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We obtain upper bounds of the complexity of linearized coverings for some
special solutions of the equation
x1x2x3 + x2x3x4 + · · ·+ x3nx1x2 + x1x3x5 + x4x6x8 + · · ·+ x3n−2x3nx2 = b
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MSC2010: Primary 97H60; Secondary 14N20, 51E21.

Keywords: linear algebra, finite field, coset of linear subspace, linearized
covering.

Introduction. Throughout this paper Fq stands for a finite field with q elements
[1] (q-power of a prime number), and Fn

q stands for an n-dimensional linear space
over Fq : Fn

q ≡{α = (α1,α2, . . . ,αn)|αi ∈ Fq, i = 1,2, . . . ,n}. If L is a linear subspace
in Fn

q and α ∈ Fn
q , then the set α +L = {α + x|x ∈ L} is a coset (or translate) of the

subspace L and dim(α +L) coincides with dimL. An equivalent definition: a subset
H ⊆ Fn

q is a coset, if whenever h1,h2, . . . ,hm are in H, so is any affine combination

of them, i.e.
m

∑
i=1

λihi ∈ H for any λ1,λ2, . . . ,λm in Fq such that
m

∑
i=1

λi = 1. It can be

readily verified that any m-dimensional coset in Fn
q can be represented as a set of

solutions of a certain system of linear equations over Fq of rank n−m and vice versa.
D e f i n i t i o n . Let M be a subset in Fn

q and H1,H2, . . . ,Hm ⊆ M be cosets

of linear subspaces in Fn
q . If M =

m⋃
i=1

Hi, then we say that {H1,H2, . . . ,Hm} is a

linearized covering of M of complexity (or length) m. The linearized covering of M
with minimal length is the shortest linearized covering of M.

The problem of the shortest (minimal) linearized covering of the set of solu-
tions of a polynomial equation over a finite field was first investigated in [2, 3] for
a simple field F2, and the theory of linearized disjunctive normal forms was intro-
duced. Some metric characteristics of the linearized coverings of subsets of a finite
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field were investigated in [4, 5]. The problem of a linearized covering of symmetric
subsets of a finite field was solved in [6], and for the sets of solutions of quadratic
and some higher-degree equations over a finite field was solved in [7–15].

Main Theorem. For given b ∈ Fq and n> 1 consider an equation

x1x2x3 + x2x3x4 + · · ·+ x3nx1x2 + x1x3x5 + x4x6x8 + · · ·+ x3n−2x3nx2 = b (1)

over Fq. We denote by M the set of solutions of (1). It is clear that M ⊆ F3n
q .

We rewrite Eq. (1) in the following form:

(x1 + x4)(x2 + x5)x3 +(x4 + x7)(x5 + x8)x6 + · · ·+(x3n−2 + x1)(x3n−1 + x2)x3n = b.
(2)

If n≡ 0(mod2) or q≡ 0(mod2), then

x3n−2+x1 =
n−1

∑
i=1

(−1)i−1(x3i−2+x3i+1) and x3n−1+x2 =
n−1

∑
i=1

(−1)i−1(x3i−1+x3i+2),

and Eq. (2) can be rewritten in the form

(x1 + x4)(x2 + x5)x3 +(x4 + x7)(x5 + x8)x6 + · · ·
· · ·+(x3n−5 + x3n−2)(x3n−4 + x3n−1)x3(n−1)+ (3)

+

[
n−1

∑
i=1

(−1)i−1(x3i−2 + x3i+1)

][
n−1

∑
i=1

(−1)i−1(x3i−1 + x3i+2)

]
x3n = b.

For any vector ααα = (α1,α2, . . . ,α3n) ∈ Fq3n when n ≡ 1(mod2) and
q≡ 1(mod2), we construct a new vector

α̃αα = ((α1 +α4)(α2 +α5),(α4 +α7)(α5 +α8), . . . ,(α3n−2 +α1)(α3n−1 +α2)) ∈ Fn
q ,

and when n ≡ 0(mod2) or q ≡ 0(mod2), we construct a vector α̃αα = ((α1 +
+α4)(α2 + α5),(α4 + α7)(α5 + α8), . . . ,(α3n−5 + α3n−2)(α3n−4 + α3n−1)) ∈ Fn−1

q .
Further everywhere z(γγγ) denotes the number of zero coordinates of the vector
γγγ = (γ1,γ2, . . . ,γm) ∈ Fqm . Moreover, for any s ∈ {0,1, . . . ,n} we have the set

Ms ≡ {ααα = (α1,α2, . . . ,α3n) ∈M |z(α̃αα) = s}.

It should be noted that for n ≡ 0(mod2) or q ≡ 0(mod2) the set Mn does not exist.
It is clear that Ms∩Mt = /0⇐⇒ s 6= t and

M =
⋃
s

Ms.

We denote by Eq(n,s) the minimal complexity of the linearized covering
of the set Ms, and by Eq(n) the complexity of the shortest covering of M
by cosets that are entirely contained in one of the sets Ms, s = 0,1, . . . ,n.

Our goal is to evaluate the values of Eq(n,s) and Eq(n).
T h e o r e m 1. When n≡ 1(mod2) and q≡ 1(mod2), then

Eq(n,s)6

 Cs
n(q−1)2(n−s)2s, if s < n,

2n, if s = n.
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Eq(n,s)>


Cs

n(q−1)2(n−s)
(

2− 1
q

)s
, if s < n and b 6= 0,

1
q

Cs
n(q−1)2(n−s)

(
2− 1

q

)s
, if s < n and b = 0,(

2− 1
q

)s
, if s = n and b = 0.

Eq(n)6


[
(q−1)2 +2

]n−2n, if b 6= 0,[
(q−1)2 +2

]n
, if b = 0.

Eq(n)>


[
(q−1)2 +

(
2− 1

q

)]n

−
(

2− 1
q

)n
, if b 6= 0,

1
q

[
(q−1)2 +

(
2− 1

q

)]n

+
q−1

q

(
2− 1

q

)n
, if b = 0.

T h e o r e m 2. When n≡ 0(mod2) or q≡ 0(mod2), then

Eq(n,s)6


(q−1)2(n−1), if s = 0,
Cs

n−1(2
s−2)(q−1)2(n−s)q−1 +o(q2(n−s)−1), if 0 < s < n−1,

(q−1)2(2s−2), if s = n−1 and b 6= 0,
(q2−2q+3)(2s−2)+2, if s = n−1 and b = 0;

Eq(n)6 (q−1)2(n−1)+o(q2(n−1)).

Proof of Theorem 1. Let n ≡ 1(mod2) and q ≡ 1(mod2). Then the
nondegenerate linear transformation

y1 = x1 + x4,
y2 = x4 + x7,

...
yn = x3n−2 + x1,
z1 = x2 + x5,
z2 = x5 + x8,

...
zn = x3n−1 + x2,
ti = x3i, i = 1,n,

converts Eq. (2) into equation
y1z1t1 + y2z2t2 + · · ·+ ynzntn = b.

It is obvious that the last equation is a particular case of equation
x1x2 · · ·xk + xk+1xk+2 · · ·x2k + · · ·+ xk(n−1)+1xk(n−1)+2 · · ·xkn = b (4)

when k = 3. The Eq. (4) is considered in [9] and
• N stands for the set of all solutions of Eq. (4);
• Ns stands the set of all solutions of Eq. (4), for which exactly s, 0 6 s 6 n,

of n products xk(i−1)+1xk(i−1)+2 · · ·xk(i−1)+(k−1) (i = 1,2, . . . ,n) are equal to zero;
• Lk

q(n,s) denotes the complexity of the shortest linearized covering
of the set Ns;
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• Lk
q(n) denotes the complexity of the covering of the set N by cosets, all

vectors of which are entirely contained in one set Ns, 0 6 s 6 n, the following
estimates are obtained:

Lk
q(n,s)6

{
Cs

n(q−1)(k−1)(n−s)(k−1)s, if s < n,
(k−1)n, if s = n;

Lk
q(n,s)>



Cs
n(q−1)(k−1)(n−s)

(
qk−1− (q−1)k−1

qk−2

)s

, if s < n and b 6= 0,

1
q

Cs
n(q−1)(k−1)(n−s)

(
qk−1− (q−1)k−1

qk−2

)s

, if s < n and b = 0,(
qk−1− (q−1)k−1

qk−2

)s

, if s = n and b = 0;

Lk
q(n)6

{ [
(q−1)k−1 +(k−1)

]n− (k−1)n, if b 6= 0,[
(q−1)k−1 +(k−1)

]n
, if b = 0;

Lk
q(n)>



[
(q−1)k−1 +

qk−1− (q−1)k−1

qk−2

]n

−
(

qk−1− (q−1)k−1

qk−2

)n

,

if b 6= 0,
1
q

[
(q−1)k−1 +

qk−1− (q−1)k−1

qk−2

]n

+
q−1

q

(
qk−1− (q−1)k−1

qk−2

)n

,

if b = 0.

From the above, it is clear that for n≡ 1(mod2) and q≡ 1(mod2) and k = 3 we have
the following identities:

M ≡ N, Ms ≡ Ns, Eq(n,s)≡ L3
q(n,s), Eq(n)≡ L3

q(n)

and, consequently, the estimates of Theorem 1. Note that the problem of the minimal
linearized covering for y1z1t1 + y2z2t2 + · · ·+ ynzntn = b was solved in [8].

Theorem 1 is completely proved.
On the Number of Solutions of Certain Equations and Systems of

Equations over a Finite Field.
L e m m a 1.
(i) The number of solutions of the equation x1 + x2 + · · ·+ xk = 0 over the

multiplicative group F∗q of the finite field Fq is equal to

(q−1)
[
(q−1)k−1 +(−1)k

]
q

.

(ii) Over the multiplicative group F∗q the inequality x1 + x2 + · · ·+ xk 6= 0

has exactly
(q−1)

[
(q−1)k +(−1)k+1

]
q

solutions.

P r o o f . We denote by sk the number of solutions of the equation
x1 +x2 + · · ·+xk = 0 in the group F∗q . It is clear that the equation x1 = 0 has no solu-
tions in F∗q and, therefore, s1 = 0. Consider the general equation x1+x2+ · · ·+xk = 0
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for k > 1. The variables of the latter can not take zero values, therefore, assigning
the values αi ∈ F∗q to all variables xi (i = 1,2, . . . ,k− 1), we must require that
α1+α2+ . . .+αk−1 6= 0, and the number of such different vectors (α1,α2, . . . ,αk−1)
coincides with sk and is equal to (q − 1)k−1 − sk−1. Thus s1 = 0 and
sk = (q−1)k−1− sk−1 for k > 1. Then

sk = (q−1)k−1− (q−1)k−2 +(q−1)k−3−·· ·− (−1)k(q−1) =

=
k−1

∑
i=1

(−1)i−1(q−1)k−i =
(q−1)

[
(q−1)k−1 +(−1)k

]
q

.

Having the value sk for any positive integer k, we can find the number of solutions of
the inequality x1 + x2 + · · ·+ xk 6= 0 in the group F∗q . It is obvious that it is equal to

(q−1)k− sk =
(q−1)

[
(q−1)k +(−1)k+1

]
q

.

�
L e m m a 2. The number of solutions of systems{

xiyi = 0, i = 1,2, . . . ,k,
(x1 + x2 + · · ·+ xk)(y1 + y2 + · · ·+ yk) = 0

(5)

and {
xiyi = 0, i = 1,2, . . . ,k,
(x1 + x2 + · · ·+ xk)(y1 + y2 + · · ·+ yk) 6= 0

(6)

over Fq are equal to[
(2q−1)k+1 +2(q−1)k+2 +(−1)k+1(q−1)2

]
·q−2,

(q−1)2 ·
[
(2q−1)k−2(q−1)k +(−1)k

]
·q−2.

P r o o f . We consider system (5). If xi = αi ∈ F∗q for i = 1,2, . . . ,k, then

y1 = y2 = · · · = yk = 0 and the vector
(

α1,α2, . . . ,αk,0,0, . . . ,0︸ ︷︷ ︸
k

)
is a solution of

(5), this gives us (q− 1)k solutions. Further, for a fixed number s (1 6 s 6 k)
suppose x1 = x2 = · · · = xs = 0 and xi = αi ∈ F∗q for i = s + 1, . . . ,k. Then we
have ys+1 = ys+2 = · · · = yk = 0 and the last equation of system (5) will have the
following form: (

k

∑
i=s+1

αi

)
· (y1 + y2 + · · ·+ ys) = 0. (7)

If
k

∑
i=s+1

αi = 0, then the Eq. (7) has qs solutions, otherwise it has qs−1 solutions.

The number of different (αs+1,αs+2, . . . ,αk), for which
k

∑
i=s+1

αi = 0, is equal to

(q− 1)
[
(q−1)k−s−1 +(−1)k−s

]
q−1 (Lemma 1). And the number of vectors satis-

fying the condition
k

∑
i=s+1

αi 6= 0 is equal to (q−1)
[
(q−1)k−s +(−1)k−s+1

]
q−1.
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Consequently, the total number of solutions of Eq. (7) is equal to

(q−1)
[
(q−1)k−s−1 +(−1)k−s

]
q

·qs +
(q−1)

[
(q−1)k−s +(−1)k−s+1

]
q

·qs−1 =

= (2q−1)(q−1)k−sqs−2 +(q−1)2(−1)k−sqs−2.

After combining all possible cases, we find that the number of solutions of system
(5) is equal to

Tk ≡ (q−1)k +
k

∑
i=1

Ci
k

[
(2q−1)(q−1)k−iqi−2 +(q−1)2(−1)k−iqi−2

]
=

=
[
(2q−1)k+1 +2(q−1)k+2 +(−1)k+1(q−1)2

]
·q−2.

Note that in F2
q the number of solutions of the equation xy = 0 is equal to

(2q− 1). Therefore, the system {xiyi = 0, i = 1,2, . . . ,k , has (2q− 1)k solutions
in F2k

q . Then the number of solutions of system (6) is equal to

(2q−1)k−Tk =
(q−1)2 ·

[
(2q−1)k−2(q−1)k +(−1)k

]
q2 .

�
Proof of Theorem 1.
Canonical Covering. Let n ≡ 0(mod2) or q ≡ 0(mod2). For the vectors

ααα = (α1,α2, . . . ,αn−1), βββ = (β1,β2, . . . ,βn−1) ∈ Fn−1
q the product ααα · βββ is defined

by the equality ααα ·βββ = (α1β1,α2β2, . . . ,αn−1βn−1). It is easy to verify that for a fixed
vector γγγ ∈ Fn−1

q the number of ordered pairs (ααα,βββ ) such that ααα,βββ ∈ Fn−1
q

and ααα · βββ = γγγ is equal to (2q− 1)z(γγγ)(q− 1)n−1−z(γγγ). Hence, if ααα,βββ ∈ Fn−1
q

satisfy the equatin ααα · βββ = γγγ and

(
n−1

∑
i=1

(−1)i−1
αi

)(
n−1

∑
i=1

(−1)i−1
βi

)
= ω ,

where γγγ ∈ Fn−1
q and ω ∈ Fq, then we say that the vector pair (ααα,βββ ) generates a

vector (γγγ,ω) ∈ Fn
q , and this relation will be written by (ααα,βββ )→ (γγγ,ω).

Now, for Eq. (3) we construct a system of cosets covering the set Ms. Cosets
are defined using systems of linear equations over the field Fq. The set Ms, where
0 6 s 6 n− 1, is covered by the sets of the solutions of the following systems of
linear equations: 

x3i−2 + x3i+1 = αi, i = 1,2, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = 1,2, . . . ,n−1,
γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b,

(8)

where the vector pair (ααα,βββ ) generates a vector (γ1,γ2, . . . ,γn−1,ω) 6= (0,0, . . . ,0,0)∈
Fn

q and z(αααβββ ) = z(γγγ) = s.
If s = n−1 and b = 0 in Eq. (3), then we add sets of solutions of the following

systems to the solution sets of systems (8):{
x3i−2 + x3i+1 = αi, i = 1,2, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = 1,2, . . . ,n−1,

(9)
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where the vector pair (ααα,βββ ) generates a vector (0,0, . . . ,0,0) ∈ Fn
q .

It is obvious that for different vector pairs (ααα,βββ ) the sets of solutions of the
above constructed systems of equations lie in Ms, are pairwise disjoint and the union
of all these sets coincides with Ms and hence it is a disjoint covering of this set.

The ranks of systems (8) and (9) are equal to 2(n− 1) + 1 and 2(n− 1)
respectively. Therefore, the number of solutions of these systems is equal to qn+1 and
qn+2 respectively. The number of vectors γγγ ∈ Fn−1

q with z(γγγ) = s, where
0 6 s 6 n− 1, is equal to Cs

n−1(q− 1)n−1−s. For a fixed γγγ with z(γγγ) = s there
exist exactly (2q−1)s(q−1)n−1−s vector pairs (ααα,βββ ) such that ααα ·βββ = γγγ . Therefore,

|Ms|=Cs
n−1(q−1)2(n−1−s)(2q−1)sqn+1, if 06 s < n−1.

By Lemma 2 we obtain that exactly

(q−1)2 ·
[
(2q−1)n−1−2(q−1)n−1 +(−1)n−1]q−2

vector pairs (ααα,βββ ) generate nonzero vectors (0, . . . ,0,ω) ∈ Fn
q , and exactly[

(2q−1)n +2(q−1)n+1 +(−1)n(q−1)2]q−2

vector pairs (ααα,βββ ) generate a zero vector (0,0, . . . ,0,0) ∈ Fn
q . Therefore,

|Mn−1|= (q−1)2 ·
[
(2q−1)n−1−2(q−1)n−1 +(−1)n−1]q−2qn+1, if b 6= 0,

|Mn−1|= (q−1)2 ·
[
(2q−1)n−1−2(q−1)n−1 +(−1)n−1]q−2qn+1+

+
[
(2q−1)n +2(q−1)n+1 +(−1)n(q−1)2]q−2qn+2, if b = 0.

We also see that

|M|=

[
n−2

∑
s=0

Cs
n−1(q−1)2(n−1−s)(2q−1)s

]
qn+1+

+(q−1)2 ·
[
(2q−1)n−1−2(q−1)n−1 +(−1)n−1]q−2qn+1 =

=
[
q2n− (2q−1)n−2(q−1)n+1 +(−1)n−1(q−1)2]qn−1, if b 6= 0,

|M|=
[
q2n− (2q−1)n−2(q−1)n+1 +(−1)n−1(q−1)2]qn−1+

+
[
(2q−1)n +2(q−1)n+1 +(−1)n(q−1)2]q−2qn+2 =

=
[
q2n +(q−1)(2q−1)n +2(q−1)n+2 +(−1)n(q−1)3]qn−1, if b = 0.

Now we construct the enlargement of the covering described above. Each
(γγγ,ω) ∈ Fn

q is associated with a set of linear systems. Fix the vector (γγγ,ω) =
= (γ1,γ2, . . . ,γn−1,ω), where z(γγγ) = s. If s = 0, then the corresponding systems are
formed in the same way as a system of the (8) type.

Suppose that 0 < s 6 n− 1. Without loss of generality, we can assume that
γ1 = γ2 = · · · = γs = 0 and γi 6= 0, i = s + 1, . . . ,n− 1. For each vector pair
(ααα,βββ ) = (αs+1, . . . ,αn−1,βs+1, . . . ,βn−1) such that ααα ·βββ = γγγ = (γs+1, . . . ,γn−1), the

set of systems of equations is constructed as follows. We write α ≡
n−1

∑
i=s+1

(−1)i−1
αi

and β ≡
n−1

∑
i=s+1

(−1)i−1
βi.
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If ω 6= 0, then for each vector (µ1, . . . ,µs)∈ Fs
2 , where (µ1, . . . ,µs) 6= (0, . . . ,0)

and (µ1, . . . ,µs) 6= (1, . . . ,1), and an arbitrary non-zero element σ ∈ Fq, we construct
the following system of equations:

x3i−2 + x3i+1 = 0⇐⇒ µi = 0,
x3i−1 + x3i+2 = 0⇐⇒ µi = 1,
x3i−2 + x3i+1 = αi, i = s+1, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = s+1, . . . ,n−1,

s

∑
i=1

(−1)i−1
µi(x3i−2 + x3i+1)+α = σ ,

s

∑
i=1

(−1)i−1(µi⊕1)(x3i−1 + x3i+2)+β = σ
−1

ω,

γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b,

where the symbol ⊕ denotes the addition of modulo 2, and the notation
x3i−2 + x3i+1 = 0 is equivalent to µi = 0 that means the equation x3i−2 + x3i+1 = 0
is included in the system if and only if µi = 0.

When (µ1, . . . ,µs) = (0, . . . ,0) we form the system

x3i−2 + x3i+1 = 0, i = 1,2, . . . ,s,
x3i−2 + x3i+1 = αi, i = s+1, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = s+1, . . . ,n−1,

s

∑
i=1

(−1)i−1(x3i−1 + x3i+2)+β = α
−1

ω,

γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b,

if and only if α 6= 0 and when (µ1, . . . ,µs) = (1, . . . ,1), then the system

x3i−1 + x3i+2 = 0, i = 1,2, . . . ,s,
x3i−2 + x3i+1 = αi, i = s+1, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = s+1, . . . ,n−1,

s

∑
i=1

(−1)i−1(x3i−2 + x3i+1)+α = β
−1

ω,

γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b

is constructed if and only if β 6= 0.
Next, consider the construction of new systems for ω = 0. In this case,

also for each binary vector (µ1, . . . ,µs), where (µ1, . . . ,µs) 6= (0, . . . ,0) and
(µ1, . . . ,µs) 6= (1, . . . ,1), we construct a system

x3i−2 + x3i+1 = 0⇐⇒ µi = 0,
x3i−1 + x3i+2 = 0⇐⇒ µi = 1,
x3i−2 + x3i+1 = αi, i = s+1, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = s+1, . . . ,n−1,

s

∑
i=1

(−1)i−1
µi(x3i−2 + x3i+1)+α = 0,

γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b
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and the system 

x3i−2 + x3i+1 = 0⇐⇒ µi = 0,
x3i−1 + x3i+2 = 0⇐⇒ µi = 1,
x3i−2 + x3i+1 = αi, i = s+1, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = s+1, . . . ,n−1,

s

∑
i=1

(−1)i−1(µi⊕1)(x3i−1 + x3i+2)+β = 0,

γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b.
When (µ1, . . . ,µs) = (0, . . . ,0), we compose the system

x3i−2 + x3i+1 = 0, i = 1,2, . . . ,s,
x3i−2 + x3i+1 = αi, i = s+1, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = s+1, . . . ,n−1,
γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b,

if α = 0, and in the case α 6= 0 we compile the system

x3i−2 + x3i+1 = 0, i = 1,2, . . . ,s,
x3i−2 + x3i+1 = αi, i = s+1, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = s+1, . . . ,n−1,

s

∑
i=1

(−1)i−1(x3i−1 + x3i+2)+β = 0,

γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b.
For (µ1, . . . ,µs) = (1, . . . ,1), we add a system

x3i−1 + x3i+2 = 0, i = 1,2, . . . ,s,
x3i−2 + x3i+1 = αi, i = s+1, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = s+1, . . . ,n−1,
γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b

to existing systems if β = 0, otherwise we add the system

x3i−1 + x3i+2 = 0, i = 1,2, . . . ,s,
x3i−2 + x3i+1 = αi, i = s+1, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = s+1, . . . ,n−1,

s

∑
i=1

(−1)i−1(x3i−2 + x3i+1)+α = 0,

γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b.
The covering of the set Ms constructed above is called canonical.
Now let us estimate the complexity of the canonical covering. The number of

different vectors (ααα,βββ ) = (αs+1, . . . ,αn−1,βs+1, . . . ,βn−1) ∈ F2(n−1−s)
q , where

αi,βi ∈ Fq \{0} for all i = s+1, . . . ,n−1, for which (according to Lemma 1)

a) α ≡
n−1

∑
i=s+1

(−1)i−1
αi = 0 and β ≡

n−1

∑
i=s+1

(−1)i−1
βi = 0, is equal to

(q−1)2 [(q−1)n−s−2 +(−1)n−s−1]2 q−2;
b) α = 0 and β 6= 0, is equal to
(q−1)2 [(q−1)n−s−2 +(−1)n−s−1][(q−1)n−s−1 +(−1)n−s]q−2;
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c) α 6= 0 and β = 0, is equal to
(q−1)2 [(q−1)n−s−1 +(−1)n−s][(q−1)n−s−2 +(−1)n−s−1]q−2;

d) α 6= 0 and β 6= 0, is equal to

(q−1)2 [(q−1)n−s−1 +(−1)n−s]2 q−2.

Then, for a fixed 0 6= ω ∈ Fq and (ααα,βββ ) = (αs+1, . . . ,αn−1,βs+1, . . . ,βn−1) ∈
∈ F2(n−1−s)

q the number of new systems, when
a) α = 0 and β = 0, is equal to (q−1)(2s−2);
b) α = 0 and β 6= 0, is equal to (q−1)(2s−2)+1;
c) α 6= 0 and β = 0, is equal to (q−1)(2s−2)+1;
d) α 6= 0 and β 6= 0, is equal to (q−1)(2s−2)+2;

and for ω = 0 the number of new systems is equal to 2(2s−2)+2 (for all α and β ).
Denote by Ds the length of the canonical covering. It is clear that

D0 = (q−1)2(n−1). If 0 < s < n−1, then

Ds =Cs
n−1

(q−1)2
[
(q−1)n−s−2 +(−1)n−s−1

]2
q2

[
(q−1)2(2s−2)+2(2s−2)+2

]
+

+2Cs
n−1

(q−1)2
[
(q−1)n−s−2 +(−1)n−s−1

][
(q−1)n−s−1 +(−1)n−s

]
q2 ×

×
[
(q−1)2(2s−2)+(q−1)+2(2s−2)+2

]
+

+Cs
n−1

(q−1)2
[
(q−1)n−s−1 +(−1)n−s

]2
q2

[
(q−1)2(2s−2)+2(q−1)+2(2s−2)+2

]
.

Simplifying the last expression, we get
Ds =Cs

n−1(2
s−2)(q−1)2(n−s)q−1 +Cs

n−1(2
s−1)(q−1)2(n−s)−2+

+2Cs
n−1(−1)n−s(q−1)n−s−1q−1 =Cs

n−1(2
s−2)(q−1)2(n−s)q−1 +o(q2(n−s)−1).

Finally, Ds =Cs
n−1(2

s−2)(q−1)2(n−s)q−1+o(q2(n−s)−1) when 0 < s < n−1,
and if s = n−1, then

Dn−1 =

{
(q−1)2(2s−2), if b 6= 0,
(q2−2q+3)(2s−2)+2, if b = 0.

Finally we have

Ds =


(q−1)2(n−1), if s = 0,
Cs

n−1(2
s−2)(q−1)2(n−s)q−1 +o

(
q2(n−s)−1

)
, if 0 < s < n−1,

(q−1)2(2s−2), if s = n−1 and b 6= 0,
(q2−2q+3)(2s−2)+2, if s = n−1 and b = 0.

Obviously, the quantity Ds is the upper bound for Eq(n,s). The number of cosets
contained entirely in one of the sets Ms, s = 0,1, . . . ,n−1, is equal to

(q−1)2(n−1)+
n−1

∑
s=1

Ds = (q−1)2(n−1)+o
(

q2(n−1)
)
,

which is an upper bound for Eq(n).
Theorem 2 is completely proved.

Received 23.10.2018
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