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We consider the problem of identification of the position and the moment
of the beginning of a radioactive source emission on the plane. The acts of
emission constitute inhomogeneous Poisson processes and are registered by K
detectors on the plane. We suppose that the moments of arriving of the signals at
the detectors are measured with some small errors. Then, using these estimate,
we construct the estimators of the position of source and the moment of the
beginning of emission. We study the asymptotic properties of these estimators
for large signals and prove their consistency.
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Introduction. There are given K detectors D1, . . . ,DK placed at the points
ϑk = (xk,yk) ,k = 1, . . . ,K, on the plane. We suppose that at an unknown location
ϑ0 = (x0,y0) ∈ Θ ⊂ R2 at an unknown moment τ0 a radioactive device starts emis-
sion. The detectors receive signals, and based on these detections, the statistician has
to estimate the position of the source and the time τ0 of the beginning of emission.
We obtain a similar mathematical model of observations in the case of a weak optical
source emitting photons. Note that in the problem of GPS-localization we have the
same mathematical model for the inverse experiment. We have K emitters of signals
D1, . . . ,DK received by the device D0, and using the observations of these signals, it
is necessary to estimate the position of the device.

An example of such a model of observations is given in the Fig. 1, where D0
is the position of the source and D1−D5 are the detectors.

Due to importance of this problem in many applications there exists a large
amount of literature on the identification of radioactive sources of engineering level
(see [1–4]). To the best of our knowledge, the mathematical study of such problems
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is not yet sufficiently developed. This work is the continuation of the study started in
papers [5–7].

We consider the case when the signals received by the detectors are
inhomogeneous Poisson processes XK = (X1, . . . ,XK), where the process
Xk = (Xk (t) ,0≤ t ≤ T ) has intensity function

λ (ϑ , t) = nSk (t− τk (ϑ0)) ψ̄ (t− τk (ϑ0))+nλ0, 0≤ t ≤ T. (1)

Here nS (·) is a known positive continuous function (intensity of the signal),
τk (ϑ0) is the moment of arriving of the signal at the k-th detector and nλ0 is the
background noise. The time of arriving τk = τk (ϑ0) can be written as follows

τk = τ0 +ν
−1 ‖ϑk−ϑ0‖= τ0 + τk,0, (2)

where τ0 ∈ T is the moment of beginning of emission, ν > 0 is the rate of propagation
of the signals, ‖·‖ is the Euclidean norm in R2 and ‖ϑk−ϑ0‖ is the distance between
the point of emission and the k-th detector, τk,0 is the time to reach of the k-th detector
after the beginning of emission [8].

The function ψ̄ (t) = 0 for t < 0 reflects the form of the signal at the moment
of its arriving. We consider three different cases: smooth ψδ (·), cusp-type ψδ ,κ and
change-point type ψ (·), where

ψδ (t) =
t
δ

1I{0≤t≤δ}+1I{t>δ}, ψ (t) = 1I{t>0},

ψδ ,κ (t) =
1
2

(
1+ sgn(2t−δ )

∣∣∣∣2t
δ
−1
∣∣∣∣κ)1I{0≤t≤δ}+1I{t>δ},

The parameter δ > 0 is known and small. In the cusp case κ ∈
(

0,
1
2

)
. The

examples of such functions are given in the Fig. 1. The case b) in Fig. 1 corresponds

to the function ψδ ,κ (·) with the value κ =
1
2

and the case e) is obtained if in ψδ ,κ (·)
the parameter κ ∈ (−1,0).

Consider the problem of estimation of the position ϑ0 = (x0,y0) and the
moment τ∗ by the observations XK = (X1, . . . ,K). The estimators of these quantities
are studied in the asymptotics of large signals, i.e. as n→ ∞.

Recall that the cases a)–d) with τ0 = 0, i.e. a known moment of beginning of
emission, were considered in [5–7]. It was shown that the Bayes estimators ϑ̃n of the
parameter ϑ0 have the following limits

a)
√

n
(
ϑ̃n−ϑ0

)
=⇒ ζ1, b)

√
n lnn

(
ϑ̃n−ϑ0

)
=⇒ ζ2,

c) n
1

2κ+1
(
ϑ̃n−ϑ0

)
=⇒ ζ3, d) n

(
ϑ̃n−ϑ0

)
=⇒ ζ4,

where ζi, i = 1, . . . ,4, are some random vectors all having polynomial moments
(for details, see [5–7]).

It is possible to consider a different statement of the problem. Let us study
K independent Poisson processes X1, . . . ,XK with intensity functions (1) and esti-
mate the parameters τ1, . . . ,τK . The corresponding MLE τ̂k,n, k = 1, . . . ,K, and BE
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τ̃k,n, k = 1, . . . ,K, have the similar properties. For example,

a)
√

n(τ̂k,n− τk) =⇒ ξk,1, b)
√

n lnn(τ̂k,n− τk) =⇒ ξk,2, (3)

c) n
1

2κ+1 (τ̂k,n− τk) =⇒ ξk,3, d) n(τ̂k,n− τk) =⇒ ξk,4, (4)

e) n
1

κ+1 (τ̂k,n− τk) =⇒ ξk,5. (5)

For the cases a) and d) see [9], cases c) and e) (for κ ∈ (−1,0)) were studied in
[10, 11], respectively. The case b) follows from the results presented in [5].

In this work we consider the estimation of parameters τ0,ϑ0 in two steps. First,
we estimate K moments τ1, . . . ,τK . Then having these estimators with properties
(3)–(5) we estimate τ0,ϑ0.
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Fig. 1. Examples of functions ψ̄ (·). Here a) and b) smooth cases;
c) cusp-type case; d) change-point case; e) non bounded intensity case.

Geometrical View. Consider the problem of estimation of location ϑ0 and the
moment of emission τ0 in the situation, where there is no errors, i.e. the detectors
measure τk = τk (ϑ0) exactly. If we know τ0, then 3 detector are enough to find the
location of the source (see, e.g., [5]). Now we want to see geometrically whether
in the case of unknown τ0 3 detectors are sufficient to find ϑ0. Suppose that we
have 2 detectors D1 and D2 and we know exactly moments τ1 and τ2 when signals
had arrived. We denote r1 = ‖ϑ1−ϑ0‖ the distance between our device and the
detector D1, in the same way r2 is the distance between device and the detector D2.
r1 and r2 are unknown, but we can calculate their difference. If r1 = ν(τ1− τ0) and
r2 = ν(τ1− τ0), then we have r1− r2 = ν(τ1− τ2).

We denote r = ν(τ1− τ2), so the difference of distances is r. If we look all
possible locations of the device it is a hyperbola branch with focuses D1 and D2. For
every point (x,y) on this hyperbola we have (x− x1)

2 +(y− y1)
2 = r2

1,(x− x2)
2+

+(y− y2)
2 = r2

2 and r2
2 = (r1− r)2, from this three equations we obtain the equation

of our hyperbola:
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(x1−x2)(2x−x1−x2)+(y1−y2)(2y−y1−y2)− r2−2r
√

(x− x1)2 +(y− y1)2 = 0.
Now if we add the third detector D3, we can construct another hyperbola

branch corresponding to the focuses D3 and D2 with the equation:

(x2−x3)(2x−x2−x3)+(y2−y3)(2y−y2−y3)−r′2−2r′
√

(x− x2)2 +(y− y2)2 = 0,

where r′ = ν(τ2− τ3). The device will be at the point of intersection of these two
hyperbolas. We can see in Fig. 2 two points of intersection of hyperbolas. Thus, in
general we can not identify the location of device with 3 detectors.

Fig. 2. Two hyperbolas with focuses D1,D2; D2,D3. Fig. 3. Detection with four detectors.

Now we will try to find out whether four detectors are enough to identify the
exact location of the device. So we consider the signals of D1−D3 detectors that
show us two possible points in the plane. Hence we have 2 intersection points of
hyperbolas denoted by P1 and P2. So we want to find a position D4 such that the
hyperbola branch with focuses in D4 and at the location of one of the other detectors
passes through only one of the points P1 and P2. To this end we will find all possible
focuses of hyperbola branch that passes by points P1 and P2. Hence, if F1 and F2 are
those focuses, we have

ρ(P1,F1)−ρ(P1,F2) = ρ(P2,F1)−ρ(P2,F2)

or
ρ(P1,F1)−ρ(P1,F2) =−ρ(P2,F1)−ρ(P2,F2).

So we have that ρ(P1,F1)− ρ(P2,F1) = ρ(P1,F2)− ρ(P2,F2) (or similar for the
second equation), which means that all focuses of hyperbola branch passing by P1
and P2 are located on the other hyperbola branch with the focuses F1 and F2. Thus to
identify the location of device we need at least four detectors.

Main Results. We have K independent Poisson processes XK = (X1, . . . ,XK),
where the random process Xk = (Xk (t) , 0≤ t ≤ T ) has intensity function (1) and we
have to estimate the parameters τ0,ϑ0 by observations XK . We will this problem
solve in two steps. First we obtain K independent estimators τ̄k,n, k = 1, . . . ,K, of the
moments of signals arriving at the detectors. Then having these estimators we
consider the problem of estimation of τ0,ϑ0. The advantage of this approach is
its computational simplicity with respect to the traditional maximum likelihood
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approach. Recall that in maximum likelihood approach all data have to come to
one center of simultaneous treatment and then the estimators are obtained as a result
of maximization of the likelihood ratio function of three variables

lnL
(
τ,ϑ ,XK)= K

∑
k=1

∫ T

τk(ϑ)
ln
(

1+
Sk (t− τk (ϑ))ψδ (t− τk (ϑ))

λ0

)
dXk (t)−

−n
K

∑
k=1

∫ T

τk(ϑ)
Sk (t− τk (ϑ))ψδ (t− τk (ϑ))dt,

where τk (ϑ) = τ0 +ν−1 ‖ϑk−ϑ‖.
In our approach the estimators τ̂k,n can be calculated in each detector and then

transmitted to the center, where the problem of estimation is reduced to the solution
of linear equations.

The convergences (3)–(5) can be summarized in the following representations
τ̂k,n = τ0 + τk,0 +ϕnηk,n, ϕn −→ 0, (6)

where ηk,n converge in distribution to the corresponding random variable ξk.
The unknown parameters satisfy the following equations

ν
2 (τk− τ0)

2 = (xk− x0)
2 +(yk− y0)

2 , k = 1, . . . ,K.
We have ν2τ2

k = x2
k + y2

k + x2
0 + y2

0−ν2τ2
0 −2xkx0−2yky0 +2ν2τkτ0.

Let us denote
γ1 = x0, γ2 = y0, γ3 = τ0, γ4 =

1
2
(
x2

0 + y2
0−ν

2
τ

2
0
)
,

γ = (γ1,γ2,γ3,γ4) , zk =
1
2
(
x2

k + y2
k−ν

2
τ

2
k
)
.

Then this equation can be written as follows
xkγ1 + ykγ2−ν

2
τkγ3 + γ4 = zk, k = 1, . . . ,K. (7)

We have the “observations” τ̂k,n and zk,n =
1
2

(
x2

k + y2
k−ν2τ̂2

k,n

)
. Therefore, we define

the estimator γ∗n =
(

γ∗1,n,γ
∗
2,n,γ

∗
3,n,γ

∗
4,n

)
using the least squares approach as follows

γ
∗
n = argmin

γ
Sn (γ) , Sn (γ) =

K

∑
k=1

[
zk,n− xkγ1− ykγ2 +ν

2
τ̂k,nγ3− γ4

]2
.

It will be convenient to denote ν2τ̂k,n =−ρ̂k,n. Therefore, the least squares estimator
γ∗n is the solution of the equations

∂Sn (γ)

∂γl
= 0, l = 1, . . . ,4,

which can be written as
K

∑
k=1

x2
kγ
∗
1,n +

K

∑
k=1

xkykγ
∗
2,n +

K

∑
k=1

xkρ̂k,nγ
∗
3,n +

K

∑
k=1

xkγ
∗
4,n =

K

∑
k=1

xkzk,n,

K

∑
k=1

xkykγ
∗
1,n +

K

∑
k=1

y2
kγ
∗
2,n +

K

∑
k=1

ykρ̂k,nγ
∗
3,n +

K

∑
k=1

ykγ
∗
4,n =

K

∑
k=1

ykzk,n,

K

∑
k=1

xkρ̂k,nγ
∗
1,n +

K

∑
k=1

ρ̂k,nykγ
∗
2,n +

K

∑
k=1

ρ̂
2
k,nγ
∗
3,n +

K

∑
k=1

ρ̂k,nγ
∗
4,n =

K

∑
k=1

ρ̂k,nzk,n,

K

∑
k=1

xkγ
∗
1,n +

K

∑
k=1

ykγ
∗
2,n +

K

∑
k=1

ρ̂k,nγ
∗
3,n +Kγ

∗
4,n =

K

∑
k=1

zk,n,
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or in matrix form

Anγ
∗
n = Zn, γ

∗
n = A−1

n Zn

with obvious notations. Since τ̂k,n = τ0 + τk,0 +ϕnηn −→ τk = τ0 + τk,0, the matrix
An converges in probability An = A0 +ϕnBn −→ A0, where the matrix

A0 =


‖x‖2

K , 〈x,y〉K , +〈x,ρ〉K , 〈x,1〉K
〈x,y〉K , ‖y‖2

K , +〈y,ρ〉K , 〈y,1〉K
〈x,ρ〉K , 〈y,ρ〉K , +‖ρ‖2 , 〈ρ,1〉K
〈x,1〉K , 〈y,1〉K , +〈1,ρ〉K , K

 .

Here ρ =
(
−ν2τ1, . . . ,−ν2τK

)
and

‖a‖2
K =

K

∑
k=1

a2
k , 〈a,b〉K =

K

∑
k=1

akbk.

Further we have convergence in probability

Z1,n = 〈x,zn〉K −→ 〈x,z〉K = Z1, Z2,n = 〈y,zn〉K −→ 〈y,z〉K = Z2,

Z3,n = 〈τ̂n,zn〉K −→ 〈τ,z〉K = Z3, Z4,n = 〈1,zn〉K −→ 〈1,z〉K = Z4,

or Zn→ Z, where the vector Z = (Z1, . . . ,Z4). Then we can write (7) as

Anγ
∗
n = Zn and γ

∗
n = A−1

n Zn.

We study the asymptotic (n→ ∞) behavior of the estimator γ∗n .
Conditions C .
1. The set Θ⊂ R2 is open, convex and bounded.
2. The set T = (Ti,Tf ) is such that τk ∈ (0,T ) for all ϑ0 ∈Θ.
3. The estimators τ̂k,n, k = 1, . . . ,K, admit the representation (6), where ϕn→ 0

and the random variables ηk,n, k = 1, . . . ,K, are bounded in probability.
4. There are at least four detectors, which are not on the same line and the

matrix A0 is non degenerate

inf
Ti≤τ0≤Tf

inf
‖e‖4=1

e>A0 e > 0,

where e ∈ R4.
Note that all these conditions in the case of known τ0 are fulfilled in the

problems considered in the works [5–7].
Therefore we proved the following result.
T h e o r e m . Let conditions C be satisfied, then estimator γ∗n is consistent.
It can be verified that since the matrix A0 is uniformly non-degenerate, we

have

An −→ A0, Zn→ Z, A−1
n −→ A−1

0 , γ
∗
n −→ A−1

0 Z = γ,

where γ =
(
x0,y0,τ0,2−1

(
x2

0 + y2
0−ν2τ2

0
))

.
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HAR�U�YAN VRA �A�AGAY�MAN A�BYURI HAYTNABERUM�

A�xatanqum ditarkvum � har�u�yan vra �adioaktiv a�byuri

dirqi  �a�agay�man sksvelu pahi nuynakanacman xndir�: �a�agay�-

man akter� o� hamase� puasonyan gor��n�acner en` grancva� K
detektorneri mijocov: Menq hamarum enq, or azdan�anner� hasnelu

paher� oro�vum en �oqr sxalnerov: Aynuhet �gtagor�elov ays

�a�umner� menq ka�ucum enq a�byuri dirqi  �a�agay�man meknarki

pahi gnahatakanner: Menq usumnasirum enq ayd gnahatakanneri

hatku�yunner� me� azdan�anneri sahmanum  cuyc enq talis dranc

het o�akanu�yun�:


