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Introduction. In the present work algebraic equations of the following type

λ
n +a1(x)λ n−1 + · · ·+an(x) = 0 (∗)

are investigated, where a j(x), j = 1, . . . ,n, are a complex valued, bounded and con-
tinuous functions given on some locally compact Hausdorff space Ω. The aim of
this work is to obtain the conditions, which provide solvability of equation (∗) in the
algebra of complex-valued, boundary and continuous functions on the space Ω. If
instead of an individual equation (∗), we consider a class of equations (∗), then the
question about the description of a locally compact space Ω, on which any equation
of type (∗) are solvable, became interesting.

We note that for the compacts this problem were sufficiently detailed studied
in the works [1–3].

Let Ω be a locally compact Hausdorff space. We assume that the space
Ω admits a “compact exhaustion”, that is there exists a compacts Kp ⊂ Ω such

that Kp ⊂ Kp+1 and Ω =
∞⋃

p=1
Kp. As such locally compact it can be considered the

following set Ω =

{
(x,y) ∈ R2 : y = sin

1
x
, 0 < x <

2
π

}
and as Kp the set

Kp =

{
(x,y) ∈Ω :

1
p
6 x≤ 2

π
− 1

p

}
, where p = 4,5, . . .
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Simultaneously, we note that a locally compact Ω is called a “hereditarily
unicoherent”, if for any two connected closed subsets K1,K2 ⊂Ω their intersection is
also a connected set.

Since the studied below algebras are topological algebras, more precisely a
β -uniform algebras, we give their description.

Let C∞(Ω) be an algebra of all complex-valued, bounded and continuous func-
tions given on a locally compact Hausdorff space Ω. Then this algebra allotted with
uniform norm

(
i.e. ‖ f‖

∞
= sup

Ω

| f (x)|
)

becomes a Banach algebra, which we denote

by Cb(Ω). At the same time, using the ideal C0(Ω) ⊂C∞(Ω) of functions vanishing
at infinity (i.e. for each f ∈C0(Ω) and ε > 0 there exists a compact Kε ⊂Ω such that
| f ||

Ω\Kε
< ε) one can introduce a topology on the algebra C∞(Ω) by the family of

algebraic seminorms {Pg}g∈C0(Ω), where Pg( f ) = ‖Tg f‖
∞

and Tg : Cb(Ω)→Cb(Ω) is
the multiplication operator Tg f = g f .

Natural topology on C∞(Ω) given by this family of algebraic seminorms is
called a β -uniform topology and the algebra C∞(Ω) in this topology will be de-
noted by Cβ (Ω) following the notation of [4–6]. Thus, a β -uniform topology and
the algebra Cb(Ω) is the weakest of the topologies, under which all linear operators
{Tg}g∈C0(Ω) ⊂ BL(Cb(Ω)), i.e. the base of neighborhood of zero is given by the sets

U(g1, . . . ,gn;ε) ={
f ∈Cb(Ω) : Pgi( f ) = ‖Tgi f‖

∞
< ε, where gi ∈C0(Ω); i = 1, . . . ,n

}
.

We recall that a subalgebra A(Ω) of the algebra Cβ (Ω) is called β -uniform
algebra on Ω, if it is a closed subalgebra of a β -uniform algebra Cβ (Ω), contains
constants and separates the points of Ω.

We note that an interesting difference between the uniform and the β -uniform
algebras is observed by the fact that on a uniform algebra every complex homo-
morphism is continuous, as for the β -uniform algebras this is not true. For exam-
ple, on a uniform algebra Cb(Ω) every complex homomorphism is continuous, since
Cb(Ω)∗ = M(bΩ), where bΩ is a Stone-Cech compactification of Ω, which is the
of maximal ideals space of the uniform algebra Cb(Ω). On the other hand, for the
β -uniform of the algebra Cβ (Ω) we have Cβ (Ω)∗ =M(Ω) (see [6, 7]), where M(Ω)
is the space of all bounded complex regular measures on Ω, then all the pointing
functionals corresponding to the points of bΩ\Ω are discontinuous complex homo-
morphisms on the β -uniform algebra Cβ (Ω). It is interesting to note that, in the
context of the foregoing, it is not known whether there exists a Frechet algebra on
which there is a discontinuous complex homomorphism.

From the above definition of the base of neighbourhood of zero in a β -uniform
topology it follows that the family of seminorms {PF}F∈F(Ω), where F = {gi1 , . . . ,gin}
runs troughs the set of all finite subsets F(Ω) from C0(Ω) and PF( f ) = ∑

g∈F
‖Tg f‖

∞

is a directed family of seminorms, which defines a β -uniform topology on
the algebra Cβ (Ω).

This allows us to represent a β -uniform algebra A(Ω) as a projective limit
of the system of uniform algebras (AF(Ω);πF,H), i.e. A(Ω) = lim

←−
(AF(Ω);πF,H)
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(see [7, 8]). Then the set MA(Ω) of all β -uniform continuous linear multiplicative
functionals are inductive limits of maximal ideals of the space of uniform algebra
AF(Ω).

T h e o r e m 1. Let Ω be a locally connected, locally compact Hausdorff
space, which admits a compact exhaustion, and A(Ω) is a β -uniform algebra on
a Ω such that for each f ∈ A(Ω) there exists a natural number k = k( f ) > 2 and
g ∈A(Ω) such that gk = f . Then A(Ω) =Cβ (Ω).

P r o o f . Since a locally compact Ω is a locally connected and admits a

“compact exhaustion”, we have Ω =
∞⋃

p=1
Kp, where Kp ⊂ Ω is a locally connected

compacts. Let A(Kp) is a uniform algebras on Kp such that A(Ω)= lim
←−

(A(Kp);πp,q).

Since a β -uniform algebra A(Ω) by condition is binomial solvable, for each natural p
a uniform algebra A(Kp) is binomial solvable too. Then by the Theorems from [2,3],
we have A(Kp) = C(Kp), from which it follows that A(Ω) = lim

←−
(A(Kp);πp,q) =

= lim
←−

(C(Kp);πp,q) =Cβ (Ω). �

The statement below is an analogous of R. Countryman’s Theorem (see [1])
for a β -uniform algebras.

T h e o r e m 2. Let Ω be a connected, locally compact Hausdorff space that
admits a compact exhaustion. Then a β -uniform algebra Cβ (Ω) will be algebraically
closed if and only if the space Ω is a locally connected and hereditarily unicoherent.

The proof follows from the fact that Cβ (Ω) = lim
←−

(C(Kp);πp,q) and each

algebra C(Kp) is algebraically connected (see mentioned above R. Countryman’s
Theorem).

We consider now the class of equations for which for each x0 ∈ Ω the
corresponding equation with numerical coefficients does not have a multiple roots.
We are interested in a condition on Ω guaranteeing a solvability of this equations.

We define the class of all equations (∗) without multiple roots by An(Ω)
(see [9]) and An(Ω) =

⋃
k6n

Ak(Ω).

The set An(Ω) turns into a metric space with respect the metric

ρ( f , f̃ ) = sup
x∈Ω

(√
n
∑
j=1

∣∣a j(x)− ã j(x)
∣∣2), where a j, ã j are the corresponding

coefficients of the equations f , f̃ ∈ An(Ω).

Simultaneously we note that for a connected, finite latticed complex Ω (see [9,
10]) the question about solvability on Ω an algebraic equations of type (∗) is con-
nected with the fundamental group π1(Ω), namely the group H1(Ω,Z) that is iso-
morphic to the group Hom(π1(Ω);Z). It is shown in [9], that for a connected finite
latticed complex Ω missing of a nontrivial homomorphism of a group π1(Ω) into a
Artin’s group of a “braid” Bn is equivalent to the fact that any equation of type (∗)
without multiple roots is completely solvable, i.e. they belong to the class An(Ω).
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T h e o r e m 3. Let Ω be a connected, locally compact Hausdorff space,

which admits a connected compact exhaustion (i.e. Ω =
∞⋃

p=1
Kp, where Kp are a con-

nect compacts). Suppose that for each Kp there exists a sequence of inverse spectrum
of a connected, finite latticed complexes (Kp,α ;ωα) converging to Kp, such that all
π1(Kp,α ;ωα) are commutative groups. Then necessary and sufficient condition for a
complete solvability of all equations from the class An(Ω) is the condition that the
group H1(Ω;Z) is divisible by n!.

P r o o f . Note that (see [8]) according to
H1(Ω;Z) =C−1

β
(Ω)/exp(Cβ )(Ω) = lim

−→
C−1(Kp)/exp(C(Kp))

and the Arens–Roiden’s Theorem (see [11]), we have C−1(Kp)/exp(C(Kp)) =

= H1(Kp;Z) such that H1(Ω,Z) = lim
−→

H1(Kp;Z). On the other hand, for each

p ∈ N we have H1(Kp;Z) = lim
−→

H1(Kp,α ;Z), where lim
−→

denotes the inductive limit.
As shown in [9], if Kp is a connected compact such that there exists an inverse
spectrum of connected, finite latticed complexes, which converge to Kp, where all
groups π1(Kp,α) are commutative, then a complete solvability of all equations from
An(Kp) is equivalent to the divesibility of the group H1(Kp,α ;Z) by n!.

Since
H1(Ω;Z) = lim

−→
H1(Kp;Z) and H1(Kp;Z) = lim

−→
H1(Kp,α ;Z)

we complete the proof of Theorem. �
We will derive below an interesting application of the above results in the

algebra of L-convolution operators arising in the self-adjoint differential operator
on L2(R).

Let L be a self-adjoint operator on L2(R) generated by the differential
expression

(`y)(x) =−y′′(x)+q(x)y(x)

with a real potential q(x) satisfying the condition (1 + |x|)q(x) ∈ L1(R), and let
u±(x,λ ) (x,λ ∈ R) be the solutions of the equation `y = λ 2y that are eigenfunctions
of the right and left scattering problems, respectively, which represent a complete
orthonormal set of eigenfunctions of the continuous spectrum (see [12, 13]).

The operators τ,m(a), I : L2(R) → L2(R), where a ∈ Cβ (R), and
τ(y,(x)) = y(−x), m(a)y= ay, Iy= y, generate the operators U±,U : L2(R)→ L2(R),

where (U±y)(λ ) = 1√
2π

∞∫
−∞

u±(λ ,x)y(x)dx, λ ∈ R, U = m(χ+)U− + m(χ−)U+,

χ± is the characteristic function corresponding to the set R± and the integrals are
understood in the sense of convergence in L2(R).

Then the operators U± are bounded operators, the operator U is a partial
isometry and U∗U = I −P, UU∗ = P, where P is the projection of L2(R) onto a
proper subspace corresponding to the discrete spectrum (see [12]).

Let A(R) be a β -uniform subalgebra in the algebra Cβ (R). Denote by AL(R)
the algebra of L-convolution operators of the form U∗m(a)U on L2(R). We note that
AL(R) =A(R) up to isomorphism and the following corollary holds.
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C o r o l l a r y 1. If the algebra of L-convolution operators AL(R) is
binomially solvable, then AL(R) =Cβ (R).
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