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This work presents development of a method for multi-criteria decision
making under uncertainty conditions based on single-attribute value functions
and probabilistic distributions. The values of different criteria are modeled
using normal distributions, i.e. the value of the i-th criteria of the j-th option is
given by x j

i ∼ N(µ j
i ,σ

j
i ) distribution. The method is evaluated and the results

are analyzed on a simple example.
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Introduction. Several evaluation methods have been proposed in literature to
deal with multi-criteria decision making problems. Their general idea is the
following. Suppose we have n criteria and m alternatives. For each criterion we
are given a weight coefficient, ki, which denotes the relative importance of the i-th
criterion. For each of the alternatives, the decision makers determine values for all
criteria. The i-th criterion for the j-th alternative is denoted by x j

i . In Multi Attribute
Value Theory (MAVT) we compute the values of single-attribute value functions,
ui(x

j
i ), where ui(x) is usually chosen to be a linear function depending on the mini-

mum and maximum values of x [1]:

ui(x
j
i ) =

x j
i − xmin

i

xmax
i − xmin

i
or ui(x

j
i ) =

xmax
i − x j

i

xmax
i − xmin

i
. (1)

At the last step of the method, the values u(x j) =
n
∑

i=1
kiui(x

j
i ) are calculated for

all x j alternatives, which are used to solve the decision problem.
One issue of the described method is that it does not take into account

the accuracy and correctness of the values given by decision makers. Sometimes
the value estimations contain uncertainties and these uncertainties are different for
different alternatives.
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Our Method. In order to measure the impact of the uncertainties on the
final decisions, we suggest to replace the values of x j

i with probabilistic distribu-
tions defined on the set of values for the given criterion. For simplicity, we suggest
to model the values using normal distributions [2]. In particular, the value of the i-th
criterion of the j-th alternative will be given by x j

i ∼N(µ j
i ,σ

j
i ) distribution. Here µ

j
i

correspond to the average, most probable value, while σ
j

i measures the uncertainty.
Whenever the exact value of the criterion is known, we will set σ

j
i = 0.

The linear function ui(x), which is used to determine the single-attribute value
function in MAVT method, will be applied to the distribution N(µ j

i ,σ
j

i ) instead of x j
i

scalar variable. This will ensure that the proportion of uncertainties will be conserved.
In particular:
when the goal is to maximize the i-th criterion, for ui(x) we have

ui

(
N
(

µ
j

i ,σ
j

i

))
=N

(
µ

j
i −µmin

i

µmax
i −µmin

i
,

σ
j

i

µmax
i −µmin

i

)
, (2)

when the goal is to minimize the i-th criterion, then

ui

(
N
(

µ
j

i ,σ
j

i

))
=N

(
µmax

i −µ
j

i

µmax
i −µmin

i
,

σ
j

i

µmax
i −µmin

i

)
. (3)

In these formulas µmin
i = min j µ

j
i and µmax

i = max j µ
j

i . Note that the values
of all single-attribute value functions are distributed normally, and the uncertainties
of he values are proportional to the uncertainties given by decision makers.

We will apply the formula used in the last step of the MAVT method on the
obtained normal distributions. The final value for the j-th alternative will be
determined by the following formula:

u(x j) =
n

∑
i=1

kiN
(

µ
j

i ,σ
j

i

)
. (4)

Taking into account the following:

1. the values of single-attribute value functions are normal distributions;

2. the sum of normal distributions is also normal [3]:

if X ∼N(µ,σ), X ′ ∼N(µ ′,σ ′), then X +X ′ ∼N(µ +µ
′,
√

σ2 +σ ′2); (5)

3. the product of a normal distribution and a scalar is also normal:

if X ∼N(µ,σ), k ∈ R, then kX ∼N(kµ,kσ), (6)

we obtain that u(x j) is a normal distribution: u(x j) ∼ N(µ j,σ j), where µ j and σ j

depend on µ
j

i , σ
j

i and the form of ui functions. Note that when σ
j

i = 0 for all values
of i and j, then the described method is equivalent to MAVT method.

Let us derive the final form of the u(x j) distribution in a special case when we
want to maximize the values of all criteria. Suppose we are given the numbers ki, µ

j
i

and σ
j

i , and all functions ui(x) are defined as in (2). Then, the formula (4) becomes:
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u(x j) =
n

∑
i=1

kiN
(

µ
j
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j

i

)
=

n

∑
i=1

kiN
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µ

j
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i

µmax
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i
,

σ
j

i

µmax
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i

)
=

=N

(
n

∑
i=1

ki
µ

j
i −µmin

i
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i
,

√
n

∑
i=1

ki
σ

j
i
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i

)
.

The Impact of Independence between Criteria. The formula (5) holds, if
the random variables in the sum are independent. In reality, sometimes there can be
some correlations between different criteria. In case the correlations are known, it
is possible to extend our method in a way that the calculations will respect existing
correlations. In particular, if the joint distribution of values of the i-th and i′-th criteria
is normal and the correlation coefficient between the random variables X ∼N(µ,σ)
and X ′ ∼N(µ ′,σ ′) is ρ , then the formula (5) will be modified as follows:

X +X ′ ∼N(µ +µ
′,
√

σ2 +σ ′2 +2ρσσ ′).

Application of the Proposed Method on a Simple Example. In [4], five
scenarios of nuclear power unit installations are compared using MAVT method.
The scenarios are WWER-1000, CANDU-6, small modular reactor having 360 MW
power (SMR), ACP-600 and the non-nuclear option. The proposed method will be
applied for five scenarios by taking into account economic criteria and the results will
be analyzed. The economic criteria, taken into account in [4], are the following:

E.1 – Levelized Long-term average NPP production cost, LUEC;
E.2 – Power system Long-term average generation cost;
E.3 – New generation investment cost;
E.4 – Whole energy system cost.

Values for the economic criteria

Scenario E.1, E.2, E.3, E.4,
USD/MW ·h USD/MW ·h mln USD mln USD

WWER-1000 91 (3) 75.9 (1) 8 566 (500) 44 555 (100)
CANDU-6 73 (3) 69.2 (1) 6 986 (500) 43 954 (100)

SMR (360 MW ) 97 (3) 77.1 (1) 6 896 (1 000) 44 701 (200)
ACP-600 71 (3) 73.2 (1) 5 022 (1000) 44 347 (200)

No nuclear 103 (3) 78.3 (1) 2 431 (100) 44 868 (5)

The values of the criteria considered in the table are taken from the “Long-term
(up to 2036) development pathways of RA energy sector” strategy [5].

The values for the above-mentioned criteria are presented in Table. Taking into
account the probability of changes of the values depending on different factors, we
introduce uncertainty estimates σ i

j, which are presented in Table inside parentheses.
The uncertainties presented in Table are based on the fact that American SMR

and Chinese ACP-600 power units are still in design or testing phases. Therefore,
the estimates of their costs are less precise than those of Canadian CANDU-6 and
Russian WWER-1000, which are already in use. The costs for non-nuclear scenario
are even more predictable.
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Following [4], the weight coefficients for the criteria E.1 to E.4 are specified
as follows: E.1 – 0.10; E.2 – 0.40; E.3 – 0.15; E.4 – 0.35.

Analysis of the Results. The results of applying our proposed method on this
data are presented in Figure.
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The final scores and uncertainties.

The obtained results demonstrate that Canadian CANDU-6 system signifi-
cantly outperforms all rival technologies in terms of economic efficiency even by
taking into account the uncertainties in data. The second most efficient system is the
Chinese ACP-600, which, regardless the high uncertainty of its estimates, signif-
icantly outperforms WWER-1000 system, which comes at the third place. It is
interesting to note the results for the American SMR system, which is the fourth in
our list. The uncertainty in the data related to SMR technology is so high, that in case
of the most positive developments it will become more preferable than WWER-1000
system, and in the case of the post negative developments it can be economically
less efficient than the non-nuclear option. Also note, than there are scenarios when
non-nuclear option can compete with WWER-1000 as well.
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