ON THE UNIQUENESS OF $\beta \delta$-NORMAL FORM OF TYPED λ-TERMS FOR THE CANONICAL NOTION OF δ-REDUCTION

D. A. GRIGORYAN *

Chair of Programming and Information Technologies YSU, Armenia

In this paper we consider a substitution and inheritance property, which is the necessary and sufficient condition for the uniqueness of $\beta \delta$-normal form of typed λ-terms, for canonical notion of δ-reduction. Typed λ-terms use variables of any order and constants of order ≤ 1, where the constants of order 1 are strongly computable, monotonic functions with indeterminate values of arguments. The canonical notion of δ-reduction is the notion of δ-reduction that is used in the implementation of functional programming languages.

MSC2010: 68N18.
Keywords: canonical notion of δ-reduction, SI-property, $\beta \delta$-normal form.
Introduction. The definitions of this section can be found in [1-3]. Let M be a partially ordered set, which has a least element \perp, which corresponds to the indeterminate value, and each element of M is comparable only with \perp and with itself. Let us define the set of types (denoted by Types) in the conventional way (see [2]). Let $\alpha \in$ Types and V_{α} be a countable set of variables of type α, then $V=\bigcup_{\alpha \in \text { Types }} V_{\alpha}$ is the set of all variables. The set of all terms is denoted by $\Lambda=\underset{\alpha \in \text { Types }}{\bigcup} \Lambda_{\alpha}$, where Λ_{α} is the set of terms of type α and is defined in the conventional way (see [2]). The notions of free and bound occurrences of variables in terms as well as the notion of a free variable are introduced in the conventional way too [2]. The set of all free variables in the term t is denoted by $F V(t)$. Terms t_{1} and t_{2} are said to be congruent (which is denoted by $t_{1} \equiv t_{2}$), if one term can be obtained from the other by renaming bound variables.

Further, we assume that M is a recursive set and the considered terms use variables of any order and constants of order ≤ 1, where the constants of order 1 are strongly computable, monotonic functions with indeterminate values of arguments [1].

[^0]A term of the form $\lambda x_{1} \ldots x_{k}[\tau]\left(t_{1}, \ldots, t_{k}\right)$, where $x_{i} \in V_{\alpha_{i}}, i \neq j \Rightarrow x_{i} \not \equiv x_{j}$, $\tau \in \Lambda, t_{i} \in \Lambda_{\alpha_{i}}, \alpha_{i} \in$ Types, $i, j=1, \ldots, k, k \geq 1$, is called a β-redex, its convolution is the term $\tau\left\{\tau_{1} / x_{1}, \ldots, \tau_{k} / x_{k}\right\}$, where $\left\{\tau_{1} / x_{1}, \ldots, \tau_{k} / x_{k}\right\}$ is a substitution (the substitution as well as the admissible application of substitution are defined in a conventional way [2]). The set of all pairs $\left(\tau_{0}, \tau_{1}\right)$, where τ_{0} is a β-redex and τ_{1} is its convolution, is called a notion of β-reduction. A one-step β-reduction $\left(\rightarrow_{\beta}\right)$ and β-reduction $\left(\rightarrow \rightarrow_{\beta}\right)$ are defined in the conventional way. A term containing no β-redexes is called a β-normal form. The set of all β-normal forms is denoted by $\beta-N F$.

A δ-redex has a form $f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}, i=1, \ldots, k$, $k \geq 1$, its convolution is either $m \in M$ and in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim m$ or a subterm t_{i} and in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim t_{i}, i=1, \ldots, k$. A fixed set of term pairs $\left(\tau_{0}, \tau_{1}\right)$, where τ_{0} is a δ-redex and τ_{1} is its convolution, is called a notion of δ-reduction $\left(\rightarrow_{\delta}, \rightarrow_{\delta}\right.$ as well as $\rightarrow_{\beta \delta}$ and $\rightarrow_{\beta \delta}$ are defined in the conventional way [2]). A term containing no $\beta \delta$-redexes is called normal form. The set of all normal forms is denoted by $N F$.

Definition 1. [2]. An effective, single-valued notion of δ-reduction is called a canonical notion of δ-reduction, if

1. $t \in \beta-N F, t \sim m, m \in M \backslash\{\perp\} \Rightarrow t \rightarrow \rightarrow_{\delta} m$,
2. $t \in \beta-N F, F V(t)=\emptyset, t \sim \perp \Rightarrow t \rightarrow \rightarrow_{\delta} \perp$.

Definition 2. The notion of δ-reduction has the substitution property (S-property), if from $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta$, where $t_{1}, \ldots, t_{k}, \tau \in \Lambda_{M}, f \in\left[M^{k} \rightarrow M\right]$, $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k \geq 1$, and from the following properties

S1. $f\left(t_{1}, \ldots, t_{k}\right)$ is not constant term and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
S2. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
S3. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv \perp$,
it follows that for each admissible application of substitution $\left\{\tau_{1} / x_{1}, \ldots, \tau_{n} / x_{n}\right\}$ (shortly $\{\bar{\tau} / \bar{x}\}$), where $\tau_{i} \in \Lambda_{\alpha_{i}}, x_{i} \in V_{\alpha_{i}}, \alpha_{i} \in$ Types, $i \neq j \Rightarrow x_{i} \neq x_{j}, i, j=1, \ldots, n, n \geq 0$, there exist terms $t_{1}^{\prime}, \ldots, t_{k}^{\prime}$ such that $t_{1}\{\bar{\tau} / \bar{x}\} \rightarrow \rightarrow t_{1}^{\prime} \ldots, t_{k}\{\bar{\tau} / \bar{x}\} \rightarrow \rightarrow t_{k}^{\prime}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \in \delta$ if $\tau \equiv t_{j}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \perp\right) \in \delta$ if $\tau \equiv \perp$.

Definition 3. The notion of δ-reduction has the inheritance property (I-property), if from $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta$, where $t_{1}, \ldots, t_{k}, \tau \in \Lambda_{M}, f \in\left[M^{k} \rightarrow M\right]$, $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k \geq 1$ and $t_{i} \equiv \mu_{r}$ for some $i(1 \leq i \leq k)$, where r is a redex and from the following properties:

I1. $f\left(t_{1}, \ldots, t_{k}\right)$ is not constant term and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
I2. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
I3. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv \perp$,
it follows that there exist terms $t_{1}^{\prime}, \ldots, t_{k}^{\prime} \in \Lambda_{M}$ such that $t_{1} \rightarrow \rightarrow t_{1}^{\prime}, \ldots$, $\mu_{r^{\prime}} \rightarrow \rightarrow t_{i}^{\prime}, \ldots, t_{k} \rightarrow \rightarrow t_{k}^{\prime}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \in \delta$ if $\tau \equiv t_{j}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \perp\right) \in \delta$ if $\tau \equiv \perp$, where r^{\prime} is the convolution of the redex r.

Definition 4. The canonical notion of δ-reduction has SI-property, if it has S-property and I-property.

Two Canonical Notions of δ-Reduction. Let $M=N \cup\{\perp\}$, where $N=\{0,1,2, \ldots\}$ and $C=\{$ add, min, max, inc, dec $\}, C^{\prime}=C \cup\{$ not_eq, numbers $\}$, where inc, dec $\in[M \rightarrow M]$, add, min, max, not_eq, numbers $\in\left[M^{2} \rightarrow M\right]$ and for every
$m, m_{1}, m_{2} \in M$ we have:

$$
\begin{gathered}
\operatorname{add}\left(m_{1}, m_{2}\right)= \begin{cases}m_{1}+m_{2}, & \text { if } m_{1}, m_{2} \in N, \\
\perp, & \text { otherwise. }\end{cases} \\
\min \left(m_{1}, m_{2}\right)= \begin{cases}m_{1}, & \text { if } m_{1}, m_{2} \in N \text { and } m_{1} \leq m_{2}, \\
m_{2}, & \text { if } m_{1}, m_{2} \in N \text { and } m_{1}>m_{2}, \\
\perp, & \text { otherwise. }\end{cases} \\
\max \left(m_{1}, m_{2}\right)= \begin{cases}m_{2}, & \text { if } m_{1}, m_{2} \in N \text { and } m_{1} \leq m_{2}, \\
m_{1}, & \text { if } m_{1}, m_{2} \in N \text { and } m_{1}>m_{2}, \\
\perp, & \text { otherwise. }\end{cases} \\
\operatorname{dinc}(m)= \begin{cases}m+1, & \text { if } m \in N, \\
\perp, & \text { if } m=\perp .\end{cases} \\
\operatorname{dec}(m)= \begin{cases}0, & \text { if } m \in N \text { and } m=0, \\
m-1, & \text { if } m \in N \text { and } m \geq 1, \\
\perp, & \text { if } m=\perp .\end{cases} \\
\text { not_eq }\left(m_{1}, m_{2}\right)= \begin{cases}1, & \text { if } m_{1}, m_{2} \in N \text { and } m_{1} \neq m_{2}, \\
\perp, & \text { otherwise. }\end{cases} \\
\text { numbers }\left(m_{1}, m_{2}\right)= \begin{cases}1, & \text { if } m_{1}, m_{2} \in N, \\
\perp, & \text { otherwise. }\end{cases}
\end{gathered}
$$

It is easy to see that all functions of the set C^{\prime} are strong computable, naturally extended functions with indeterminate values of arguments (a function is said to be naturally extended, if its value is \perp whenever the value of at least one of the arguments is \perp). Let us consider the notion of δ-reduction δ for the set C :


```
(add (\perp,t),\perp)\in\delta, where }t\in
(add (t,\perp),\perp)\in\delta, where }t\in
(min}(\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}),\mp@subsup{n}{1}{})\in\delta,\mathrm{ where }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}\inN\mathrm{ and }\mp@subsup{n}{1}{}\leq\mp@subsup{n}{2}{
(min}(\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}),\mp@subsup{n}{2}{})\in\delta,\mathrm{ where }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}\inN\mathrm{ and }\mp@subsup{n}{1}{}>\mp@subsup{n}{2}{
(min}(\perp,t),\perp)\in\delta,\mathrm{ where }t\in
min}(t,\perp),\perp)\in\delta,\mathrm{ where }t\in
max}(\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}),\mp@subsup{n}{2}{})\in\delta,\mathrm{ where }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}\inN\mathrm{ and }\mp@subsup{n}{1}{}\leq\mp@subsup{n}{2}{
(max}(\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}),\mp@subsup{n}{1}{})\in\delta,\mathrm{ where }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}\inN\mathrm{ and }\mp@subsup{n}{1}{}>\mp@subsup{n}{2}{
max (\perp,t),\perp)\in\delta, where t\in\Lambda
max}(t,\perp),\perp)\in\delta,\mathrm{ where }t\in
inc}(\mp@subsup{n}{1}{}),\mp@subsup{n}{2}{})\in\delta,\mathrm{ where }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}\inN\mathrm{ and }\mp@subsup{n}{2}{}=\mp@subsup{n}{1}{}+
inc}(\perp),\perp)\in
(dec}(\mp@subsup{n}{1}{}),\mp@subsup{n}{2}{})\in\delta,\mathrm{ where }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}\inN,\mp@subsup{n}{1}{}>0\mathrm{ and }\mp@subsup{n}{2}{}=\mp@subsup{n}{1}{}-
```

$(\operatorname{dec}(0), 0) \in \delta$
$(\operatorname{dec}(\perp), \perp) \in \delta$.
Let us consider δ^{\prime} notion of δ-reduction for the set C^{\prime} :
$(t, \tau) \in \delta \Rightarrow(t, \tau) \in \delta^{\prime}$, where $t, \tau \in \Lambda_{M}$
$\left(\operatorname{not}_{-} e q\left(n_{1}, n_{2}\right), 1\right) \in \delta^{\prime}$, where $n_{1}, n_{2} \in N$ and $n_{1} \neq n_{2}$
$($ not_eq $(t, t), \perp) \in \delta^{\prime}$, where $t \in \Lambda_{M}$
$($ not_eq $(t, \perp), \perp) \in \delta^{\prime}$, where $t \in \Lambda_{M}$
$($ not_eq $(\perp, t), \perp) \in \delta^{\prime}$, where $t \in \Lambda_{M}$
(numbers $\left.\left(n_{1}, n_{2}\right), 1\right) \in \delta^{\prime}$, where $n_{1}, n_{2} \in N$
(numbers $(\perp, t), \perp) \in \delta^{\prime}$, where $t \in \Lambda_{M}$
(numbers $(t, \perp), \perp) \in \delta^{\prime}$, where $t \in \Lambda_{M}$.
It is easy to see that δ and δ^{\prime} are canonical notions of δ-reduction.
S-Property. We say that a notion of δ-reduction does not hold only point Si, $i=1,2,3$, if it holds all points of S-property and I-property, except point Si of S-property.

Let $\delta_{1}=\delta \cup\left\{(\max (\operatorname{inc}(x), x), \operatorname{inc}(x)) \mid x \in V_{M}\right\}$. It is easy to see that δ_{1} is an effective, single valued notion of δ-reduction. Since $\delta \subset \delta_{1}, \delta_{1}$ is a canonical notion of δ-reduction.

Proposition 1. For the canonical notion of δ-reduction δ_{1} the following properties hold:
a) δ_{1} does not hold only the point $S 1$;
b) there exists a term that has two different normal forms.

Proof.

a) To show that δ_{1} has I-property, let us consider all pairs $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta_{1}$ such that $f\left(t_{1}, \ldots, t_{k}\right)$ is non constant term or $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$, where $f \in C$, $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k=1,2, t_{i} \equiv \mu_{r}$ for some $i(1 \leq i \leq k)$, where r is a redex, and $\tau \equiv t_{j}$ for some $j(1 \leq j \leq k)$, or $\tau \equiv \perp$. The following cases are possible:
i) $f \in\{a d d, \min , \max \}, t_{1} \equiv \perp, t_{2} \equiv \mu_{r} \in \Lambda_{M}$, where r is a redex, $k=2, i=2$ and $\tau \equiv \perp$. Since $(f(\perp, t), \perp) \in \delta_{1}$ for every $t \in \Lambda_{M}$, we have $\left(f\left(\perp, \mu_{r^{\prime}}\right), \perp\right) \in \delta_{1}$, where r^{\prime} is the convolution of the redex r.
ii) $f \in\{$ add, min, $\max \}, t_{1} \equiv \mu_{r} \in \Lambda_{M}$, where r is a redex, $t_{2} \equiv \perp, k=2, i=1$ and $\tau \equiv \perp$. Since $(f(t, \perp), \perp) \in \delta_{1}$ for every $t \in \Lambda_{M}$, we have $\left(f\left(\mu_{r^{\prime}}, \perp\right), \perp\right) \in \delta_{1}$, where r^{\prime} is the convolution of the redex r.

Therefore δ_{1} has I-property. To show that δ_{1} does not hold only the point S 1 , let us consider all pairs $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta_{1}$ such that $f\left(t_{1}, \ldots, t_{k}\right)$ is non constant term or $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$, where $f \in C, F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k=1,2$, and $\tau \equiv t_{j}$ for some $j(1 \leq j \leq k)$ or $\tau \equiv \perp$. The following cases are possible:
i) $f \in\{a d d$, min, $\max \}, t_{1} \equiv \perp, t_{2} \in \Lambda_{M}, k=2$ and $\tau \equiv \perp$, where $F V\left(t_{2}\right) \neq \emptyset$. Since $(f(\perp, t), \perp) \in \delta_{1}$ for any $t \in \Lambda_{M}$, then $\left(f\left(\perp, t_{2} \sigma\right), \perp\right) \in \delta_{1}$ for any admissible application of the substitution σ.
ii) $f \in\{a d d, \min , \max \}, t_{1} \in \Lambda_{M}, t_{2} \equiv \perp, k=2$ and $\tau \equiv \perp$, where $F V\left(t_{1}\right) \neq \emptyset$. Since $(f(t, \perp), \perp) \in \delta_{1}$ for any $t \in \Lambda_{M}$, we get $\left(f\left(t_{1} \sigma, \perp\right), \perp\right) \in \delta_{1}$ for any admissible application of the substitution σ.
iii) $f \equiv \max , t_{1} \equiv \operatorname{inc}(x), t_{2} \equiv x, k=2$ and $\tau \equiv t_{1}$, where $x \in V_{M}$. For the admissible application of the substitution $\sigma=\{\operatorname{inc}(y) / x\}$ we have: $t_{1} \sigma \equiv \tau \sigma \equiv \operatorname{inc}(x)\{\operatorname{inc}(y) / x\} \equiv \operatorname{inc}(\operatorname{inc}(y)) \in N F, t_{2} \sigma \equiv x\{\operatorname{inc}(y) / x\} \equiv \operatorname{inc}(y) \in N F$. Since $f\left(t_{1}, t_{2}\right)$ is a non constant term and $\left(f\left(t_{1} \sigma, t_{2} \sigma\right), \tau \sigma\right) \notin \delta_{1}, \delta_{1}$ does not hold the point $S 1$.

Since the S-property violated only in the case (iii), where $f\left(t_{1}, t_{2}\right)$ is the non constant term, δ_{1} does not hold only the point S1.
b) Let us show that for δ_{1} the term $\lambda x[\max (\operatorname{inc}(x), x)](\operatorname{inc}(y))$ has two different normal forms.
$\lambda x[\max (\operatorname{inc}(x), x)](\operatorname{inc}(y)) \rightarrow_{\delta_{1}} \lambda x[\operatorname{inc}(x)](\operatorname{inc}(y)) \rightarrow_{\beta} \operatorname{inc}(\operatorname{inc}(y)) \in N F ;$
$\lambda x[\max (\operatorname{inc}(x), x)](\operatorname{inc}(y)) \rightarrow_{\beta} \max (\operatorname{inc}(\operatorname{inc}(y)), \operatorname{inc}(y)) \in N F$.
Let $\delta_{2}=\delta^{\prime} \cup\{(\operatorname{numbers}($ not_eq $(\operatorname{dec}(\operatorname{inc}(x)), x), 0)$, not_eq $(\operatorname{dec}(\operatorname{inc}(x)), x))$ $\left.\mid x \in V_{M}\right\}$. It is easy to see that δ_{2} is an effective, single valued notion of δ-reduction. Since $\delta^{\prime} \subset \delta_{2}$, then δ_{2} is a canonical notion of δ-reduction.

Proposition 2. For the canonical notion of δ-reduction δ_{2} the following hold true:
a) δ_{2} does not hold only the point S 2 ;
b) there exists a term that has two different normal forms.

Proof.

a) To show that δ_{2} has I-property, let us consider all pairs $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta_{2}$ such that $f\left(t_{1}, \ldots, t_{k}\right)$ is non constant term or $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$, where $f \in C^{\prime}$, $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k=1,2, t_{i} \equiv \mu_{r}$ for some $i(1 \leq i \leq k)$, where r is a redex, and $\tau \equiv t_{j}, 1 \leq j \leq k$ or $\tau \equiv \perp$. The following cases are possible:
i) $f \in\{$ add,min,max,not eq, numbers $\}, t_{1} \equiv \perp, t_{2} \equiv \mu_{r} \in \Lambda_{M}, k=2$ and $\tau \equiv \perp$, where r is a redex. Since $(f(\perp, t), \perp) \in \delta_{2}$ for every $t \in \Lambda_{M}$, we have $\left(f\left(\perp, \mu_{r^{\prime}}\right), \perp\right) \in \delta_{2}$, where r^{\prime} is convolution of the redex r.
ii) $f \in\{$ add,min,max, not_eq,numbers $\}, t_{1} \equiv \mu_{r} \in \Lambda_{M}, t_{2} \equiv \perp, k=2$ and $\tau \equiv \perp$, where r is a redex. Since $(f(t, \perp), \perp) \in \delta_{2}$ for every $t \in \Lambda_{M}$, we have $\left(f\left(\mu_{r^{\prime}}, \perp\right), \perp\right) \in \delta_{2}$, where r^{\prime} is convolution of the redex r.
iii) $f \equiv$ not_eq, $t_{1} \equiv t_{2} \equiv \mu_{r} \in \Lambda_{M}, k=2$ and $\tau \equiv \perp$, where r is a redex. Since $(f(t, t), \perp) \in \delta_{2}$ for every $t \in \Lambda_{M}$, we get $\left(f\left(\mu_{r^{\prime}}, \mu_{r^{\prime}}\right), \perp\right) \in \delta_{2}$, where r^{\prime} is convolution of the redex r.

Therefore δ_{2} has I-property. To show that δ_{2} does not hold only the point S 2 , let us consider all pairs $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta_{2}$ such that $f\left(t_{1}, \ldots, t_{k}\right)$ is the non constant term or $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$, where $f \in C^{\prime}, F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k=1,2$. The following cases are possible:
i) $f \in\{$ add,min,max,not_eq,numbers $\}, t_{1} \equiv \perp, t_{2} \in \Lambda_{M}, k=2$ and $\tau \equiv \perp$, where $f\left(t_{1}, t_{2}\right) \sim \perp$. Since $(f(\perp, t), \perp) \in \delta_{2}$ for every $t \in \Lambda_{M}$, we have $\left(f\left(\perp, t_{2} \sigma\right), \perp\right) \in \delta_{2}$ for any admissible application of the substitution σ.
ii) $f \in\{$ add,min,max, not_eq, numbers $\}, t_{1} \in \Lambda_{M}, t_{2} \equiv \perp, k=2$ and $\tau \equiv \perp$, where $f\left(t_{1}, t_{2}\right) \sim \perp$. Since $(f(t, \perp), \perp) \in \delta_{2}$ for every $t \in \Lambda_{M}$, we have $\left(f\left(t_{1} \sigma, \perp\right), \perp\right) \in \delta_{2}$ for any admissible application of the substitution σ.
iii) $f \equiv$ not_eq, $t_{1} \equiv t_{2} \in \Lambda_{M}, k=2$ and $\tau \equiv \perp$. Since $(f(t, t), \perp) \in \delta_{2}$ for every $t \in \Lambda_{M},\left(f\left(t_{1} \sigma, t_{2} \sigma\right), \perp\right) \in \delta_{2}$ for any admissible application of the substitution σ.
iv) $f \equiv$ numbers, $t_{1} \equiv$ not_eq $(\operatorname{dec}(\operatorname{inc}(x)), x)$, where $x \in V_{M}, t_{2} \equiv 0, k=2$ and $\tau \equiv t_{1}$. For the admissible application of substitution $\sigma=\{\operatorname{add}(x, 2) / x\}$ we have: $t_{1} \sigma \equiv n o t_{-} e q(\operatorname{dec}(\operatorname{inc}(\operatorname{add}(x, 2))), a d d(x, 2)) \equiv t_{1}^{\prime} \in N F$ and $t_{2} \sigma \equiv 0 \equiv t_{2}^{\prime} \in N F$. Since $f\left(t_{1}, t_{2}\right) \sim \perp$ and (numbers $\left.\left(t_{1}^{\prime}, t_{2}^{\prime}\right), t_{1}^{\prime}\right) \notin \delta_{2}, \delta_{2}$ does not hold the point S 2 .

Therefore δ_{2} does not hold only the point S2.
b) Let us show that for δ_{2} the term
$t^{\prime} \equiv \lambda x y\left[n u m b e r s\left(n o t _e q(\operatorname{dec}(\operatorname{inc}(x)), x), 0\right)\right](\operatorname{add}(x, 2))$
has two different normal forms:
$t^{\prime} \rightarrow_{\beta}$ numbers $($ not_eq $(\operatorname{dec}(\operatorname{inc}(\operatorname{add}(x, 2))), \operatorname{add}(x, 2)), 0) \in N F ;$
$t^{\prime} \rightarrow_{\delta_{2}} \lambda x y[\operatorname{not} \operatorname{eq}(\operatorname{dec}(\operatorname{inc}(x)), x)](\operatorname{add}(x, 2)) \rightarrow_{\beta}$
not_eq $(\operatorname{dec}(\operatorname{inc}(\operatorname{add}(x, 2)))), \operatorname{add}(x, 2)) \in N F$.
Let $\delta_{3}=\delta^{\prime} \cup\left\{\left(\right.\right.$ numbers $\left(\right.$ not_eq $\left.\left.\left.^{\prime}(\operatorname{dec}(\operatorname{inc}(x)), x), 0\right), \perp\right) \mid x \in V_{M}\right\}$. It is easy to see that δ_{3} is an effective, single valued notion of δ-reduction. Since $\delta^{\prime} \subset \delta_{3}$, then δ_{3} is a canonical notion of δ-reduction.

Proposition 3. For the canonical notion of δ-reduction δ_{3} the following holds:
a) δ_{3} does not hold only the point S 3 ;
b) there exists a term that has two different normal forms.

Proof.
a) It can be shown that δ_{3} has I-property as shown in Proposition 2. To show that δ_{3} holds the $\mathrm{S} 1, \mathrm{~S} 2$ points and does not hold the point S 3 , let us consider all pairs $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta_{3}$ such that $f\left(t_{1}, \ldots, t_{k}\right)$ is a non constant term or $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$, where $f \in C^{\prime}, t_{1}, \ldots, t_{k}, \tau \in \Lambda_{M}, f \in\left[M^{k} \rightarrow M\right], F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq$ $\emptyset, k=1,2$. The following cases are possible:
i) $f \in\{$ add,min,max, not_eq,numbers $\}, t_{1} \equiv \perp, t_{2} \in \Lambda_{M}, k=2$ and $\tau \equiv \perp$;
ii) $f \in\{$ add,min,max, not_eq,numbers $\}, t_{1} \in \Lambda_{M}, t_{2} \equiv \perp, k=2$ and $\tau \equiv \perp$;
iii) $f \equiv$ not_eq, $t_{1} \equiv t_{2} \in \Lambda_{M}, k=2$ and $\tau \equiv \perp$.

We can show that S-property is true in $(i)-(i i i)$ cases, as shown in Proposition 2.
iv) $f \equiv$ numbers, $t_{1} \equiv$ not_eq $(\operatorname{dec}(\operatorname{inc}(x)), x)$, where $x \in V_{M}, t_{2} \equiv 0, k=2$ and $\tau \equiv \perp$. For the admissible application of the substitution $\sigma=\{\operatorname{add}(x, 2) / x\}$ we have: $t_{1} \sigma \equiv n o t_{-} e q(\operatorname{dec}(\operatorname{inc}(\operatorname{add}(x, 2))), \operatorname{add}(x, 2)) \equiv t_{1}^{\prime} \in N F$ and $t_{2} \sigma \equiv 0 \equiv t_{2}^{\prime} \in N F$. Since $f\left(t_{1}, t_{2}\right) \sim \perp$ and $\left(f\left(t_{1}^{\prime}, t_{2}^{\prime}\right), \perp\right) \notin \delta_{3}, \delta_{3}$ does not hold the point S3.

Therefore δ_{3} does not hold only the point S3.
b) Let us show that for δ_{3} the term
$t \equiv \lambda x y\left[n u m b e r s\left(n o t _e q(\operatorname{dec}(\operatorname{inc}(x)), x), 0\right)\right](\operatorname{add}(x, 2))$ has two different normal forms:
$t \rightarrow_{\delta_{3}} \lambda x y[\perp](\operatorname{add}(x, 2)) \rightarrow_{\beta} \perp \in N F ;$
$t \rightarrow_{\beta}$ numbers(not_eq(dec $\left.\left.(\operatorname{inc}(\operatorname{add}(x, 2))), \operatorname{add}(x, 2)\right), 0\right) \in N F$.
I-Property. We say that a notion of δ-reduction does not hold only the point $\mathrm{I} i, i=1,2,3$, if it holds all points of S-property and I-property, except the point $\mathrm{I} i$ of I-property. If $t \in \beta-N F, t \sim m, m \in M$, then $t \equiv m$ or $t \equiv f\left(t_{1}, \ldots, t_{k}\right)$, where
$f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}, t_{i} \in \beta-N F, i=1, \ldots, k, k \geq 1$. We introduce the notion of rank for such terms: $\operatorname{rank}(m)=0, \operatorname{rank}\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=1+\max \left(\operatorname{rank}\left(t_{1}\right), \ldots, \operatorname{rank}\left(t_{k}\right)\right)$.

Let $\delta_{4}=\delta \cup\left\{\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \operatorname{add}\left(\tau_{1}, \tau_{2}\right)\right) \mid \tau_{1}, \tau_{2} \in \Lambda_{M}\right\} \cup$ $\left\{\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \min \left(\operatorname{add}\left(\tau_{2}, \tau_{1}\right), \operatorname{add}\left(\tau_{1}, \tau_{2}\right)\right)\right), \quad \min \left(\operatorname{add}\left(\tau_{2}, \tau_{1}\right), \operatorname{add}\left(\tau_{1}, \tau_{2}\right)\right)\right)\right.$ $\left.\mid \tau_{1}, \tau_{2} \in \Lambda_{M}\right\}$. It is easy to see that δ_{4} is an effective, single valued notion of δ-reduction. Since $\delta \subset \delta_{4}$, then δ_{4} is a canonical notion of δ-reduction.

Proposition4. For the canonical notion of δ-reduction δ_{4} the following takes place:
a) δ_{4} does not hold only the point I1;
b) there exists a term that has two different normal forms. To prove Proposition 4 let us prove Lemma 1.

Lemma 1. For the canonical notion of δ-reduction δ and for any term $t \in \Lambda$, we have: if $t \sim \perp$, then $t \rightarrow \rightarrow_{\beta \delta} \perp$.

Proof. Let $t \in \Lambda, t \sim \perp$ and $t \rightarrow \rightarrow_{\beta} t^{\prime} \in \beta-N F$. Therefore, $t^{\prime} \sim \perp$. If $\operatorname{rank}\left(t^{\prime}\right)=0$, then $t^{\prime} \equiv \perp, t^{\prime} \rightarrow_{\beta \delta} \perp$ and $t \rightarrow_{\beta \delta} \perp$. If $\operatorname{rank}\left(t^{\prime}\right)=1$, then the following cases are possible:
i) $t^{\prime} \equiv f(m)$, where $f \in\{$ inc, dec $\}, m \in M$. Since $f(m) \sim \perp$, we have $m \equiv \perp$, $\left(t^{\prime}, \perp\right) \in \delta, t^{\prime} \rightarrow_{\delta} \perp$ and $t \rightarrow_{\beta \delta} \perp ;$
ii) $t^{\prime} \equiv f\left(m_{1}, m_{2}\right)$, where $f \in\{a d d, \min , \max \}, m_{1}, m_{2} \in M$. Since $f\left(m_{1}, m_{2}\right) \sim$ \perp, we have $m_{1} \equiv \perp$ or $m_{2} \equiv \perp$. Therefore, $\left(f\left(m_{1}, m_{2}\right), \perp\right) \in \delta, t^{\prime} \rightarrow_{\delta} \perp, t \rightarrow \rightarrow_{\beta \delta} \perp$.

Let $\operatorname{rank}\left(t^{\prime}\right)=n>1$, then $t^{\prime} \equiv f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in C$ and $t_{i} \in \Lambda_{M}$, $t_{i} \in \beta-N F, i=1, \ldots, k, k \geq 1$, and we suppose that if $\tau \in \beta-N F$ and $\tau \sim \perp$, then $\tau \rightarrow \rightarrow_{\beta \delta} \perp$, where $\operatorname{rank}(\tau)<n$. Following cases are possible:
i) $t^{\prime} \equiv f(\tau)$, where $f \in\{$ inc, dec $\}, \tau \in \Lambda_{M}, \tau \in \beta-N F$. Since $f(\tau) \sim \perp$, then $\tau \sim \perp$. Since $\operatorname{rank}(\tau)=n-1$, by the induction hypothesis, $\tau \rightarrow_{\beta \delta} \perp$. Therefore, $f(\tau) \rightarrow_{\beta \delta} f(\perp) \rightarrow_{\delta} \perp$ and $t \rightarrow_{\beta \delta} \perp ;$
ii) $t^{\prime} \equiv f\left(t_{1}, t_{2}\right)$, where $f \in\{a d d, \min , \max \}, t_{1}, t_{2} \in \Lambda_{M}, t_{1}, t_{2} \in \beta-N F$. Since $f\left(t_{1}, t_{2}\right) \sim \perp$, we can say $t_{1} \sim \perp$ or $t_{2} \sim \perp$. Without loss of generality we suppose that $t_{1} \sim \perp$. Since $\operatorname{rank}\left(t_{1}\right)<n$, by the induction hypothesis, $t_{1} \rightarrow_{\beta \delta} \perp$. Therefore, $f\left(t_{1}, t_{2}\right) \rightarrow_{\beta \delta} f\left(\perp, t_{2}\right) \rightarrow_{\delta} \perp$ and $t \rightarrow_{\beta \delta} \perp$.

Proof of Proposition 4.

a) If $(t, \tau) \in \delta_{4}$, then $(t \sigma, \tau \sigma) \in \delta_{4}$ for every admissible application of substitution σ. Therefore δ_{4} has S-property. Let us show that δ_{4} does not hold the point I1. Let $f \equiv \min , t_{1} \equiv \operatorname{add}(x, y), t_{2} \equiv \min (\operatorname{add}(y, x), \operatorname{add}(x, y))$, then $\left(f\left(t_{1}, t_{2}\right), t_{2}\right) \in \delta_{4}$. It is easy to see that $f\left(t_{1}, t_{2}\right)$ is a non constant term. Since $t_{1} \equiv \operatorname{add}(x, y) \equiv t_{1}^{\prime} \in N F$, $t_{2} \rightarrow_{\delta_{4}} a d d(y, x) \equiv t_{2}^{\prime} \in N F$ and $\left(f\left(t_{1}^{\prime}, t_{2}^{\prime}\right), t_{2}^{\prime}\right) \notin \delta_{4}$, then δ_{4} does not hold the point I1.

Let $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta_{4}$, where $t_{1}, \ldots, t_{k}, \tau \in \Lambda_{M}, f \in C, F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset$, $k=1,2, t_{i} \equiv \mu_{r}$ for some $i(1 \leq i \leq k)$, where r is a redex and $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$. Following cases are possible:
i) $f \in\{\operatorname{add}, \min , \max \}, t_{1} \equiv \perp, t_{2} \equiv \mu_{r} \in \Lambda_{M}, r$ is a redex, $k=2, i=2, \tau \equiv \perp$;
ii) $f \in\{a d d, \min , \max \}, t_{1} \equiv \mu_{r} \in \Lambda_{M}, r$ is a redex, $t_{2} \equiv \perp, k=2, i=1, \tau \equiv \perp$. It can be shown that I-property is true in the (i), (ii) cases, as shown in Proposition 1.
iii) $\left.f=\min , t_{1} \equiv \operatorname{add}\left(\tau_{1}, \tau_{2}\right) t_{2} \equiv \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \tau \equiv t_{1}, i=1,2$.
iv) $f=\min , t_{1} \equiv \operatorname{add}\left(\tau_{1}, \tau_{2}\right) t_{2} \equiv \min \left(\operatorname{add}\left(\tau_{2}, \tau_{2}\right), \operatorname{add}\left(\tau_{1}, \tau_{2}\right)\right), \tau \equiv t_{2}, i=1,2$.

Since in both (iii), (iv) cases $f\left(t_{1}, t_{2}\right) \sim \perp$, so $\tau \sim \perp$. It is easy to see that $t_{1} \sim t_{2} \sim \perp$. Without lose of generality we suppose that $i=1$. Therefore, $t_{1} \equiv \mu_{r} \rightarrow_{\beta \delta_{4}}$ $\mu_{r^{\prime}} \sim \perp$, where r^{\prime} is the convolution of the redex r. Since $\delta \subset \delta_{4}$, from Lemma 1 follows that $\mu_{r^{\prime}} \rightarrow_{\beta \delta_{4}} \perp, t_{2} \rightarrow_{\beta \delta_{4}} \perp$ and $\tau \rightarrow \rightarrow_{\beta \delta_{4}} \perp$. Since $(f(\perp, \perp), \perp) \in$ δ_{4}, δ_{4} holds the points I2 and I3. Therefore δ_{4} does not hold only the point I1.
b) Let us show that for δ_{4} the term $t^{\prime} \equiv \min (\operatorname{add}(x, y), \min (\operatorname{add}(y, x), \operatorname{add}(x, y)))$ has two different normal forms:
$t^{\prime} \rightarrow_{\delta_{4}} \min (\operatorname{add}(y, x), \operatorname{add}(x, y)) \rightarrow_{\delta_{4}} \operatorname{add}(y, x) \in N F ;$
$t^{\prime} \rightarrow_{\delta_{4}} \min (\operatorname{add}(x, y), \operatorname{add}(y, x)) \rightarrow_{\delta_{4}} \operatorname{add}(x, y) \in N F$.
Let $\delta_{5}=\delta^{\prime} \cup\left\{\left(\right.\right.$ not_eq $\left(\right.$ not_eq $\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right)$, not_eq $\left.\left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right)\right)$, not_eq $\left.\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right)\right)$ $\left.\mid \tau_{1}, \tau_{2} \in \Lambda_{M}\right\} \cup\left\{\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \operatorname{add}\left(\tau_{1}, \tau_{2}\right)\right) \mid \tau_{1}, \tau_{2} \in \Lambda_{M}\right\}$. It is easy to see that δ_{5} is an effective, single valued notion of δ-reduction. Since $\delta^{\prime} \subset \delta_{5}, \delta_{5}$ is a canonical notion of δ-reduction.

Proposition 5. For the canonical notion of δ-reduction δ_{5} the following properties hold:
a) δ_{5} does not hold only the point I2;
b) there exists a term that has two different normal forms.

Proof.

a) If $(t, \tau) \in \delta_{5}$, then $(t \sigma, \tau \sigma) \in \delta_{5}$ for every admissible application of substitution σ. Therefore δ_{5} has S-property.

To show that δ_{5} does not hold only the point I2, let us consider all pairs $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta_{5}$ such that $f\left(t_{1}, \ldots, t_{k}\right)$ is non constant term or $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$, where $f \in C^{\prime}, F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k=1,2, t_{i} \equiv \mu_{r}$ for some $i(1 \leq i \leq k)$, where r is a redex, and $\tau \equiv t_{j}, 1 \leq j \leq k$ or $\tau \equiv \perp$. The following cases are possible:
i) $f \in\{$ add,min,max, not_eq, numbers $\}, t_{1} \equiv \perp, t_{2} \equiv \mu_{r} \in \Lambda_{M}$, where r is a redex, $k=2$ and $\tau \equiv \perp$;
ii) $f \in\{$ add,min,max, not_eq,numbers $\}, t_{1} \equiv \mu_{r} \in \Lambda_{M}$, where r is a redex, $t_{2} \equiv \perp, k=2$ and $\tau \equiv \perp$;
iii) $f \equiv$ not_eq, $t_{1} \equiv t_{2} \equiv \mu_{r} \in \Lambda_{M}$, where r is a redex, $k=2$ and $\tau \equiv \perp$.

We can show that I-property is true in (i), (ii), (iii) cases, as shown in Proposition 2.
$i v) f \equiv \min , t_{1} \equiv \operatorname{add}\left(\tau_{1}, \tau_{2}\right), t_{2} \equiv \operatorname{add}\left(\tau_{2}, \tau_{1}\right), \tau \equiv t_{1}$, where $\tau_{1}, \tau_{2} \in \Lambda_{M}$. If $f\left(t_{1}, t_{2}\right) \sim \perp$, then $t_{1} \sim t_{2} \sim \perp$. Without loss of generality suppose that $i=1$. If $t_{1} \equiv r$ and r^{\prime} is its convolution, then from the definition of δ_{5} it follows that $r^{\prime} \equiv \perp$, t_{2} is a redex and r^{\prime} is its convolution. Therefore, $t_{1} \rightarrow_{\delta_{5}} r^{\prime} \equiv \perp, t_{2} \rightarrow_{\delta_{5}} r^{\prime} \equiv \perp$ and $(f(\perp, \perp), \perp) \in \delta_{5}$. If $t_{1} \not \equiv r$, then $\tau_{1} \equiv \tau_{1 r}$ and $\left(\min \left(\operatorname{add}\left(\tau_{1 r^{\prime}}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1 r^{\prime}}\right)\right)\right.$, $\left.\operatorname{add}\left(\tau_{1 r^{\prime}}, \tau_{2}\right)\right) \in \delta_{5}$, or $\tau_{2} \equiv \tau_{2 r},\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2 r^{\prime}}\right), \operatorname{add}\left(\tau_{2 r^{\prime}}, \tau_{1}\right)\right), \operatorname{add}\left(\tau_{1}, \tau_{2 r^{\prime}}\right)\right) \in \delta_{5}$. Let $f\left(t_{1}, t_{2}\right)$ be a non constant term. Without loss of generality, suppose that t_{1} is a
redex. Then $t_{1} \rightarrow_{\delta_{5}} t_{1}^{\prime}$ and from the definition of δ_{5} it follows that $t_{1}^{\prime} \equiv m \in M, t_{2} \rightarrow_{\delta_{5}}$ $t_{1}^{\prime} \equiv m$. Therefore, $f\left(t_{1}, t_{2}\right) \rightarrow_{\beta \delta_{5}} f(m, m) \rightarrow_{\delta_{5}} m$ and $f\left(t_{1}, t_{2}\right) \sim m$, which is a contradiction. Therefore, t_{1} and t_{2} can not be redexes. Without loss of generality suppose $\tau_{1} \equiv \tau_{1 r}$, where r is a redex. It is easy to see that $\left(\min \left(\operatorname{add}\left(\tau_{1 r^{\prime}}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1 r^{\prime}}\right)\right)\right.$, $\left.\operatorname{add}\left(\tau_{1 r^{\prime}}, \tau_{2}\right)\right) \in \delta_{5}$, where r^{\prime} is the convolution of redex r.
$v) \quad f \equiv$ not_eq, $\quad t_{1} \equiv \operatorname{not}$-eq $\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right)$, $t_{2} \equiv n o t _e q\left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \tau \equiv t_{1}$, where $\tau_{1}, \tau_{2} \in \Lambda_{M}$. It is easy to see that $f\left(t_{1}, t_{2}\right) \sim \perp$. Let $i=1, \tau_{1} \equiv x, \tau_{2} \equiv y, r \equiv \min (\operatorname{add}(x, y), \operatorname{add}(y, x))$, where $x, y \in V_{M}$. Since $t_{1} \equiv \tau \equiv \mu_{r}, \mu_{r^{\prime}} \equiv$ not_eq $(\operatorname{add}(x, y), a d d(y, x)) \in N F$ and $\left(f\left(\mu_{r^{\prime}}, t_{2}\right), \mu_{r^{\prime}}\right) \notin \delta_{5}$, δ_{5} does not hold the point I2.

Therefore δ_{5} does not hold only the point I2.
b) Let us show that for the δ_{5} term $t_{5} \equiv$ not_eq(not_eq($\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}\right.\right.$, $\left.\left.\left.\tau_{1}\right)\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right)$, not_eq $\left.\left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right)\right)$ has two different normal forms: $t_{5} \rightarrow_{\delta_{5}}$ not_eq $\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right) \rightarrow_{\delta_{5}} \operatorname{not}$ _eq $\left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right)\right.$, $\left.\operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right) \in N F$;
$t_{5} \rightarrow_{\delta_{5}}$ not_eq $\left(\right.$ not_eq $\left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right)\right.$, add $\left.\left(\tau_{2}, \tau_{1}\right)\right)$,not_eq $\left.\left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), a d d\left(\tau_{2}, \tau_{1}\right)\right)\right) \rightarrow_{\delta_{5}}$ $\perp \in N F$;

Let $\quad \delta_{6}=\delta^{\prime} \cup\left\{\left(\right.\right.$ not_eq $\left.\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \operatorname{add}\left(\tau_{1}, \tau_{2}\right)\right), \perp\right)$ $\left.\mid \tau_{1}, \tau_{2} \in \Lambda_{M}\right\} \cup\left\{\left(\min \left(\operatorname{add}\left(\tau_{1}, \tau_{2}\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right), \operatorname{add}\left(\tau_{2}, \tau_{1}\right)\right) \mid \tau_{1}, \tau_{2} \in \Lambda_{M}\right\}$. It is easy to see that δ_{6} is an effective, single valued notion of δ-reduction. Since $\delta^{\prime} \subset \delta_{6}$, then δ_{6} is a canonical notion of δ-reduction.

Proposition 6. For the canonical notion of δ-reduction δ_{6} the following hold:
a) δ_{6} does not hold only the I3 point;
b) there exists a term that has two different normal forms.

Proof.
a) If $(t, \tau) \in \delta_{6}$, then $(t \sigma, \tau \sigma) \in \delta_{6}$ for every admissible application of the substitution σ. Therefore δ_{6} has S-property.

To show that δ_{6} does not hold only the point I3, let us consider all pairs $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta_{6}$ such that $f\left(t_{1}, \ldots, t_{k}\right)$ is non constant term or $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$, where $f \in C^{\prime}, F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k=1,2, t_{i} \equiv \mu_{r}$ for some $i(1 \leq i \leq k)$, where r is a redex, and $\tau \equiv t_{j}, 1 \leq j \leq k$ or $\tau \equiv \perp$. The following cases are possible:
i) $f \in\{$ add,min,max, not_eq, numbers $\}, t_{1} \equiv \perp, t_{2} \equiv \mu_{r} \in \Lambda_{M}$, where r is a redex, $k=2$ and $\tau \equiv \perp$;
ii) $f \in\{$ add,min,max, not_eq,numbers $\}, t_{1} \equiv \mu_{r} \in \Lambda_{M}$, where r is a redex, $t_{2} \equiv \perp, k=2$ and $\tau \equiv \perp$;
iii) $f \equiv$ not_eq, $t_{1} \equiv t_{2} \equiv \mu_{r} \in \Lambda_{M}, k=2$ and $\tau \equiv \perp$, where r is a redex;
iv) $f \equiv \min , t_{1} \equiv \operatorname{add}\left(\tau_{1}, \tau_{2}\right), t_{2} \equiv \operatorname{add}\left(\tau_{2}, \tau_{1}\right), \tau \equiv t_{2}$, where $\tau_{1}, \tau_{2} \in \Lambda_{M}$.

It can be shown that I-property is true in $(i)-(i v)$ cases, as shown in Proposition 5.
v) $f \equiv$ not_eq, $t_{1} \equiv \min (\operatorname{add}(x, y), \operatorname{add}(y, x)), t_{2} \equiv \operatorname{add}(x, y), k=2, i=1$ and $\tau \equiv \perp$. Since $t_{1} \rightarrow_{\delta_{6}} \operatorname{add}(y, x) \in N F, \operatorname{add}(x, y) \in N F$ and $(f(\operatorname{add}(y, x), \operatorname{add}(x, y)), \perp)$ $\notin \delta_{6}, \delta_{6}$ does not hold the point I3. Therefore δ_{6} does not hold only the point I3.
b) Let us show that for δ_{6} the term not_eq $(\min (\operatorname{add}(x, y), \operatorname{add}(y, x)), \operatorname{add}(x, y))$ $\sim \perp$ has two different normal forms:
not_eq $(\min (\operatorname{add}(x, y), \operatorname{add}(y, x)), \operatorname{add}(x, y)) \rightarrow_{\delta_{6}}$ not_eq $(\operatorname{add}(y, x), \operatorname{add}(x, y)) \in N F$; not_eq $(\min (\operatorname{add}(x, y), a d d(y, x)), a d d(x, y)) \rightarrow_{\delta_{6}} \perp \in N F$.

Received 27.12.2018
Reviewed 31.01.2019
Accepted 02.04.2019

REFERENCES

1. Nigiyan S.A. On Non-classical Theory of Computability. // Proceedings of the YSU. Physical and Mathematical Sciences, 2015, No. 1, p. 52-60.
2. Nigiyan S.A., Khondkaryan T.V. On Canonical Notion of δ-Reduction and on Translation of Typed λ-Terms into Untyped λ-Terms. // Proceedings of the YSU. Physical and Mathematical Sciences, 2017, v. 51, No. 1, p. 46-52.
3. Barendregt H. The Lambda Calculus. Its Syntax and Semantics. North-Holland Publishing Company, 1981.

[^0]: * E-mail: david.grigoryan.a@gmail.com

