
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2019, 53(1), p. 53–59

P h y s i c s

SELECTION OF COINCIDENCE ELECTRON-PROTON EVENTS
IN NUCLEI INTERACTION

D. A. MARTIRYAN1,2 ∗

1 A. I. Alikhanian National Science Laboratory, Armenia
2 Chair of Nuclear Physics YSU, Armenia

The main goal of this analysis is to study momentum (or kinetic energy)
distribution of the backward going protons using data from CLAS EG2
experiment at Jefferson Lab. In this experiment scattering of a 5.014 GeV
electron beam off various nucleus targets, ranging from deuterium to lead,
have been recorded. The analysis includes selection of events in the reaction
A(e,e′,Pback)X , where Pback is a proton scattered above 90◦ either in the lab
coordinate frame or with respect to the direction of the interacting virtual pho-
ton, then performing required corrections and studying the protons momen-
tum distribution as a function of energy transfer. In this paper identification of
electron-proton events is presented.
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Introduction. The spectrum of backward scattered protons has been studied
since 1970s’ with various probes hadron beams at ITEP, FNAL, JINR [1, 2], with
photons at YerPhi [3] and with electrons [4, 5]. The common conclusion from all
studies was that spectra of protons produced in kinematically forbidden region were
very similar. Such protons were called then as “cumulative protons” and it was clear
that these protons were coming from the same source in the target nuclei. Later it was
determined that these protons were from short-range nucleon correlations in nuclei.

In previous electron and photon scattering measurements, the backward
protons had limited momentum range, up to p 1 GeV/c. Using the high statistics
of the CLAS EG2 data, one can extend these studies to much higher momentum
range ∼ 1.5 GeV/c for several nuclei 12C, 56Fe and 208Pb.

The CLAS EG2 experiment has been performed using the CEBAF Large
Acceptance Spectrometer, which consists of six sectors, each functioning as an in-
dependent magnetic spectrometer. Each sector is instrumented with multiwire drift
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chamber (DC), time-of-flight scintillator counters (SC) covering polar angles
8◦ < θ < 143◦, gas-filled threshold Cherenkov counters (CC) and lead-scintillator
sandwich-type electromagnetic calorimeters (EC) covering 8◦< θ < 45◦. The calori-
meter utilizes a “projective” geometry pointing to the nominal target position that
is the area of each successive layer increases linearly with distance. For readout
purposes, each scintillator layer consists of 36 strips parallel to one side of the
triangle, with orientation of the strips rotated by 120◦ in successive layers. Thus
there are three orientations (labeled U, V and W) each containing 13 layers, which
provide stereo information on the location of energy deposition. Each view is further
subdivided into an inner (5 layers) and outer (8 layers) stacks to provide longitudinal
sampling of the shower for improved electron-hadron separation [6, 7].

The CLAS was triggered on scattered electrons identified by a coincidence
between EC and CC signals in a given sector. The way CLAS EG2 target was
constructed [8], every solid target was inserted into beam downstream of the
cryo-target nonlinear cell. The most of the data on solid targets was taken together
with liquid deuterium (LD2) in the cell.

This analysis is performed using information stored in the output banks of
the CLAS simple Event Builder (SEB). The package is part of the CLAS event
reconstruction program, preforms several tasks including matching hits and tracks,
determination of the event start time and the defining particle IDs and at the end
writes out DSTs for physics analysis. In order to select events from LD2 or a solid
target, cuts on the production vertex of particles have to be applied. The CLAS
tracking vertex resolution is good enough to isolate tracks produced in the solid
targets. The liquid is confined in a Kapton cell that is 2.5 cm long and has two
15 µm thick aluminum windows on the way of the beam.

Electron Identification. The electron identification in CLAS relies on recon-
struction of a negative track in drift chambers, and hit information from Cherenkov
counters and the electromagnetic calorimeters. It is expected to detect more than 2
photo-electrons in Cherenkov PMT from the Cherenkov light that is generated by
an election in the working gas of the detector (C4F10). The electromagnetic calori-
meters in other hand will measure energy of the electromagnetic shower from
electrons. This energy is proportional to the momentum of the electron. These
two signatures and the longitudinal energy distribution in the calorimeter (balance
of energies in the inner and outer parts of the calorimeter) are important for final
identification of the electron in the event.

The CLAS EC was designed so that electrons and pions had different energy
deposition patterns. Electrons produce an electro-magnetic shower where the shower
energy is proportional to their momentum, where is pions interact mainly as a mini-
mum ionizing particles (MIP) depositing 2 MeV/cm in the active volume regardless
of their momentum.

Electrons selected in the fiducial region (the region of azimuthal angle for a
given momentum and polar angle, where the electron detection efficiency is constant)
of the CLAS sectors. The fiducial region is defined as the region that is inside the
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EC, more than 10 cm away from the edges. This is done on all three sides to ensure
that the shower produced by a particle is fully contained within the EC. The cut is
applied on the coordinate system of the EC (EC–U, EC–V, EC–W). The cut values
used are [9]: EC–U > 60 cm, EC–V < 360 cm, EC–W < 395 cm.

Fig. 1. Fiducial region if the CLAS EC for electron candidates in the global ECx
and ECy coordinates, where black indicates cuts.

The effect of these cuts on the global EC coordinates (ECx and ECy) is shown
in Fig. 1. As can be seen, these cuts remove a band of about 10 cm off the edges of
the calorimeter.

For other cuts that were used for identification of the electron candidate:
• an energy deposit of more than 50 MeV in the inner part of the EC;
• an energy deposit of more than 10 MeV in the outer part of the EC;
• more than 2.5 photo-electrons produced in the CC;
• the momentum normalized energy deposition in the EC,

the ratio ECtot/p was parameterized as a function of momentum, and 3σ cut was
applied. Here σ is the Gaussian with of ECtot/p ratio, which also is a function of
momentum.

Fig. 2. Momentum normalized total deposit in the EC (EC Etot/p) vs momentum (p)
for the final selected sample of electrons.

The CC is used to better separate electrons and pions. In the radiator used for
CC (C4F10), pions below 2.7 GeV/c will not emit Cherenkov radiation. The average
number of photo-electrons (Np.e. or nphe) produced by electron candidates in CC is
∼ 6−7. The pions produce a peak at ∼1.5 p.e., detected by δ emission. The cut of
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Np.e.>2.5 eliminates most of π− mesons.
Fig. 2 shows the momentum normalized total deposited energy in the EC

(Etot/p) vs momentum for our final selected sample of electrons. Because the shower
produced by electrons is proportional to their momentum, as expected this distribu-
tion has to be almost constant. The final selection of the electrons is done by cuting
around the (EC Etot/p) band with ± 3σ .

Proton Identification. Protons, as well as other long lived charged hadrons, are
identified using their time-of-flight (TOF) measured by SC. The TOF measurement is
used to assign PIDs in CLAS event builder. This assignment is good to some degree,
but for complete analysis it must be checked. In cases that the rate of given process
is very small compared to other competing processes or to background, the assigned
PIDs may not be good and must be redefined. The common way to check proton
identification is to recalculate proton candidates’ vertex time at the kinematics of the
reaction under analyzes. The vertex time is defined as:

∆t = tSC− tst −
RSC

cβc
, (1)

where tSC is the time measured by scintillator counter, RSC is the path length of the
proton track from the production vertex to the SC; tst is the event start time calculated
from the electron time, and the βc is defined as:

βc =
p√

p2 +M2
, (2)

where M = 0.938 GeV is the proton mass and p is momentum as measured in the
tracking. The vertex time distribution as defined in Eq. (1) for proton candidates as
a function of the proton momentum is used to develop cuts for proton identification
(see left graph of Fig. 3).

Fig. 3. Proton Vertex time as a function of momentum (without cuts) (left);
electron and protons z vertex coincidence from both targets (right).

The mean and the width of the band at “0” is parameterized as a function of
momentum. Selection of protons from the band at ∆t ≈ 0 will ensure time coin-
cidence of two particles, electron and proton, as they’re from the same interaction.
One can also see some bands at 2, 4 ns and even 6 ns on y-axis. These are accidental
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protons from the different beam buckets than the electron in the event and should be
cut out. The number of such off-time particles will be more at extreme kinematics.
So, excluding them will be important, as well as subtracting accidental events that
remain under the distribution at 0 (these will be the cases when proton and electrons
were produced from different interactions of the same beam bucket). In addition to
time coincidence it is required that proton and electron have the same production ver-
tex. In the right graph of Fig. 3 correction between proton and electron z vertex are
shown, where correlation between vertexes of two particles is clearly seen.

In order to select proton and electron from the lead target cut was put around
the bulb at −25 cm, where lead target is located.

Fig. 4. Proton Vertex time as a function of momentum with cuts (left);
electron and protons z vertex coincidence from lead targets (right).

On the left side of Fig. 4 the vertex time distribution around the proton band
can be seen and this cut selects electrons and protons coincidence in time within 2 ns.
On the right graph z vertex distribution of electrons and protons are shown with cut
that selects (ep) pair from the same location on the z vertex.

Correction. Besides event selection (for this analysis it is selection of event
with an electron and proton from same interaction), there are some corrections that
must be applied to some of the measured kinematical quantities. These are momen-
tum corrections for elections, energy loss corrections for protons and correction on
z vertex reconstruction. The CLAS tracking system defines vertex as the interaction
point of the track with xz plane, where z is in direction of the beam and x is perpen-
dicular to the mid plane of each CLAS sector. This method assumes that beam goes
along the z directions, through x = 0 and y = 0 point at the target. If beam is shifted
from (0,0) point, then z vertex of a track will depend on polar and azimuthal angles
of the track. This is simple geometrical dependence and can be easily corrected [10].
In addition to that there are tracking issues in very forward going particles that
introduces additional dependence of the z vertex and scattering angles in the sector
coordinate system.

In left side of Fig. 5 the uncorrected z vertex distribution of the electrons as
a function of azimuthal angle φ is shown. Besides obvious global φ dependence
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one can also see dependence within each sector. The correction function has the
following form:

zscorr = z+ zt +

(
i=2

∑
i=0

fiθ
i +φ

i=2

∑
i=0

giθ
i

)
, (3)

where z is the uncorrected z vertex of the electron, zt =−24.7, and parameters f and
g are presented in Table. The electron scattering θ and φ angles are in degrees.

Sector f0 f1 f2 g0 g1 g2

1 –25.1797 0.5511E-01 –0.148E-02 –0.10434 0.547E-02 –0.7E-04
2 –24.732 0.118E-02 –0.11E-03 –0.12792 0.1013E-01 –0.21E-03
3 –24.7956 0.291E-02 –0.5E-04 0.10423 –0.58E-02 0.1E-03
4 –24.5825 0.29E-02 –0.31E-03 0.10957 –0.519E-02 0.6E-04
5 –24.9004 0.4239E-01 –0.124E-02 0.1549E-01 0.2E-03 –0.2E-04
6 –25.3849 0.4872E-01 –0.92E-03 0.1581E-01 –0.24E-03 –0.1E-04

After tilted distributions within sectors have been corrected, the next step is to
remove trivial φ dependence due to beam position on the target not using x = 0 and
y = 0. The correction will be as:

zcorr = zscorr− b1(cosφ −b2)

tanθ
, (4)

here b1 = 0.361 cm and is the distance of the beam on (xy) from x = 0 and y = 0
point. The b2 = 1.7054 is the φb angle of the beam. The right graph of Fig. 5 shows
z-φ dependence for electrons after all corrections, clearly showing clear separation of
liquid target and foils along the beam.

Fig. 5. Uncorrected z vertex of electrons as a function of azimuthal angle φ of electron
(left); φ dependence of the final corrected z vertex of electron (right).

Conclusion. In this work selection of the electron-proton coincidence events
in (eA) interactions at 5.014 GeV was established using CLAS data at Jefferson
lab. First electrons are identified using Cherenkov and electromagnetic calorimeter
detectors from sample of negatively charged tracks reconstructed in CLAS drift
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chambers. Then, using electron time as a reference, protons were identified using
their TOF from production vertex to the scintillator counters. Fiducial cuts were
applied to electron positions in the calorimeter to remove cases when electromag-
netic shower was not fully confined in the calorimeter. Besides time coincidence,
vertex position cuts were used to make sure electron and proton candidates come
from the same production point. In order to improve tracking vertex resolution, angle
dependent corrections to z vertex reconstruction were applied.

In the next step of the analysis, these (ep) coincidence events will be used to
study kinematics of backward going protons as a function of transferred momentum.
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