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Introduction. Let F be a free group and V a characteristic subgroup of F .
Then the natural homomorphism from F to F/V gives rise to a homomorphism

χ : Aut(F)→ Aut(F/V )

from the automorphism group of F to the automorphism group of F/V .
By definition the free Burnside group B(X ,n) of period n and basis X is the

quotient group of the absolutely free group F = F(X) with basis X by characteristic
subgroup Fn generated by elements of the form an for all a ∈ F(X).

T h e o r e m . Let B(X ,3) = F(X)/F(X)3 be a free Burnside group of
period 3 with an arbitrary basis X of some rank. Then every automorphism of B(X ,3)
is induced by an automorphism of the absolutely free group F(X).

In the paper [1] we proved the theorem when X is finite. In the paper [2] Bryant
and Macedonska proved that every automorphism of F/V is induced by an automor-
phism of F when F/V is nilpotent group of infinite rank. Bryant and Romankov
proved even more general case in [3] when F/V is a free group of infinite rank in a
subvariety of NkA for some k. It is well known that a free Burnside group of period 3
is nilpotent, from which follows the truth of theorem when X is infinite.

In this paper we are going to give straight and short proof of the theorem when
X is infinite using some results from the paper [2].

Bryant and Macedonska in [2] used so called finitary lifting property. Now
we shall give the definition of the finitary lifting property. Let F be a free group of
infinite rank and let {xi : i ∈ I} be a basis of F (for any relatively free group we use
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the term “basis” as an alternative to “free generating set”). An automorphism ξ of
F will be called finitary, if there is a finite subset Ω of I such that ξ (xi) = xi for all
i ∈ I \Ω.

Let B be a variety of groups and write V = B(F). Suppose that Γ and ∆ are
subsets of I such that Γ∩∆ is empty, ∆ is finite, and I \ (Γ∪∆) is infinite. Let α

be an automorphism of F/V such that α(xiV ) = xiV for all i ∈ Γ. We say that the
triple (Γ,∆,α) can be lifted, if there exists a finitary automorphism ξ of F such that
ξ (xi) = xi for all i ∈ Γ and ξ (xi)V = α(xiV ) for all i ∈ ∆. Such a finitary automor-
phism ξ is called a lifting of (Γ,∆,α). We say that B has the finitary lifting property
if, for every F of infinite rank every triple (Γ,∆,α) can be lifted.

P r o p o s i t i o n 1. [2]. Every nilpotent variety of groups has the finitary
lifting property

P r o p o s i t i o n 2. [2]. If B is any variety of groups with the finitary lifting
property and F is a free group of infinite rank, then every automorphism of F/B(F)
is induced by an automorphism of F .

Below we will give a direct proof that variety of free Burnside groups of period
3 has the finitary lifting property.

Let us recall the definitions of some automorphisms, which we will use later
in the paper.

Let R be a relatively free group with the basis X = {xi ∈ I}. Any homomor-
phism from R into itself is completely determined by the images of the basis elements.
For any xi ∈ X let εi be the automorphism mapping xi to x−1

i and leaving other
elements of X unchanged. For any different xi,x j ∈ X , let λi j be the automorphism
mapping xi to xix j and leaving other elements of X unchanged. Automorphisms εi,λi j

are called Nielsen automorphisms. In 1924 Nielsen (see, for example, [4]) showed
that the Nielsen automorphisms generate the full automorphism group Aut(Fn) of the
finitely generated absolutely free group Fn.

Preliminary Lemmas. By B(3) we denote a free Burnside group of period
3 with an arbitrary basis X of some rank. We need some commutator identities
(Ch. 10, [5])

[a,b]−1 = [b,a], (1)

[a,bc] = [a,c][a,b]c. (2)

Also we need some commutator identities that holds in free Burnside groups
of period 3 and any rank (Ch. 5.12, [6]). For any generator xi ∈ X and for any element
gi ∈ B(3) we have the equations:

[xi,x j,xp] 6= 1 for different i, j, p, (3)

[g1,g2,g3] = [g3,g1,g2] = [g2,g3,g1], (4)

[g1,g2,g3,g4] = 1 (5)

.
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L e m m a 1. (Ch. 18, [5]). For any element u ∈ B(3) and for any generator
xi ∈ X one of the following equalities:

u = u1, (6)

u = u1xiu2, (7)

u = u1x−1
i u2, (8)

u = u1xiu2x−1
i u3 (9)

holds for some u1,u2,u3 ∈ Gp(X \ xi).
L e m m a 2. An element g of the group B(3) belongs to the commutator

subgroup if and only if order of any generator in g by modulo 3 equals to 0.
P r o o f . The direct part of the claim is obvious. Let us show that if the order

of any generator in g by modulo 3 equals to 0, then g belongs to the commutator
subgroup. Let g = xε1

i1 xε2
i2 . . .x

εk
ik , where im 6= im+1. Let’s use induction with respect to

the length of the word k. Not that if g = xε1
i1 Uxε

i1V , then g = xε1
i1 Ux−ε1

i1 U−1Uxε1+ε

i1 V .
It is obvious that xε1

i1 Ux−ε1
i1 U−1 belongs to the commutator subgroup. The element

Uxε1+ε

i1 V also belongs to the commutator subgroup, since it has the same generators’
orders as g, but has a smaller length.

L e m m a 3. For any automorphism α ∈ Aut(B(3)) the image of the
generator xi does not belong to the commutant of group B(3).

P r o o f . Assume the converse, then we shall prove that the element
g = α([xi,x j,xp]) is trivial, which contradicts to the definition of automorphism.
Let α(xi) = [gi1 ,gi2 ]...[gi2k−1 ,gi2k ]. The proof is by induction on k. In the case of
k = 1 we have

g = [[gi1 ,gi2 ],α(x j),α(xp)] = [gi1 ,gi2 ,α(x j),α(xp)] = 1.

Suppose that the statement holds for k− 1 and show it holds for k. From the Eqs.
(2), (4) we get

g = [[gi1 ,gi2 ]...[gi2k−1 ,gi2k ],α(x j),α(xp)] = [α(x j),α(xp), [gi1 ,gi2 ]...[gi2k−1 ,gi2k ]] =

= [α(x j),α(xp),([gi3 ,gi4 ]...[gi2k−1 ,gi2k ])] · [α(x j),α(xp), [gi1 ,gi2 ]]
([gi3 ,gi4 ]...[gi2k−1 ,gi2k ]).

To prove g= 1 let us show that both multipliers are trivial. From the Eq. (4) it follows
that [α(x j),α(xp),([gi3 ,gi4 ]...[gi2k−1 ,gi2k ])] = [([gi3 ,gi4 ]...[gi2k−1 ,gi2k ]),α(x j),α(xp)]
and by inductive hypothesis the first multiplier is trivial. Again using the Eq. (4) we
get [α(x j),α(xp), [gi1 ,gi2 ]] = [[gi1 ,gi2 ],α(x j),α(xp)] from which follows the
triviality of the second multiplier.

T h e o r e m . Variety of groups B(3) has the finitary lifting property.
P r o o f . Let (∆,Γ,α) be an arbitrary triple, for which Γ∩∆ is empty, ∆

is finite and I \ (Γ∪∆) is infinite. Also α(xi) = xi for all ι ∈ Γ ( xi is the corre-
sponding coset of the generator xi, in this case, the coset xiB(3)). Without loss of
generality it can be assumed that ∆ = {x1, . . . ,xk}. We say that the generator xi is
dominant in the element g, if the order of xi in g by modulo 3 is not 0. For any au-
tomorphism α ∈ Aut(B(3)) and for any ι ∈ I there is a dominant in the image α(xi).
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Indeed, otherwise α(xi) is in the commutant by Lemma 2, which is not possible by
Lemma 3. Suppose {x j1 , . . . ,x jp} is the set of dominant elements of α(x1) and x ji ∈Γ,
then from the properties of Γ it follows that α(x ji) = x ji for x ji ∈ {x j1 , . . . ,x jp}. Let
us examine the automorphism αλ1 j1

ε1 . . .λ1 jp
εp . With a proper selection of ε1, . . .εp

we can exclude dominant elements in αλ1 j1
ε1 . . .λ1 jp

εp(x1). Thus there is xm in
{x j1 , . . . ,x jp} such that xm /∈ Γ. From Lemma 1 α(x1) = u1xε

mv1, where u1,v1 ∈
Gp(X \ xm). Using Nielsen’s automorphisms and automorphisms Pi j (Pi j is the auto-
morphism which permutes generators xi,x j leaving other elements of X unchanged)
we will construct automorphism ξ1 for which ξ1(x1)= u1xε

mv1. From the construction
of the automorphism ξ1 we see that ξ1(xi) = xi for xi ∈ Γ (since in the construction
there were only used the automorphisms λmi,εm,P1m). For automorphism ξ

−1
1 holds

ξ1
−1(u1xε

mv1) = x1 identity. Let us examine the multiplication of automorphisms
induced by the automorphism ξ1

−1 and α . For the image of the generator x1 we
have ξ−1α(x1) = x1. Let Γ1 = Γ∪ x1. Repeating the same argument for the genera-
tor x2 and considering Γ1 instead of Γ, using ξ1

−1
α instead of α we will get an

automorphism ξ2 so that ξ2(x2) = ξ1
−1

α(x2) and ξ2(xi) = xi for xi ∈ Γ1. Thus
ξ2
−1

ξ1
−1

α(x1) = x1,ξ2
−1

ξ1
−1

α(x2) = x2. Continuing this process till xk, we will get
automorphisms ξ1,ξ2, . . . ,ξk, for which we have ξk

−1 . . .ξ1
−1

α(xi) = xi for xi ∈ ∆,
thus ξ1 . . .ξk(xi) = α(xi) for xi ∈ ∆. Since for any ξl we have ξl(xi) = xi for xi ∈ Γ,
the same is true for ξ1 . . .ξk.
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