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In this paper we consider a substitution and inheritance property, which is
the necessary and sufficient condition for the uniqueness of βδ -normal form
of typed λ -terms, for canonical notion of δ -reduction. Typed λ -terms use
variables of any order and constants of order ≤ 1, where the constants of order
1 are strongly computable, monotonic functions with indeterminate values of
arguments. The canonical notion of δ -reduction is the notion of δ -reduction
that is used in the implementation of functional programming languages.
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Introduction. The definitions of this section can be found in [1–3]. Let M
be a partially ordered set, which has a least element ⊥, which corresponds to the
indeterminate value, and each element of M is comparable only with ⊥ and with
itself. Let us define the set of types (denoted by Types) in the conventional way
(see [2]). Let α ∈ Types and Vα be a countable set of variables of type α , then
V =

⋃
α∈Types

Vα is the set of all variables. The set of all terms is denoted by

Λ =
⋃

α∈Types
Λα , where Λα is the set of terms of type α and is defined in the con-

ventional way (see [2]). The notions of free and bound occurrences of variables in
terms as well as the notion of a free variable are introduced in the conventional way
too [2]. The set of all free variables in the term t is denoted by FV(t). Terms t1 and
t2 are said to be congruent (which is denoted by t1 ≡ t2), if one term can be obtained
from the other by renaming bound variables.

Further, we assume that M is a recursive set and the considered terms use
variables of any order and constants of order ≤ 1, where the constants of order 1
are strongly computable, monotonic functions with indeterminate values of
arguments [1].
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A term of the form λx1...xk[τ](t1, ..., tk), where xi ∈ Vαi , i 6= j ⇒ xi 6≡ x j,
τ ∈ Λ, ti ∈ Λαi ,αi ∈ Types, i, j = 1, ...,k, k ≥ 1, is called a β -redex, its convolution
is the term τ{τ1/x1, ...,τk/xk}, where {τ1/x1, ...,τk/xk} is a substitution (the substitu-
tion as well as the admissible application of substitution are defined in a conventional
way [2]). The set of all pairs (τ0,τ1), where τ0 is a β -redex and τ1 is its convolu-
tion, is called a notion of β -reduction. A one-step β -reduction (→β ) and β -reduction
(→→β ) are defined in the conventional way. A term containing no β -redexes is
called a β -normal form. The set of all β -normal forms is denoted by β -NF .

A δ -redex has a form f (t1, ..., tk), where f ∈ [Mk→M], ti ∈ ΛM, i = 1, ...,k,
k ≥ 1, its convolution is either m ∈M and in this case f (t1, ..., tk)∼ m or a subterm ti
and in this case f (t1, ..., tk)∼ ti, i= 1, ...,k. A fixed set of term pairs (τ0,τ1), where τ0
is a δ -redex and τ1 is its convolution, is called a notion of δ -reduction (→δ ,→→δ as
well as→βδ and→→βδ are defined in the conventional way [2]). A term containing
no βδ -redexes is called normal form. The set of all normal forms is denoted by NF .

D e f i n i t i o n 1. [2]. An effective, single-valued notion of δ -reduction is
called a canonical notion of δ -reduction, if

1. t ∈ β -NF , t ∼ m, m ∈M \{⊥}⇒ t→→δ m,
2. t ∈ β -NF , FV (t) = Ø, t ∼⊥⇒ t→→δ ⊥.
D e f i n i t i o n 2. The notion of δ -reduction has the substitution property

(S-property), if from ( f (t1, ..., tk),τ) ∈ δ , where t1, ..., tk, τ ∈ ΛM, f ∈ [Mk → M],
FV ( f (t1, ..., tk)) 6= Ø, k ≥ 1, and from the following properties

S1. f (t1, ..., tk) is not constant term and τ ≡ t j, 1≤ j ≤ k, or
S2. f (t1, ..., tk)∼⊥ and τ ≡ t j, 1≤ j ≤ k, or
S3. f (t1, ..., tk)∼⊥ and τ ≡⊥,

it follows that for each admissible application of substitution {τ1/x1, ...,τn/xn} (shortly
{τ/x}), where τi ∈ Λαi ,xi ∈ Vαi ,αi ∈ Types, i 6= j⇒ xi 6= x j, i, j = 1, . . . ,n, n ≥ 0,
there exist terms t ′1, . . . , t

′
k such that t1{τ/x} →→ t ′1 . . . , tk{τ/x} →→ t ′k

and ( f (t ′1, . . . , t
′
k), t

′
j) ∈ δ if τ ≡ t j and ( f (t ′1, . . . , t

′
k),⊥) ∈ δ if τ ≡⊥.

D e f i n i t i o n 3. The notion of δ -reduction has the inheritance property
(I-property), if from ( f (t1, ..., tk),τ) ∈ δ , where t1, ..., tk,τ ∈ ΛM, f ∈ [Mk → M],
FV ( f (t1, ..., tk)) 6= Ø, k≥ 1 and ti ≡ µr for some i (1≤ i≤ k), where r is a redex and
from the following properties:

I1. f (t1, ..., tk) is not constant term and τ ≡ t j, 1≤ j ≤ k, or
I2. f (t1, ..., tk)∼⊥ and τ ≡ t j, 1≤ j ≤ k, or
I3. f (t1, ..., tk)∼⊥ and τ ≡⊥,

it follows that there exist terms t ′1, ..., t
′
k ∈ ΛM such that t1 →→ t ′1, ...,

µr′ →→ t ′i , ..., tk →→ t ′k and ( f (t ′1, ..., t
′
k), t

′
j) ∈ δ if τ ≡ t j and ( f (t ′1, ..., t

′
k),⊥) ∈ δ

if τ ≡⊥, where r′ is the convolution of the redex r.
D e f i n i t i o n 4. The canonical notion of δ -reduction has SI-property, if it

has S-property and I-property.
Two Canonical Notions of δ -Reduction. Let M = N ∪ {⊥}, where

N = {0,1,2, ...} and C = {add,min,max, inc,dec}, C′=C∪{not eq,numbers}, where
inc,dec ∈ [M → M], add,min, max,not eq,numbers ∈ [M2 → M] and for every
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m,m1,m2 ∈M we have:

add(m1,m2) =

{
m1 +m2, if m1,m2 ∈ N,

⊥, otherwise.

min(m1,m2) =


m1, if m1,m2 ∈ N and m1 ≤ m2,

m2, if m1,m2 ∈ N and m1 > m2,

⊥, otherwise.

max(m1,m2) =


m2, if m1,m2 ∈ N and m1 ≤ m2,

m1, if m1,m2 ∈ N and m1 > m2,

⊥, otherwise.

inc(m) =

{
m+1, if m ∈ N,

⊥, if m =⊥.

dec(m) =


0, if m ∈ N and m = 0,
m−1, if m ∈ N and m≥ 1,
⊥, if m =⊥.

not eq(m1,m2) =

{
1, if m1,m2 ∈ N and m1 6= m2,

⊥, otherwise.

numbers(m1,m2) =

{
1, if m1,m2 ∈ N,

⊥, otherwise.

It is easy to see that all functions of the set C′ are strong computable, natu-
rally extended functions with indeterminate values of arguments (a function is said
to be naturally extended, if its value is ⊥ whenever the value of at least one of the
arguments is ⊥). Let us consider the notion of δ -reduction δ for the set C:
(add(n1,n2),n) ∈ δ , where n1,n2,n ∈ N and n = n1 +n2
(add(⊥, t),⊥) ∈ δ , where t ∈ Λ

(add(t,⊥),⊥) ∈ δ , where t ∈ Λ

(min(n1,n2),n1) ∈ δ , where n1,n2 ∈ N and n1 ≤ n2
(min(n1,n2),n2) ∈ δ , where n1,n2 ∈ N and n1 > n2
(min(⊥, t),⊥) ∈ δ , where t ∈ Λ

(min(t,⊥),⊥) ∈ δ , where t ∈ Λ

(max(n1,n2),n2) ∈ δ , where n1,n2 ∈ N and n1 ≤ n2
(max(n1,n2),n1) ∈ δ , where n1,n2 ∈ N and n1 > n2
(max(⊥, t),⊥) ∈ δ , where t ∈ Λ

(max(t,⊥),⊥) ∈ δ , where t ∈ Λ

(inc(n1),n2) ∈ δ , where n1,n2 ∈ N and n2 = n1 +1
(inc(⊥),⊥) ∈ δ

(dec(n1),n2) ∈ δ , where n1,n2 ∈ N, n1 > 0 and n2 = n1−1
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(dec(0),0) ∈ δ

(dec(⊥),⊥) ∈ δ .

Let us consider δ ′ notion of δ -reduction for the set C′:
(t,τ) ∈ δ ⇒ (t,τ) ∈ δ ′, where t,τ ∈ ΛM

(not eq(n1,n2),1) ∈ δ ′, where n1,n2 ∈ N and n1 6= n2
(not eq(t, t),⊥) ∈ δ ′, where t ∈ ΛM

(not eq(t,⊥),⊥) ∈ δ ′, where t ∈ ΛM

(not eq(⊥, t),⊥) ∈ δ ′, where t ∈ ΛM

(numbers(n1,n2),1) ∈ δ ′, where n1,n2 ∈ N
(numbers(⊥, t),⊥) ∈ δ ′, where t ∈ ΛM

(numbers(t,⊥),⊥) ∈ δ ′, where t ∈ ΛM.
It is easy to see that δ and δ ′ are canonical notions of δ -reduction.

S-Property. We say that a notion of δ -reduction does not hold only point
Si, i = 1,2,3, if it holds all points of S-property and I-property, except point Si of
S-property.

Let δ1 = δ ∪{(max(inc(x),x), inc(x)) | x ∈ VM}. It is easy to see that δ1 is an
effective, single valued notion of δ -reduction. Since δ ⊂ δ1, δ1 is a canonical notion
of δ -reduction.

P r o p o s i t i o n 1. For the canonical notion of δ -reduction δ1 the following
properties hold:

a) δ1 does not hold only the point S1;
b) there exists a term that has two different normal forms.
P r o o f .
a) To show that δ1 has I-property, let us consider all pairs ( f (t1, ..., tk),τ) ∈ δ1

such that f (t1, ..., tk) is non constant term or f (t1, ..., tk) ∼ ⊥, where f ∈ C,
FV ( f (t1, ..., tk)) 6= Ø, k = 1,2, ti ≡ µr for some i(1 ≤ i ≤ k), where r is a redex,
and τ ≡ t j for some j(1≤ j ≤ k), or τ ≡⊥. The following cases are possible:

i) f ∈ {add,min,max}, t1 ≡⊥, t2 ≡ µr ∈ ΛM, where r is a redex, k = 2, i = 2
and τ ≡ ⊥. Since ( f (⊥, t),⊥) ∈ δ1 for every t ∈ ΛM, we have ( f (⊥,µr′),⊥) ∈ δ1,
where r′ is the convolution of the redex r.

ii) f ∈ {add,min,max}, t1 ≡ µr ∈ ΛM, where r is a redex, t2 ≡⊥, k = 2, i = 1
and τ ≡ ⊥. Since ( f (t,⊥),⊥) ∈ δ1 for every t ∈ ΛM, we have ( f (µr′ ,⊥),⊥) ∈ δ1,
where r′ is the convolution of the redex r.

Therefore δ1 has I-property. To show that δ1 does not hold only the point S1,
let us consider all pairs ( f (t1, ..., tk),τ)∈ δ1 such that f (t1, ..., tk) is non constant term
or f (t1, ..., tk)∼⊥, where f ∈C, FV ( f (t1, ..., tk)) 6= Ø, k = 1,2, and τ ≡ t j for some
j (1≤ j ≤ k) or τ ≡⊥. The following cases are possible:

i) f ∈ {add,min,max}, t1 ≡⊥, t2 ∈ ΛM, k = 2 and τ ≡⊥, where FV (t2) 6= Ø.
Since ( f (⊥, t),⊥) ∈ δ1 for any t ∈ ΛM, then ( f (⊥, t2σ),⊥) ∈ δ1 for any admissible
application of the substitution σ .

ii) f ∈ {add,min,max}, t1 ∈ΛM, t2 ≡⊥, k = 2 and τ ≡⊥, where FV (t1) 6= Ø.
Since ( f (t,⊥),⊥)∈ δ1 for any t ∈ΛM, we get ( f (t1σ ,⊥),⊥)∈ δ1 for any admissible
application of the substitution σ .
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iii) f ≡ max, t1 ≡ inc(x), t2 ≡ x, k = 2 and τ ≡ t1, where x ∈ VM.
For the admissible application of the substitution σ = {inc(y)/x} we have:
t1σ ≡ τσ ≡inc(x){inc(y)/x}≡ inc(inc(y)) ∈ NF , t2σ ≡ x{inc(y)/x}≡ inc(y)∈NF .
Since f (t1, t2) is a non constant term and ( f (t1σ , t2σ),τσ) 6∈ δ1, δ1 does not hold the
point S1.

Since the S-property violated only in the case (iii), where f (t1, t2) is the non
constant term, δ1 does not hold only the point S1.

b) Let us show that for δ1 the term λx[max(inc(x),x)](inc(y)) has two
different normal forms.

λx[max(inc(x),x)](inc(y))→δ1 λx[inc(x)](inc(y))→β inc(inc(y)) ∈ NF ;
λx[max(inc(x),x)](inc(y))→β max(inc(inc(y)), inc(y)) ∈ NF . �
Let δ2 = δ ′

⋃{
(numbers(not eq(dec(inc(x)),x),0),not eq(dec(inc(x)),x))

| x ∈VM
}

. It is easy to see that δ2 is an effective, single valued notion of δ -reduction.
Since δ ′ ⊂ δ2, then δ2 is a canonical notion of δ -reduction.

P r o p o s i t i o n 2. For the canonical notion of δ -reduction δ2 the following
hold true:

a) δ2 does not hold only the point S2;
b) there exists a term that has two different normal forms.
P r o o f .
a) To show that δ2 has I-property, let us consider all pairs ( f (t1, ... , tk),τ) ∈ δ2

such that f (t1, ..., tk) is non constant term or f (t1, ..., tk) ∼ ⊥, where f ∈ C′,
FV ( f (t1, ..., tk)) 6= Ø, k = 1,2, ti ≡ µr for some i(1 ≤ i ≤ k), where r is a redex,
and τ ≡ t j, 1≤ j ≤ k or τ ≡⊥. The following cases are possible:

i) f ∈ {add,min,max,not eq,numbers}, t1 ≡ ⊥, t2 ≡ µr ∈ ΛM, k = 2 and
τ ≡ ⊥, where r is a redex. Since ( f (⊥, t),⊥) ∈ δ2 for every t ∈ ΛM, we have
( f (⊥,µr′),⊥) ∈ δ2, where r′ is convolution of the redex r.

ii) f ∈ {add,min,max,not eq,numbers}, t1 ≡ µr ∈ ΛM, t2 ≡ ⊥, k = 2 and
τ ≡ ⊥, where r is a redex. Since ( f (t,⊥),⊥) ∈ δ2 for every t ∈ ΛM, we have
( f (µr′ ,⊥),⊥) ∈ δ2, where r′ is convolution of the redex r.

iii) f ≡ not eq, t1 ≡ t2 ≡ µr ∈ ΛM, k = 2 and τ ≡⊥, where r is a redex. Since
( f (t, t),⊥)∈ δ2 for every t ∈ΛM, we get ( f (µr′ ,µr′),⊥)∈ δ2, where r′ is convolution
of the redex r.

Therefore δ2 has I-property. To show that δ2 does not hold only the point S2,
let us consider all pairs ( f (t1, ..., tk),τ) ∈ δ2 such that f (t1, ..., tk) is the non constant
term or f (t1, ..., tk)∼⊥, where f ∈C′, FV ( f (t1, ..., tk)) 6= Ø, k = 1,2. The following
cases are possible:

i) f ∈ {add,min,max,not eq,numbers}, t1 ≡ ⊥, t2 ∈ ΛM, k = 2 and τ ≡ ⊥,
where f (t1, t2) ∼ ⊥. Since ( f (⊥, t),⊥) ∈ δ2 for every t ∈ ΛM, we have
( f (⊥, t2σ),⊥) ∈ δ2 for any admissible application of the substitution σ .

ii) f ∈ {add,min,max,not eq,numbers}, t1 ∈ ΛM, t2 ≡ ⊥, k = 2 and
τ ≡ ⊥, where f (t1, t2) ∼ ⊥. Since ( f (t,⊥),⊥) ∈ δ2 for every t ∈ ΛM, we have
( f (t1σ ,⊥),⊥) ∈ δ2 for any admissible application of the substitution σ .
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iii) f ≡ not eq, t1 ≡ t2 ∈ΛM, k = 2 and τ ≡⊥. Since ( f (t, t),⊥)∈ δ2 for every
t ∈ ΛM, ( f (t1σ , t2σ),⊥) ∈ δ2 for any admissible application of the substitution σ .

iv) f ≡ numbers, t1 ≡ not eq(dec(inc(x)),x), where x ∈VM, t2 ≡ 0, k = 2 and
τ ≡ t1. For the admissible application of substitution σ = {add(x,2)/x} we have:
t1σ ≡ not eq(dec(inc(add(x,2))),add(x,2)) ≡ t ′1 ∈ NF and t2σ ≡ 0 ≡ t ′2 ∈ NF .
Since f (t1, t2)∼⊥ and (numbers(t ′1, t

′
2), t

′
1) 6∈ δ2, δ2 does not hold the point S2.

Therefore δ2 does not hold only the point S2.
b) Let us show that for δ2 the term

t ′ ≡ λxy[numbers(not eq(dec(inc(x)),x),0)](add(x,2))
has two different normal forms:
t ′→β numbers(not eq(dec(inc(add(x,2))),add(x,2)),0) ∈ NF ;
t ′→δ2 λxy[not eq(dec(inc(x)),x)](add(x,2))→β

not eq(dec(inc(add(x,2)))),add(x,2)) ∈ NF . �
Let δ3 = δ ′∪{(numbers(not eq(dec(inc(x)),x),0),⊥) | x ∈VM}. It is easy to

see that δ3 is an effective, single valued notion of δ -reduction. Since δ ′ ⊂ δ3, then δ3
is a canonical notion of δ -reduction.

P r o p o s i t i o n 3. For the canonical notion of δ -reduction δ3 the following
holds:

a) δ3 does not hold only the point S3;
b) there exists a term that has two different normal forms.
P r o o f .
a) It can be shown that δ3 has I-property as shown in Proposition 2. To show

that δ3 holds the S1, S2 points and does not hold the point S3, let us
consider all pairs ( f (t1, ..., tk),τ) ∈ δ3 such that f (t1, ..., tk) is a non constant term or
f (t1, ..., tk) ∼ ⊥, where f ∈ C′, t1, ..., tk,τ ∈ ΛM, f ∈ [Mk → M], FV ( f (t1, ..., tk)) 6=
Ø, k = 1,2. The following cases are possible:

i) f ∈ {add,min,max,not eq,numbers}, t1 ≡⊥, t2 ∈ ΛM, k = 2 and τ ≡⊥;
ii) f ∈ {add,min,max,not eq,numbers}, t1 ∈ ΛM, t2 ≡⊥, k = 2 and τ ≡⊥;
iii) f ≡ not eq, t1 ≡ t2 ∈ ΛM, k = 2 and τ ≡⊥.

We can show that S-property is true in (i)− (iii) cases, as shown in Proposition 2.
iv) f ≡ numbers, t1 ≡ not eq(dec(inc(x)),x), where x ∈VM, t2 ≡ 0, k = 2 and

τ ≡⊥. For the admissible application of the substitution σ = {add(x,2)/x}we have:
t1σ ≡ not eq(dec(inc(add(x,2))),add(x,2)) ≡ t ′1 ∈ NF and t2σ ≡ 0 ≡ t ′2 ∈ NF .
Since f (t1, t2)∼⊥ and ( f (t ′1, t

′
2),⊥) 6∈ δ3,δ3 does not hold the point S3.

Therefore δ3 does not hold only the point S3.
b) Let us show that for δ3 the term
t ≡ λxy[numbers(not eq(dec(inc(x)), x),0)](add(x,2)) has two different

normal forms:
t→δ3 λxy[⊥](add(x,2))→β ⊥ ∈ NF ;
t→β numbers(not eq(dec(inc(add(x,2))),add(x,2)),0) ∈ NF . �
I-Property. We say that a notion of δ -reduction does not hold only the point

Ii, i = 1,2,3, if it holds all points of S-property and I-property, except the point Ii of
I-property. If t ∈ β −NF , t ∼ m, m ∈ M, then t ≡ m or t ≡ f (t1, ..., tk), where



Grigoryan D. A. On the Uniqueness of βδ -Normal Form of Typed λ -Terms . . . 43

f ∈ [Mk→M], ti ∈ ΛM, ti ∈ β −NF , i = 1, ...,k, k ≥ 1. We introduce the notion of
rank for such terms: rank(m)= 0, rank( f (t1, ..., tk))= 1+max(rank(t1), ...,rank(tk)).

Let δ4 = δ ∪
{(

min(add(τ1,τ2),add(τ2,τ1)),add(τ1,τ2)
)
| τ1,τ2 ∈ ΛM

}
∪{(

min(add(τ1,τ2),min(add(τ2,τ1),add(τ1,τ2))), min(add(τ2,τ1),add(τ1,τ2))
)

| τ1,τ2 ∈ ΛM
}

. It is easy to see that δ4 is an effective, single valued notion of
δ -reduction. Since δ ⊂ δ4, then δ4 is a canonical notion of δ -reduction.

P r o p o s i t i o n 4. For the canonical notion of δ -reduction δ4 the following
takes place:

a) δ4 does not hold only the point I1;

b) there exists a term that has two different normal forms. To prove
Proposition 4 let us prove Lemma 1.

L e m m a 1. For the canonical notion of δ -reduction δ and for any term t ∈Λ,
we have: if t ∼⊥, then t→→βδ ⊥.

P r o o f . Let t ∈ Λ, t ∼ ⊥ and t →→β t ′ ∈ β −NF . Therefore, t ′ ∼ ⊥.
If rank(t ′) = 0, then t ′ ≡ ⊥, t ′ →→βδ ⊥ and t →→βδ ⊥. If rank(t ′) = 1, then the
following cases are possible:

i) t ′ ≡ f (m), where f ∈ {inc,dec},m ∈M. Since f (m)∼⊥, we have m≡⊥,
(t ′,⊥) ∈ δ , t ′→δ ⊥ and t→→βδ ⊥;

ii) t ′ ≡ f (m1,m2), where f ∈ {add,min,max},m1,m2 ∈M. Since f (m1,m2)∼
⊥, we have m1 ≡⊥ or m2 ≡⊥. Therefore, ( f (m1,m2),⊥) ∈ δ , t ′→δ ⊥, t→→βδ ⊥.

Let rank(t ′) = n > 1, then t ′ ≡ f (t1, ..., tk), where f ∈ C and ti ∈ ΛM,
ti ∈ β −NF , i = 1, ...,k, k ≥ 1, and we suppose that if τ ∈ β −NF and τ ∼ ⊥,
then τ →→βδ ⊥, where rank(τ)< n. Following cases are possible:

i) t ′ ≡ f (τ), where f ∈ {inc,dec},τ ∈ ΛM, τ ∈ β −NF . Since f (τ)∼⊥, then
τ ∼⊥. Since rank(τ) = n−1, by the induction hypothesis, τ →→βδ ⊥. Therefore,
f (τ)→→βδ f (⊥)→δ ⊥ and t→→βδ ⊥;

ii) t ′ ≡ f (t1, t2), where f ∈ {add,min,max}, t1, t2 ∈ΛM, t1, t2 ∈ β −NF . Since
f (t1, t2) ∼ ⊥, we can say t1 ∼ ⊥ or t2 ∼ ⊥. Without loss of generality we suppose
that t1 ∼⊥. Since rank(t1)< n, by the induction hypothesis, t1→→βδ ⊥. Therefore,
f (t1, t2)→→βδ f (⊥, t2)→δ ⊥ and t→→βδ ⊥. �

Proof of Proposition 4.
a) If (t,τ) ∈ δ4, then (tσ ,τσ) ∈ δ4 for every admissible application of substi-

tution σ . Therefore δ4 has S-property. Let us show that δ4 does not hold the point I1.
Let f ≡ min, t1 ≡ add(x,y), t2 ≡ min(add(y,x), add(x,y)), then ( f (t1, t2), t2) ∈ δ4. It
is easy to see that f (t1, t2) is a non constant term. Since t1 ≡ add(x,y) ≡ t ′1 ∈ NF ,
t2→δ4 add(y,x)≡ t ′2 ∈ NF and ( f (t ′1, t

′
2), t

′
2) 6∈ δ4, then δ4 does not hold the point I1.

Let ( f (t1, ..., tk),τ) ∈ δ4, where t1, ..., tk,τ ∈ ΛM, f ∈C, FV ( f (t1, ..., tk)) 6= Ø,
k = 1,2, ti ≡ µr for some i (1 ≤ i ≤ k), where r is a redex and f (t1, ..., tk) ∼ ⊥.
Following cases are possible:

i) f ∈ {add,min,max}, t1 ≡⊥, t2 ≡ µr ∈ΛM, r is a redex, k = 2, i = 2, τ ≡⊥;
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ii) f ∈ {add,min,max}, t1 ≡ µr ∈ΛM, r is a redex, t2 ≡⊥, k = 2, i = 1, τ ≡⊥.
It can be shown that I-property is true in the (i), (ii) cases, as shown in
Proposition 1.

iii) f = min, t1 ≡ add(τ1,τ2) t2 ≡ add(τ2,τ1)), τ ≡ t1, i = 1,2.
iv) f =min, t1≡ add(τ1,τ2) t2≡min(add(τ2,τ2),add(τ1,τ2)), τ ≡ t2, i= 1,2.
Since in both (iii), (iv) cases f (t1, t2) ∼ ⊥, so τ ∼ ⊥. It is easy to see that

t1∼ t2∼⊥. Without lose of generality we suppose that i= 1. Therefore, t1≡ µr→βδ4

µr′ ∼ ⊥, where r′ is the convolution of the redex r. Since δ ⊂ δ4, from Lemma 1
follows that µr′ →→βδ4 ⊥, t2 →→βδ4 ⊥ and τ →→βδ4 ⊥. Since ( f (⊥,⊥),⊥) ∈
δ4, δ4 holds the points I2 and I3. Therefore δ4 does not hold only the point I1.

b) Let us show that for δ4 the term t ′≡min(add(x,y),min(add(y,x),add(x,y)))
has two different normal forms:
t ′→δ4 min(add(y,x),add(x,y))→δ4 add(y,x) ∈ NF ;
t ′→δ4 min(add(x,y),add(y,x))→δ4 add(x,y) ∈ NF . �

Let δ5 = δ ′ ∪
{(

not eq(not eq(min(add(τ1,τ2),add(τ2,τ1)),add(τ2,τ1)),
not eq(add(τ1,τ2), add(τ2,τ1))),not eq(min(add(τ1,τ2),add(τ2,τ1)),add(τ2,τ1))

)
| τ1,τ2 ∈ ΛM

}
∪
{(

min(add(τ1,τ2),add(τ2,τ1)),add(τ1,τ2)
)
| τ1,τ2 ∈ ΛM

}
.

It is easy to see that δ5 is an effective, single valued notion of δ -reduction. Since
δ ′ ⊂ δ5, δ5 is a canonical notion of δ -reduction.

P r o p o s i t i o n 5. For the canonical notion of δ -reduction δ5 the following
properties hold:

a) δ5 does not hold only the point I2;
b) there exists a term that has two different normal forms.
P r o o f .
a) If (t,τ) ∈ δ5, then (tσ ,τσ) ∈ δ5 for every admissible application of

substitution σ . Therefore δ5 has S-property.
To show that δ5 does not hold only the point I2, let us consider all pairs

( f (t1, ..., tk),τ) ∈ δ5 such that f (t1, ..., tk) is non constant term or f (t1, ..., tk) ∼ ⊥,
where f ∈C′,FV ( f (t1, ..., tk)) 6= Ø, k = 1,2, ti ≡ µr for some i (1≤ i≤ k), where r
is a redex, and τ ≡ t j, 1≤ j ≤ k or τ ≡⊥. The following cases are possible:

i) f ∈ {add,min,max,not eq,numbers}, t1 ≡ ⊥, t2 ≡ µr ∈ ΛM, where r is a
redex, k = 2 and τ ≡⊥;

ii) f ∈ {add,min,max,not eq,numbers}, t1 ≡ µr ∈ ΛM, where r is a redex,
t2 ≡⊥, k = 2 and τ ≡⊥;

iii) f ≡ not eq, t1 ≡ t2 ≡ µr ∈ ΛM, where r is a redex, k = 2 and τ ≡⊥.
We can show that I-property is true in (i), (ii), (iii) cases, as shown in Proposition 2.

iv) f ≡ min, t1 ≡ add(τ1,τ2), t2 ≡ add(τ2,τ1), τ ≡ t1, where τ1,τ2 ∈ ΛM.
If f (t1, t2) ∼ ⊥, then t1 ∼ t2 ∼ ⊥. Without loss of generality suppose that i = 1.
If t1 ≡ r and r′ is its convolution, then from the definition of δ5 it follows that r′ ≡⊥,
t2 is a redex and r′ is its convolution. Therefore, t1 →δ5 r′ ≡ ⊥, t2 →δ5 r′ ≡ ⊥ and
( f (⊥,⊥),⊥) ∈ δ5. If t1 6≡ r, then τ1 ≡ τ1r and (min(add(τ1r′ ,τ2),add(τ2,τ1r′)),
add(τ1r′ ,τ2))∈ δ5, or τ2 ≡ τ2r, (min(add(τ1,τ2r′),add(τ2r′ ,τ1)),add(τ1,τ2r′))∈ δ5.
Let f (t1, t2) be a non constant term. Without loss of generality, suppose that t1 is a
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redex. Then t1→δ5 t ′1 and from the definition of δ5 it follows that t ′1 ≡m ∈M, t2→δ5

t ′1 ≡ m. Therefore, f (t1, t2)→→βδ5 f (m,m)→δ5 m and f (t1, t2) ∼ m, which is a
contradiction. Therefore, t1 and t2 can not be redexes. Without loss of generality sup-
pose τ1≡ τ1r, where r is a redex. It is easy to see that (min(add(τ1r′ ,τ2),add(τ2,τ1r′)),
add(τ1r′ ,τ2)) ∈ δ5, where r′ is the convolution of redex r.

v) f ≡ not eq, t1 ≡ not eq(min(add(τ1,τ2),add(τ2,τ1)),add(τ2,τ1)),
t2 ≡ not eq(add(τ1, τ2),add(τ2,τ1)), τ ≡ t1, where τ1,τ2 ∈ ΛM. It is easy to see that
f (t1, t2)∼⊥. Let i = 1, τ1 ≡ x,τ2 ≡ y, r≡min(add(x,y),add(y,x)), where x,y∈VM.
Since t1 ≡ τ ≡ µr, µr′ ≡ not eq(add(x,y),add(y,x)) ∈ NF and ( f (µr′ , t2),µr′) 6∈ δ5,
δ5 does not hold the point I2.

Therefore δ5 does not hold only the point I2.
b) Let us show that for the δ5 term t5≡ not eq(not eq(min(add(τ1,τ2),add(τ2,

τ1)),add(τ2, τ1)),not eq(add(τ1,τ2),add(τ2,τ1))) has two different normal forms:
t5 →δ5 not eq(min(add(τ1,τ2),add(τ2,τ1)),add(τ2,τ1)) →δ5 not eq(add(τ1,τ2),
add(τ2,τ1)) ∈ NF ;
t5→δ5 not eq(not eq(add(τ1,τ2),add(τ2,τ1)),not eq(add(τ1,τ2),add(τ2,τ1)))→δ5

⊥ ∈ NF ; �
Let δ6 = δ ′

⋃ {
(not eq(min(add(τ1,τ2),add(τ2,τ1)),add(τ1,τ2)),⊥)

| τ1,τ2 ∈ ΛM
} ⋃ {

(min(add(τ1,τ2),add(τ2,τ1)),add(τ2,τ1))| τ1,τ2 ∈ ΛM
}

. It is
easy to see that δ6 is an effective, single valued notion of δ -reduction. Since δ ′ ⊂ δ6,
then δ6 is a canonical notion of δ -reduction.

P r o p o s i t i o n 6. For the canonical notion of δ -reduction δ6 the following
hold:

a) δ6 does not hold only the I3 point;
b) there exists a term that has two different normal forms.
P r o o f .
a) If (t,τ) ∈ δ6, then (tσ ,τσ) ∈ δ6 for every admissible application of the

substitution σ . Therefore δ6 has S-property.
To show that δ6 does not hold only the point I3, let us consider all pairs

( f (t1, ..., tk),τ) ∈ δ6 such that f (t1, ..., tk) is non constant term or f (t1, ..., tk) ∼ ⊥,
where f ∈C′, FV ( f (t1, ..., tk)) 6= Ø, k = 1,2, ti ≡ µr for some i (1≤ i≤ k), where r
is a redex, and τ ≡ t j, 1≤ j ≤ k or τ ≡⊥. The following cases are possible:

i) f ∈ {add,min,max,not eq,numbers}, t1 ≡ ⊥, t2 ≡ µr ∈ ΛM, where r is a
redex, k = 2 and τ ≡⊥;

ii) f ∈ {add,min,max,not eq,numbers}, t1 ≡ µr ∈ ΛM, where r is a redex,
t2 ≡⊥, k = 2 and τ ≡⊥;

iii) f ≡ not eq, t1 ≡ t2 ≡ µr ∈ ΛM, k = 2 and τ ≡⊥, where r is a redex;
iv) f ≡ min, t1 ≡ add(τ1,τ2), t2 ≡ add(τ2,τ1), τ ≡ t2, where τ1,τ2 ∈ ΛM.

It can be shown that I-property is true in (i)-(iv) cases, as shown in Proposition 5.
v) f ≡ not eq, t1 ≡ min(add(x,y),add(y,x)), t2 ≡ add(x,y), k = 2, i = 1 and

τ ≡⊥. Since t1→δ6 add(y,x)∈NF , add(x,y)∈NF and ( f (add(y,x),add(x,y)),⊥)
6∈ δ6, δ6 does not hold the point I3. Therefore δ6 does not hold only
the point I3.
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b) Let us show that for δ6 the term not eq(min(add(x,y),add(y,x)),add(x,y))
∼⊥ has two different normal forms:
not eq(min(add(x,y),add(y,x)),add(x,y))→δ6 not eq(add(y,x),add(x,y)) ∈ NF ;
not eq(min(add(x,y),add(y,x)),add(x,y))→δ6 ⊥ ∈ NF . �

Received 27.12.2018
Reviewed 31.01.2019
Accepted 02.04.2019

R E F E R E N C E S

1. Nigiyan S.A. On Non-classical Theory of Computability. // Proceedings of the YSU.
Physical and Mathematical Sciences, 2015, No. 1, p. 52–60.

2. Nigiyan S.A., Khondkaryan T.V. On Canonical Notion of δ -Reduction and on
Translation of Typed λ -Terms into Untyped λ -Terms. // Proceedings of the YSU.
Physical and Mathematical Sciences, 2017, v. 51, No. 1, p. 46–52.

3. Barendregt H. The Lambda Calculus. Its Syntax and Semantics. North-Holland
Publishing Company, 1981.


