m1, . . . ,mk) = m 6=⊥. According to the translation
algorithm and the property of algorithm ACT, that each “argument must be counted”,
when ACT is applied to P′ and F ′1m′1 . . .m

′
k, ACT will stop on P and F1(m1, . . . ,mk)

(with the result m, Theorem 3), that is a contradiction. �
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