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We consider the problem of identification of the position and the moment
of the beginning of a radioactive source emission on the plane. The acts of
emission constitute inhomogeneous Poisson processes and are registered by K
detectors on the plane. We suppose that the moments of arriving of the signals at
the detectors are measured with some small errors. Then, using these estimate,
we construct the estimators of the position of source and the moment of the
beginning of emission. We study the asymptotic properties of these estimators
for large signals and prove their consistency.
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Introduction. There are given K detectors Dy,...,Dg placed at the points
Y = (xx,yk),k = 1,...,K, on the plane. We suppose that at an unknown location
Yo = (x0,y0) €O C R? at an unknown moment Top a radioactive device starts emis-
sion. The detectors receive signals, and based on these detections, the statistician has
to estimate the position of the source and the time 7y of the beginning of emission.
We obtain a similar mathematical model of observations in the case of a weak optical
source emitting photons. Note that in the problem of GPS-localization we have the
same mathematical model for the inverse experiment. We have K emitters of signals
Dy, ...,Dg received by the device Dy, and using the observations of these signals, it
is necessary to estimate the position of the device.

An example of such a model of observations is given in the Fig. 1, where Dy
is the position of the source and D; — Ds are the detectors.

Due to importance of this problem in many applications there exists a large
amount of literature on the identification of radioactive sources of engineering level
(see [1H4]]). To the best of our knowledge, the mathematical study of such problems
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is not yet sufficiently developed. This work is the continuation of the study started in
papers [SH7]].
We consider the case when the signals received by the detectors are

inhomogeneous Poisson processes XX = (Xi,...,Xk), where the process
Xi = (Xk (t),0 <t <T) has intensity function
A(0,1) =nS (t — 7 (D)) ¥ (t — T (B0)) +nko, 0<t<T. (1)

Here nS(-) is a known positive continuous function (intensity of the signal),
T (¥9) is the moment of arriving of the signal at the k-th detector and nAy is the
background noise. The time of arriving 7; = 74 (%) can be written as follows

=T+ Vv " |%h— Bl = 0+ o, ()

where 7p € T is the moment of beginning of emission, v > 0 is the rate of propagation
of the signals, ||-|| is the Euclidean norm in R? and ||1% — || is the distance between
the point of emission and the k-th detector, 7y o is the time to reach of the k-th detector
after the beginning of emission [§]].

The function W (r) = 0 for r < 0 reflects the form of the signal at the moment
of its arriving. We consider three different cases: smooth s (-), cusp-type ¥s , and
change-point type v (-), where

t
s (1) = sho<i<s) + Mpmsy, - W) = Lpsop

K
> ) Tio<i<sy + M=ot

Vs (1) = ! <1+sgn(21—5)'28t—1

1
The parameter 6 > 0 is known and small. In the cusp case k € (0, 5 ) The
examples of such functions are given in the Fig. 1. The case b) in Fig. 1 corresponds

1
to the function s . (-) with the value k = 5 and the case e) is obtained if in Y  (-)

the parameter k € (—1,0).

Consider the problem of estimation of the position % = (xp,yp) and the
moment T, by the observations XX = (X1,...,K). The estimators of these quantities
are studied in the asymptotics of large signals, i.e. as n — oo.

Recall that the cases a)-d) with 7y = 0, i.e. a known moment of beginning of
emission, were considered in [[5H7]]. It was shown that the Bayes estimators B, of the
parameter ¥ have the following limits

a) Vn(%,—%)=¢, b)) Valhn(d,—%) =,
1 ~ ~
C) N2+t (19,1—190) — C3, d) n(ﬁn_ﬁO) — C47
where §;, i = 1,...,4, are some random vectors all having polynomial moments
(for details, see [[5H7]]).
It is possible to consider a different statement of the problem. Let us study

K independent Poisson processes Xj,...,Xx with intensity functions (I)) and esti-
mate the parameters 7j,...,Tx. The corresponding MLE % ,, k =1,...,K, and BE
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Tkns k=1,...,K, have the similar properties. For example,

a) Vn(fe,— ) = &, b) Vnlnn (%, —5%) = &2, (3)

¢) nw (Tkn— ) = &3, d) n(fn— o) = s, 4)
e) nw (Thn — ™) = &i5- (5)

For the cases a) and d) see [9], cases ¢) and e) (for k € (—1,0)) were studied in
[[L1OL/11]], respectively. The case b) follows from the results presented in [S].

In this work we consider the estimation of parameters Ty, ¥y in two steps. First,
we estimate K moments 7j,...,Tx. Then having these estimators with properties
(B)—(3) we estimate 7y, .

a) b)

e)

c) d)

Fig. 1. Examples of functions ¥ (-). Here a) and b) smooth cases;
c¢) cusp-type case; d) change-point case; e) non bounded intensity case.

Geometrical View. Consider the problem of estimation of location ¥ and the
moment of emission Ty in the situation, where there is no errors, i.e. the detectors
measure T, = T (¥p) exactly. If we know 7, then 3 detector are enough to find the
location of the source (see, e.g., [S]). Now we want to see geometrically whether
in the case of unknown 7g 3 detectors are sufficient to find ¥. Suppose that we
have 2 detectors D and D, and we know exactly moments 7; and 7, when signals
had arrived. We denote r; = || — ¥p|| the distance between our device and the
detector Dy, in the same way r, is the distance between device and the detector D;.
r1 and rp are unknown, but we can calculate their difference. If r; = v(7; — 1) and
rn =Vv(T — 1), then we have r| —r, = V(1] — 7).

We denote r = v(1; — 1), so the difference of distances is r. If we look all
possible locations of the device it is a hyperbola branch with focuses D; and D,. For
every point (x,y) on this hyperbola we have (x —x;)2+ (y —y1)? = 3, (x — x2)>+
+(y—y2)? =r3 and r3 = (r; —r)?, from this three equations we obtain the equation
of our hyperbola:
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(¥ = x2) (2x —x1 —x2) + (01 —32) (2y —y1 —y2) =1 —2r\/(x—x1)2 +(=y)*=0.
Now if we add the third detector D3, we can construct another hyperbola
branch corresponding to the focuses D3 and D, with the equation:

(xz—X3)(2X—x2—x3)+(yz—y3)(2y—y2—Y3)—r'2—2r'\/(x—)€2)2+ (y—y2)*=0,
where ¥ = v(7, — 73). The device will be at the point of intersection of these two

hyperbolas. We can see in Fig. 2 two points of intersection of hyperbolas. Thus, in
general we can not identify the location of device with 3 detectors.

Fig. 2. Two hyperbolas with focuses Dy, D,; D>,D3.  Fig. 3. Detection with four detectors.

Now we will try to find out whether four detectors are enough to identify the
exact location of the device. So we consider the signals of D; — D3 detectors that
show us two possible points in the plane. Hence we have 2 intersection points of
hyperbolas denoted by P; and P,. So we want to find a position D4 such that the
hyperbola branch with focuses in D4 and at the location of one of the other detectors
passes through only one of the points P; and P». To this end we will find all possible
focuses of hyperbola branch that passes by points P; and P>. Hence, if F] and F; are
those focuses, we have

p(P,F)—p(P,F2) =p(P, F1) — p(Ps, F2)
or
p(P,F1)—p(P1,F2) = —p(P2,F1) — p(P2, F2).

So we have that p(P,Fi) — p(P2,Fi) = p(P1,F2) — p(P,,F>) (or similar for the
second equation), which means that all focuses of hyperbola branch passing by P;
and P, are located on the other hyperbola branch with the focuses F; and F,. Thus to
identify the location of device we need at least four detectors.

Main Results. We have K independent Poisson processes X K — (X1,---,XK)s
where the random process X; = (X (1), 0 <7 < T') has intensity function (I]) and we
have to estimate the parameters 7y, U by observations XK. We will this problem
solve in two steps. First we obtain K independent estimators Ty ,, k=1,...,K, of the
moments of signals arriving at the detectors. Then having these estimators we
consider the problem of estimation of 7y,¥. The advantage of this approach is
its computational simplicity with respect to the traditional maximum likelihood
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approach. Recall that in maximum likelihood approach all data have to come to
one center of simultaneous treatment and then the estimators are obtained as a result
of maximization of the likelihood ratio function of three variables

InL (‘E,z?,XK) :]g/rj(ﬂ) In (1 L Si(t— 1 (9) ws (1 — 1 (19))) X, () —

o
K T
SN G ACIAEACHER

where 7 (9) = 1o+ v || — 9.

In our approach the estimators f; , can be calculated in each detector and then
transmitted to the center, where the problem of estimation is reduced to the solution
of linear equations.

The convergences (3)—(5) can be summarized in the following representations

Ten = T0+ To+ PuMkn, P —0, (6)
where 1, converge in distribution to the corresponding random variable &.

The unknown parameters satisfy the followm% equations

v (Tk* T0)2 (xk *xo) + (Yk —yo)", k=1,...K
We have V217 = x7 +y7 + x5+ y§ — V213 — 2x3x0 — 20 + 2V T To.
Let us denote

n=x, Y=Yo, V=T, Y= (X(2)+J’%—V273)7

N =

1
=), =, (R +yi— V7).
Then this equation can be written as follows
an+yn-Vurst+u=u k=1, K. (7)

. . 1 N
We have the “observations” 7y , and z , = ) (x% + y,% —v? Tﬁ.n) . Therefore, we define

the estimator 7y, = (V{n, Vs Vi Yan

using the least squares approach as follows

N—

K
. . 2
Y = argmin,, 1), SN =Y [zrn—xN =3B+ Vs — 1] -
k=1
It will be convenient to denote vsz,n = —Pxn- Therefore, the least squares estimator
Y, is the solution of the equations
as
" o 11, 4
oy

which calr{l be writtenKas

K K K

Z X]%’)/in + Z xkyk’y;,n + Z xkﬁk,n'y:;n + Z xkﬁ,n = Z XkZk,ns
k=1 k=1 k=1 k=1 k=1

K K ) K K K

Y xVin+ Y Vivoa+ Y kPenVant+ Y ViVin = Y. ik
k=1 k=1 k=1 k=1 k=1

K K K 5 K K

Z xkpk,n/)/in =+ Z pk,nykyzn + Z pk,n%*,n + Z phn}lz,n = Z Pk,nZk,ns
k=1 k=1 k=1 k=1 k=1

K K K K
Z xkﬁ,n + Z yk’yzn + Z ﬁk,n'y;n +Kﬁn = Z Zk,ns
k=1 k=1 k=1 k=1
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or in matrix form
—1
An'y;: :Zm Y:{ = An Zn

with obvious notations. Since T, = To + Tk,0 + @uNn — Tk = To + Tk, the matrix
A, converges in probability A, = A9+ ¢,B, — Ay, where the matrix

HxH%(v <x,y>1<, +<X,p>1{, <xa1>K
o= | e Il +0p)k Ok

<x7p>K7 <y,p>1<, +Hp” ) <p71>K

<xvl>K7 <ya1>Ka +<17P>K7 K

Here p = (—v?1y,...,—V?1k) and

K K
lal% = Y gk (a,b)k =Y acby.
k=1 k=1
Further we have convergence in probability

Zin= (X, )k — (X, 2k = 71, Zon=Vzn)k — H2)k = 22,

Z37n - <%nazn>K — <T7Z>K - Z37 Z47n == <17ZH>K — <17Z>K :Z47
or Z, — Z, where the vector Z = (Z;,...,Z4). Then we can write (7) as

Ay =2, and ¥ =A,'Z,

We study the asymptotic (n — o) behavior of the estimator ;.

Conditions 7.

1. The set ® C R? is open, convex and bounded.

2. The set T = (T;, Ty) is such that 7, € (0,7) for all ¥ € ©.

3. The estimators 7 ,, k=1,...,K, admit the representation (6)), where ¢, — 0
and the random variables 1y ,, k = 1,..., K, are bounded in probability.

4. There are at least four detectors, which are not on the same line and the
matrix Ag is non degenerate

inf  inf e Age>0,
Ti<7=<Ty [le||;=1

where e € R*,

Note that all these conditions in the case of known 7y are fulfilled in the
problems considered in the works [SH7]].

Therefore we proved the following result.

Theorem . Let conditions € be satisfied, then estimator Y, is consistent.

It can be verified that since the matrix Ag is uniformly non-degenerate, we
have

Ay —r Do, Z,—Z, AT— AL v —A'Z=7,

where ¥ = (xo,yo, 79,27} (x% +y% — vzrg)).
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L. U UWRULEL3WL, 8ni. W UNFSN3ULS

NULENFF8UTL MUY SUNUGUSEUTL UNASAFE NUSSULUREBLAFUL

Whiwpuiipnd nhypuplpnud b hwppnipjwi ypw pwnhnwipphy wnpjniph
nhpph b Swnwqujpdwb ujuybnt ywhh tnytwjubwgdwb pbnhpp: Swunwquyp-
dwh wlpbpp ng hudwube ywmuwuniyul  gnpdpbpwgibtp G0 gpubgud K
ntaptpgnpibph dhongny: Utp hwdwpmd Gop, np wqnubpwbdbpp hwubbjn
wwhtipp npnpynud GO thnpp  vpuwqbbipnyg: Wbnthtople  oqupugnpdtiing  wyu
suthmubtipp dtbp Junmgnid Gop wnpympp nhpph b Swnwquypdub dtlaowpyh
wwhh qwhunpuljubbtp: ULkbp munuibwuppnd Gop wyn qbwhunpujubbbph
hupympymbbtpp 4Gd wgnubpwbbtph vwhdwbnd b gnyg Gbp pwihu npubg
htplinnujubnipnibn:



