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Introduction. Let the sequence of complex numbers
{

wk
}∞

1 =
{

uk + ivk
}∞

1
in the lower half-plane G = {w : Im(w)< 0} satisfy the condition

∞

∑
k=1
|vk|<+∞. (1)

Then the infinite Blaschke product

B(w) =
∞

∏
k=1

w−wk

w−wk

converges in the half-plane G, determining an analytic function with zeros
{

wk
}∞

1 .
We define an integral logarithmic mean of order q, 1 ≤ q < +∞, of Blaschke

products on the half-plane by the formula

mq (v,B) =

 +∞∫
−∞

|log |B(u+ iv)||q du

 1
q

, −∞ < v < 0.

Let’s denote by n(v) the number of zeros of the function B in the half-plane
{w : Im(w)≤ v}.

Applying developed by one of the authors “method of Fourier transforms for
meromorphic functions” [1, 2], in this paper we obtain estimates for mq (v,B) by the
function n(v). We state the main results of the present paper. In what follows, p and

q are conjugate numbers, that is
1
p
+

1
q
= 1.
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T h e o r e m 1.

a) In the case q = 1 we have

m1 (v,B) =
+∞∫
−∞

|log |B(u+ iv)||du =
√

2π

0∫
v

n(t)dt.

b) In the case 1 < q <+∞ there exists a constant cp such that

mq (v,B)≤Cp |v|−
1
p

0∫
v

n(t)dt, −∞ < v < 0. (2)

C o r o l l a r y . If 1≤ q <+∞ and for some 0 < α < 1

n(v) = O
(
|v|−α

)
, v→ 0,

then mq (v,B) = O
(
|v|

1
q−α
)
, v→ 0.

T h e o r e m 2. If the sequence {wk}∞
1 belongs to one vertical half-line

{wk}∞
1 ⊂ {w = u0 + ih :−∞ < h < 0} and 1 < q≤ 2, then for the boundedness of the

function mq (v,B) the necessary and sufficient condition is the relation

n(v) = O
(
|v|−

1
q

)
, v→ 0.

In the case of the circle for q = 2 the problem was posed by A. Zygmund.
In 1969 this problem was solved by the method of Fourier series for meromorphic
functions by G.R. MacLane and L.A. Rubel [3]. In [4] V.V. Eiko and A.A. Kon-
dratyuk investigated this problem in the general case, when 1≤ q <+∞.

In the case of a half-plane in [5], the problem of the connection of the
boundedness of m2 (v,πα) with distributions of zeros of products πα (introduced
by A.M. Djhrbashyan [6]), using the method of Fourier transform of meromorphic
functions. The function πα coincides with B for α = 0.

For −∞ < x <+∞ and −∞ < v < 0 we denote by

Ω(x,v) =
+∞∫
−∞

e−ixu log |B(u+ iv)|du.

The proof of the theorems is based on the following formula [1]

Ω(x,v) =
√

2π

(
e|x|v

|x| ∑
vk>v

e−ixuk sh(|x|vk)+
sh(|x|v)
|x| ∑

vk≤v
e−ixuk+|x|vk

)
, x 6= 0, (3)

which connects the Fourier transform of log |B| with zeros of the function B.
From the formulas

∞∫
0

e−ax− e−cx

x
cosbxdx =

1
2

log
b2 + c2

b2 +a2 ,

∞∫
0

1− e−ax

x
cosbxdx =

=
1
2

log
(

1+
a2

b2

)
, a > 0, c > 0
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and from (3) it follows the inversion formula

log |B(u+ iv)|= 1√
2π

+∞∫
−∞

eixu
Ω(x,v)dx, u+ iv 6= uk + ivk. (4)

L e m m a . For x 6= 0 and −∞ < v < 0 the following inequality holds:

|Ω(x,v)| ≤
√

2π
e2|x|v−1

2 |x|v

0∫
v

n(t)dt.

P r o o f . We denote

K (x,v) =
√

2π
sh(|x|v)
|x| ∑

vk≤v
e−ixuk+|x|vk ,

L(x,v) =
√

2π
e|x|v

|x| ∑
vk>v

e−ixuk sh(|x|vk) .

Let’s estimate |K (x,v)| and |L(x,v)|. We have

|K (x,v)| ≤ −
√

2π
sh(|x|v)
|x| ∑

vk≤v
e|x|vk =−

√
2π

sh(|x|v)
|x|

v∫
−∞

e|x|tdn(t) =

=−
√

2πe|x|v
sh(|x|v)
|x|

n(v)+
√

2πsh(|x|v)
v∫

−∞

e|x|tn(t)dt.

(5)

Since the fraction
sh(−y)
−y

(−∞ < y < 0) is a decreasing function, we get

|L(x,v)| ≤ −
√

2πe|x|v ∑
vk>v

vk
sh(|x|vk)

|x|vk
≤−
√

2πe|x|v
sh(|x|v)
|x|v ∑

vk>v
vk. (6)

From the condition (1) it follows that lim
v→0

vn(v) = 0. Consequently,

∑
vk>v

vk =

0∫
v

tdn(t) =−vn(v)−
0∫

v

n(t)dt,

and from (6) we have

|L(x,v)| ≤
√

2πe|x|v
sh(|x|v)
|x|

n(v)+
√

2πe|x|v
sh(|x|v)
|x|v

0∫
v

n(t)dt. (7)

From (5)–(7) we obtain

|Ω(x,v)| ≤ |K (x,v)|+ |L(x,v)| ≤
√

2πsh(|x|v)
v∫

−∞

e|x|tn(t)dt+

+
√

2πe|x|v
sh(|x|v)
|x|v

0∫
v

n(t)dt ≤
√

2π
e2|x|v−1

2 |x|v

0∫
v

n(t)dt.

Lemma is proved.
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Proof of the Theorem 1. Proof of a) follows from the following equalities

m1 (v,B) =
+∞∫
−∞

|log |B(u+ iv)||du =−
+∞∫
−∞

log |B(u+ iv)|du =−Ω(0,v) =

=−
√

2π

(
∑

vk≥v
vk + v ∑

vk<v
1

)
=−
√

2π

 0∫
v

tdn(t)+ vn(v)

=
√

2π

0∫
v

n(t)dt.

Let’s prove b). First we consider the case q≥ 2. Using the Lemma, inversion
formula (4) and inequality of Hausdorff–Young, we get

mq (v,B)≤ Ap

 +∞∫
−∞

|Ω(x,v)|p dx

 1
p

≤

≤ Ap

 +∞∫
−∞

√2π
e2|x|v−1

2 |x|v

0∫
v

n(t)dt

p

dx


1
p

= Ep |v|−
1
p

0∫
v

n(t)dt,

(8)

where Ap and Ep are constants and, moreover,

Ep = Ap2
1
p−

1
2
√

π

 ∞∫
0

(
1− e−2x

x

)p

dx

 1
p

.

Now consider the case 1< q< 2. We use the method from [4]. Since logmq (v,B)

is a convex function with respect to
1
q

[7], we get

logmq (v,B)≤ (1−θ) logmω (v,B)+θ logms (v,B)

or
mq (v,B)≤ mω (v,B)1−θ ms (v,B)

θ ,

where
1
q
=

1−θ

ω
+

θ

s
, 0≤ θ ≤ 1.

Setting ω = 1 and s = 2, we have θ =
2
p

and 1−θ =
2
q
−1. Thus,

mq (v,B)≤ m1 (v,B)
2
q−1 m2 (v,B)

2
p .

Since

m1 (v,B) =
√

2π

0∫
v

n(t)dt, m2 (v,B)≤ E2 |v|−
1
2

0∫
v

n(t)dt,

we obtain

mq (v,B)≤
(√

2π

) 2
q−1

(E2)
2
p |v|−

1
p

0∫
v

n(t)dt. (9)
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Denoting

Dp =
(√

2π

) 2
q−1

(E2)
2
p , Cp = max(Ap,Dp) ,

from (8) and (9) we get (2).
Proof of the Corollary. From the condition n(v) = O

(
|v|−α

)
as v→ 0, we

have
0∫

v

n(t)dt = O

 0∫
v

|t|−α dt

= O
(
|v|1−α

)
.

Hence mq (v,B) = O
(
|v|

1
q−α
)
, v→ 0.

Proof of the Theorem 2. First we prove the necessity. For 1 < q ≤ 2 using
the inequality of Hausdorff-Young, we have +∞∫

−∞

|log |B(u+ iv)||q du

 1
q

≥Mp

 +∞∫
−∞

|Ω(x,v)|p dx

 1
p

,

where Mp is a constant.
Since the sequence

{
wk
}∞

1 belongs to one vertical half-line, we conclude

|Ω(x,v)|=

∣∣∣∣∣√2π

(
e|x|v

|x| ∑
vk>v

sh(|x|vk)+
sh(|x|v)
|x| ∑

vk≤v
e|x|vk

)∣∣∣∣∣≥
≥−
√

2π
e|x|v

|x| ∑
vk>v

sh(|x|vk) , x 6= 0.
(10)

Since the fraction
sh(−y)
−y

(−∞ < y < 0) is a decreasing function, we have

−sh(|x|vk)

|x|
≥ −vk,

and from (10) we get
|Ω(x,v)| ≥

√
2πe|x|v ∑

vk>v
(−vk) .

Thus, it follows that

mq (v,B)≥Mp

 +∞∫
−∞

|Ω(x,v)|p dx

 1
p

≥
√

2πMp
1

|v|
1
p

∑
vk>v

(−vk) . (11)

Assume that mq (v,B) is bounded. Then for −∞ < v < 0 in view of (11) there
exists a constant Np such that

0∫
v

(−t)dn(t)≤ Np |v|
1
p .
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It follows that for v < v′ < 0

Np |v|
1
p ≥

v′∫
v

(−t)dn(t) =

= (−v′)n(v′)− (−v)n(v)+
v′∫

v

n(t)dt ≥
(
−v′
)(

n
(
v′
)
−n(v)

)
.

(12)

Introducing the notation φ (v) = n(v) |v|
1
q and assuming v′ =

v
2

, from (12)
we obtain

2
1
q φ

( v
2

)
−φ (v)≤ Np. (13)

Observe that limsup
v→0−

φ (v) < +∞. Indeed, otherwise for some sequence of

numbers we will have vn, vn→ 0, φ (vn) ≥ φ (v) for every v ≤ vn and φ (vn)→ +∞,
that is a contradiction, since by (13) :

Np ≥
(

2
1
q −1

)
φ (vn)+φ (vn)−φ (2vn)≥

(
2

1
q −1

)
φ (vn) .

This proves the necessity.
The proof of sufficiency follows from the Corollary of Theorem 1.
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