Physical and Mathematical Sciences

2019, **53**(2), p. 91–100

Mathematics

ON THE DIMENSION OF SPACES OF ALGEBRAIC CURVES PASSING THROUGH *n*-INDEPENDENT NODES

H. A. HAKOPIAN * H. M. KLOYAN **

Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia

Let the set of nodes \mathcal{X} in the plain be n-independent, i.e., each node has a fundamental polynomial of degree n. Suppose also that $|\mathcal{X}| = (n+1) + n + \cdots + (n-k+4) + 2$ and $3 \le k \le n-1$. We prove that there can be at most 4 linearly independent curves of degree less than or equal to k passing through all the nodes of \mathcal{X} . We provide a characterization of the case when there are exactly 4 such curves. Namely, we prove that then the set \mathcal{X} has a very special construction: all its nodes but two belong to a (maximal) curve of degree k-2. At the end, an important application to the Gasca-Maeztu conjecture is provided.

MSC2010: 14H50, 41A05, 41A63.

Keywords: algebraic curves, *n*-independent nodes, maximal curves, Gasca-Maeztu conjecture.

Introduction. Denote the space of all bivariate polynomials of total degree $\leq n$ by Π_n , i.e., $\Pi_n = \{\sum_{i+j \leq n} a_{ij} x^i y^j\}$. We have that

$$N := N_n := \dim \Pi_n = (1/2)(n+1)(n+2).$$

Consider a set of s distinct nodes $\mathfrak{X} = \mathfrak{X}_s = \{(x_1, y_1), (x_2, y_2), \dots, (x_s, y_s)\}$. The problem of finding a polynomial $p \in \Pi_n$, which satisfies the conditions

$$p(x_i, y_i) = c_i, \quad i = 1, \dots, s, \tag{1}$$

is called interpolation problem.

A polynomial $p \in \Pi_n$ is called a fundamental polynomial for a node $A \in \mathcal{X}$ if p(A) = 1 and $p|_{\mathcal{X} \setminus \{A\}} = 0$, where $p|_{\mathcal{X}}$ means the restriction of p on \mathcal{X} . We denote the fundamental polynomial by p_A^{\star} . Sometimes we call fundamental also a polynomial that vanishes at all nodes of \mathcal{X} but one, since it is a nonzero constant times a fundamental polynomial.

Definition 1. The interpolation problem with a set of nodes X_s and Π_n is called n-poised if for any data (c_1, \ldots, c_s) there is a unique polynomial $p \in \Pi_n$ satisfying the interpolation conditions (1).

** E-mail: arutkloyan@gmail.com

^{*} E-mail: hakop@ysu.am

A necessary condition of poisedness is $|\mathcal{X}_s| = s = N$.

Proposition 1. A set of nodes X_N is n-poised if and only if

$$p \in \Pi_n$$
 and $p|_{\chi_N} = 0 \implies p = 0.$

Next, let us consider the concept of n-independence (see [1,2]).

Definition 2. A set of nodes X is called n-independent, if all its nodes have n-fundamental polynomials. Otherwise, it is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary condition of *n*-independence of X_s is $s \le N$.

Some Properties of *n***-Independent Nodes.** Let us start with the following simple (see Lemma 2.2 [3])

Lemma 1. Suppose that a node set X is n-independent and a node $A \notin X$ has n-fundamental polynomial with respect to the set $X \cup \{A\}$. Then the latter node set is n-independent too.

Denote the distance between the points A and B by $\rho(A,B)$. Let us recall the following (see [4,5])

Lemma 2. Suppose that $X_s = \{A_i\}_{i=1}^s$ is an n-independent set. Then there is a number $\varepsilon > 0$ such that any set $X_s' = \{A_i'\}_{i=1}^s$, with the property that $\rho(A_i, A_i') < \varepsilon$, i = 1, ..., s, is n-independent too.

Next result concerns the extension of *n*-independent sets (see Lemma 2.1 [2]).

Lemma 3. Any n-independent set X with |X| < N can be enlarged to an n-poised set.

In the sequel we will need the following modification of the above result.

Lem m a 4. Given n-independent sets X_{s_i} , i = 1, ..., m, where $|X_{s_i}| = s_i < N$, a node A and any number $\varepsilon > 0$. Then there is a node A' such that $\rho(A, A') < \varepsilon$ and each set $X_{s_i} \cup \{A'\}$, i = 1, ..., m, is n-independent.

Proof. Let us use induction with respect to the number of sets: m. Suppose that we have one set \mathcal{X}_s . Since s < N, there is a nonzero polynomial $p \in \Pi_n$ such that $p|_{\mathcal{X}_s} = 0$. Now evidently there is a node $B \notin \mathcal{X}$ such that $\rho(A,B) < \varepsilon$ and $\rho(B) \neq 0$. Thus p is an n-fundamental polynomial of the node B with respect to the set $\mathcal{X} \cup \{B\}$. Hence, in view of Lemma 1, the set $\mathcal{X}_s \cup \{B\}$ is n-independent. Then, assume that Lemma is true in the case of m-1 sets, i.e. there is a node B such that $\rho(A,B) < (1/2)\varepsilon$ and each set $\mathcal{X}_{s_i} \cup \{B\}$, $i=1,\ldots,m-1$, is n-independent. In view of Lemma 2, there is a number $\varepsilon' < (1/2)\varepsilon$ such that for any C with $\rho(C,B) < \varepsilon'$ each set $\mathcal{X}_{s_i} \cup \{C\}$, $i=1,\ldots,m-1$, is n-independent. Next, in view of first step of induction there is a node A' such that $\rho(A',B) < (1/2)\varepsilon$ and the set $\mathcal{X}_{s_m} \cup \{A'\}$ is n-independent. Now, it is easily seen that A' is a desirable node.

Denote the linear space of polynomials of total degree at most n vanishing on $\mathfrak X$ by

$$\mathcal{P}_{n,\mathcal{X}} = \{ p \in \Pi_n : p|_{\mathcal{Y}} = 0 \}.$$

The following two propositions are well-known [2].

Proposition 2. For any node set X we have that

$$\dim \mathcal{P}_{n,\chi} = N - |\mathcal{Y}|,$$

where y is a maximal n-independent subset of x.

Proposition 3. If a polynomial $p \in \Pi_n$ vanishes at n+1 points of a line ℓ , then we have that $p = \ell r$, where $r \in \Pi_{n-1}$.

A plane algebraic curve is the zero set of some bivariate polynomial. To simplify notation, we shall use the same letter p, say, to denote the polynomial p of degree ≥ 1 and the curve given by the equation p(x,y) = 0.

Set $d(n,k) := N_n - N_{n-k} = (1/2)k(2n + 3 - k)$. The following is a generalization of Proposition 3 (see Prop. 3.1 [6]).

Proposition 4. Let q be an algebraic curve of degree $k \le n$ without multiple components. Then the following hold:

- i) any subset of q containing more than d(n,k) nodes is n-dependent;
- ii) any subset X_d of q containing exactly d = d(n,k) nodes is n-independent if and only if the following condition holds:

$$p \in \Pi_n \quad and \quad p|_{\mathfrak{X}_d} = 0 \Longrightarrow p = qr, \text{ where } r \in \Pi_{n-k}.$$
 (2)

Thus, according to Proposition 4, i), at most d(n,k) nodes of \mathcal{X} can lie in the curve q of degree $k \le n$. This motivates the following definition (see Def. 3.1 [6]).

Definition 3. Given an n-independent set of nodes X_s with $s \ge d(n,k)$. A curve of degree $k \le n$ passing through d(n,k) points of X_s is called maximal.

We say that a node A of an n-poised set \mathcal{X} uses a line ℓ , if the latter divides the fundamental polynomial of A, i.e., $p_A^* = \ell q$ for some $q \in \Pi_{n-1}$.

Let us bring a characterization of maximal curves (see Prop. 3.3 [6]):

Proposition 5. Let a node set X be n-poised. Then a curve μ of degree k, $k \le n$, is a maximal curve if and only if it is used by any node in $X \setminus \mu$.

Next result concerns maximal independent sets in curves (see Prop. 3.5 [5]).

Proposition 6. Assume that σ is an algebraic curve of degree k without multiple components and $\mathfrak{X}_s \subset \sigma$ is any n-independent node set of cardinality s, s < d(n,k). Then the set \mathfrak{X}_s can be extended to a maximal n-independent set $\mathfrak{X}_d \subset \sigma$ of cardinality d = d(n,k).

Finally, let us bring a well-known

Lem m a 5. Suppose that m linearly independent curves pass through all the nodes of X. Then for any node $A \notin X$ there are m-1 linearly independent curves in the linear span of given curves, passing through A and all the nodes of X.

Main Result. Let us start with (see Theorem 1 [7]).

Theorem 1. Assume that \mathfrak{X} is an n-independent set of d(n,k-1)+2 nodes lying in a curve of degree k with $k \leq n$. Then the curve is determined uniquely by these nodes.

Next result in this series is the following (see Theorem 4.2 [5])

Theorem 2. Assume that X is an n-independent set of d(n,k-1)+1 nodes with $k \le n-1$. Then two different curves of degree k pass through all the nodes of X if and only if all the nodes of X but one lie in a maximal curve of degree k-1.

Now let us present the main result of this paper:

Theorem 3. Assume that X is an n-independent set of d(n, k-2)+2 nodes with $k \le n-1$. Then four linearly independent curves of degree less than or equal

to k pass through all the nodes of X if and only if all the nodes of X but two lie in a maximal curve of degree k-2.

Let us mention that the inverse implication here is evident. Indeed, assume that d(n, k-2) nodes of \mathcal{X} are located in a curve μ of degree k-2. Therefore, the curve μ is maximal and the remaining two nodes of \mathcal{X} , denoted by A and B, are outside of it: $A, B \notin \mu$. Hence we have that

$$\mathcal{P}_{k,\mathcal{X}} = \{ p : p \in \Pi_k, p(A) = p(B) = 0 \} = \{ q\mu : q \in \Pi_2, q(A) = q(B) = 0 \}.$$

Thus we readily get that $\dim \mathcal{P}_{k,\mathcal{X}} = \dim \{q \in \Pi_2 : q(A) = q(B) = 0\} = \dim \mathcal{P}_{2,\{A,B\}} = 6 - 2 = 4$. In the last equality we use the fact that any two nodes are 2-independent.

We get also that there can be at most 4 linearly independent curves of degree $\leq k$ passing through all the nodes of \mathfrak{X} .

Before starting the proof of Theorem 3 let us present two lemmas.

Lemma 6. Assume that \mathfrak{X} is an n-independent node set and a node $A \in \mathfrak{X}$ has an n-fundamental polynomial p_A^* such that $p_A^*(A') \neq 0$. Then we can replace the node A with A' such that the resulted set $\mathfrak{X}' := \mathfrak{X} \cup \{A'\} \setminus \{A\}$ is again an n-independent. In particular, such replacement can be done in the following two cases:

- i) if a node $A \in X$ belongs to several components of σ , then we can replace it with a node A', which belongs only to one component of σ ;
- ii) if a curve q is not a component of an n-fundamental polynomial p_A^* then we can replace the node A with a node A' lying in q.

Proof. Indeed, notice that $p_A^{\star}(A') \neq 0$ means that p_A^{\star} is a fundamental polynomial for the node A' with respect to the set \mathcal{X}' . Next, for i) note that a fundamental polynomial of a node A differs from 0 in a neighborhood of A. Finally, for ii) note that q is not a component of p_A^{\star} means, that there is a point $A' \in q$ such that $p_A^{\star}(A') \neq 0$.

Lemma 7. Assume that the hypotheses of Theorem 3 hold and assume additionally that there is a curve $q_{k-1} \in \Pi_{k-1}$ passing through all the nodes of X. Then all the nodes of X but two lie in a maximal curve μ of degree k-2.

Proof. First note that the curve q_{k-1} is of exact degree k-1, since it passes through more than d(n,k-2) *n*-independent nodes. This implies also that q_{k-1} has no multiple component. Therefore, in view of Proposition 6, we can extend the set \mathfrak{X} till a maximal *n*-independent set $\mathfrak{Y} \subset q_{k-1}$, by adding n-k+1 nodes, i.e.,

$$\mathcal{Y} = \mathcal{X} \cup \mathcal{A}$$
, where $\mathcal{A} = \{A_0, \dots, A_{n-k}\}$.

In view of Lemma 6, i), we may suppose that the nodes from A are not intersection points of the components of the curve q_{k-1} .

Next, we are going to prove that these n-k+1 nodes are collinear together with $m \ge 2$ nodes from \mathcal{X} . To this end denote the line through the nodes A_0 and A_1 by ℓ_{01} . Then for each $i=2\ldots,n-k$ choose a line ℓ_i passing through the node A_i , which is not a component of q_{k-1} . We require also that each line passes through only one of the mentioned nodes and therefore the lines are distinct.

Now suppose that $p \in \Pi_k$ vanishes on \mathfrak{X} . Consider the polynomial $r = p\ell_{01}\ell_2\cdots\ell_{n-k}$. We have that $r \in \Pi_n$ and r vanishes on the node set \mathfrak{Y} , which is

a maximal *n*-independent set in the curve q_{k-1} . Therefore, we obtain that $r = q_{k-1}s$, where $s \in \Pi_{n-k+1}$. Thus we have that

$$p\ell_{01}\ell_2\cdots\ell_{n-k}=q_{k-1}s.$$

The lines ℓ_i , $i=2,\ldots,n-k$, are not components of q_{k-1} . Therefore, they are components of the polynomial s. Thus we obtain that

$$p\ell_{01} = q_{k-1}\beta$$
, where $\beta \in \Pi_2$.

Now let us verify that ℓ_{01} is a component of q_{k-1} . Indeed, otherwise it is a component of the conic β and we get that

$$p \in \Pi_k, \ p|_{\mathcal{X}} = 0 \implies p = q_{k-1}\ell, \text{ where } \ell \in \Pi_1.$$

Therefore, we get dim $\mathcal{P}_{k,\mathcal{X}} = 3$, which contradicts the hypothesis.

Thus we conclude that

$$q_{k-1} = \ell_{01}q_{k-2}$$
, where $q_{k-2} \in \Pi_{k-2}$.

The curve q_{k-2} passes through at most d(n, k-2) nodes from \mathcal{X} . Hence we get that at least 2 nodes from \mathcal{X} belong to the line ℓ_{01} .

Next we will show that exactly 2 nodes from \mathcal{X} belong to ℓ_{01} , which will prove Lemma. Assume by way of contradiction that at least 3 nodes from \mathcal{X} lie in ℓ_{01} . First let us show that all the nodes of \mathcal{A} belong to ℓ_{01} . Suppose conversely that a node from \mathcal{A} , say A_2 , does not belong to the line ℓ_{01} . Then in the same way as in the case of the line ℓ_{01} we get that ℓ_{02} is a component of q_{k-1} . Thus the node A_0 is an intersection point of two components of q_{k-1} , i.e., ℓ_{01} and ℓ_{02} , which contradicts our assumption.

Next let us verify that in the beginning we could choose a non-collinear n-independent set $\mathcal{A} \subset q_{k-1}$, which will be a contradiction and will complete the proof. To this end let us prove that one can move any node of \mathcal{A} , say A_0 , from ℓ_{01} to the other component q_{k-2} such that the resulted set \mathcal{A} remains n-independent.

In view of Lemma 6, ii), for this we need to find an n-fundamental polynomial of A_0 , for which q_{k-2} is not a component. Let us show that any fundamental polynomial of A_0 has this property. Indeed, suppose conversely that for an n-fundamental polynomial $p_{A_0}^{\star} \in \Pi_n$ the curve q_{k-2} is a component, i.e., $p_{A_0}^{\star} = q_{k-2}r$, where $r \in \Pi_{n-k+2}$. We get from here that r vanishes at all the nodes in $\mathcal{Y} \cap \ell_{01}$ except A_0 . Thus r vanishes at $\geq 3 + (n-k+1) - 1 = n-k+3$ nodes in ℓ . Therefore, in view of Proposition 3, r vanishes at all the points of ℓ_{01} including A_0 , which is a contradiction.

Now we are in a position to present

Proof of Theorem 3. Recall that it remains to prove the direct implication. Let $\sigma_1, \ldots, \sigma_4$ be the four curves of degree $\leq k$ that pass through all the nodes of the n-independent set \mathcal{X} with $|\mathcal{X}| = d(n, k-2) + 2$. First we will consider

Case $n \ge k + 2$. Let us start by choosing three nodes $B_1, B_2, B_3 \notin \mathcal{X}$ such that the following four conditions are satisfied:

- i) the set $\mathfrak{X} \cup \{B_1, B_2, B_3\}$ is *n*-independent;
- ii) the nodes B_1, B_2, B_3 are non-collinear;
- *iii*) each line through B_i and B_j , $1 \le i < j \le 3$, does not pass through any node from \mathfrak{X} ;

iv) for any subset $A \subset X$, |A| = 3 the set $A \cup \{B_1, B_2, B_3\}$ is 2-poised.

Let us verify that one can find such nodes. Indeed, in view of Lemma 3, we can start by choosing some nodes B_i' , i=1,2,3, satisfying the condition i). Then, according to Lemma 2, for some positive ε all the nodes in ε neighborhoods of B_i' , i=1,2,3, satisfy the condition i). Next, by using Lemma 4, three times, for the nodes B_i'' , i=1,2,3, consecutively, we obtain that there are nodes B_i'' , i=1,2,3, satisfying the condition iv) and $\rho(B_i'', B_i') < (1/2)\varepsilon$, i=1,2,3. Now notice that both conditions i) and iv) are satisfied for B_i'' , i=1,2,3. Then, according to Lemma 2, for some positive $\varepsilon' > 0$ all the nodes in ε' neighborhoods of B_i'' , i=1,2,3, satisfy the conditions i) and iv). Finally, from these ε' neighborhoods we can choose the nodes B_i , i=1,2,3, satisfying the conditions ii), iii), too.

Note that, in view of Proposition 1, the condition iv) means that

 ν) any conic through the triple B_1, B_2, B_3 passes through at most two nodes from \mathfrak{X} .

Next, in view of Proposition 5, there is a curve of degree at most k, denoted by σ , which passes through all the nodes of $\mathfrak{X}' := \mathfrak{X} \cup \{B_1, B_2, B_3\}$.

Now notice that the curve σ passes through more than d(n,k-2) nodes and, therefore, its degree equals either to k-1 or k. By taking into account Lemma 7, we may assume that the degree of the curve σ equals to k. Evidently, in view of Lemma 7, we may assume also that σ has no multiple component.

Therefore, by using Proposition 6, we can extend the set \mathcal{X}' till a maximal n-independent set $\mathcal{X}'' \subset \sigma$. Notice that, since $|\mathcal{X}''| = d(n,k)$, we need to add a set of d(n,k) - (d(n,k-2)+2) - 3 = 2(n-k) nodes to \mathcal{X}' , denoted by $\mathcal{A} := \{A_1, \ldots, A_{2(n-k)}\}: \mathcal{X}'' := \mathcal{X} \cup \{B_1, B_2, B_3\} \cup \mathcal{A}$.

Thus the curve σ becomes maximal with respect to this set. In view of Lemma 6, i), we require that each node of \mathcal{A} may belong only to one component of the curve σ . Then, by using Lemma 5, we get a curve σ_0 of degree at most k, different from σ that passes through all the nodes of \mathcal{X} and two more arbitrary nodes, which will be specified below.

We intend to divide the set of nodes \mathcal{A} into n-k pairs such that the lines $\ell_1, \ldots, \ell_{n-k-1}$ through n-k-1 pairs from them, respectively, are not components of σ . The remaining pair we associate with the curve σ_0 . More precisely, we require that σ_0 passes through the two nodes of the last pair.

Before establishing the mentioned division of \mathcal{A} , let us verify how we can finish the proof by using it. Denote by β the conic through the triple of the nodes B_1, B_2, B_3 and the pair of nodes associated with the line ℓ_{n-k-1} . Notice that the following polynomial $\sigma_0 \beta \ell_1 \ell_2 \dots \ell_{n-k-2}$ of degree n vanishes at all the d(n,k) nodes of $\mathfrak{X}'' \subset \sigma$. Consequently, according to Proposition 4, σ divides this polynomial:

$$\sigma_0 \beta \ell_1 \ell_2 \dots \ell_{n-k-2} = \sigma q, \quad q \in \Pi_{n-k}. \tag{3}$$

The distinct lines $\ell_1, \ell_2, \dots, \ell_{n-k-2}$ do not divide the polynomial $\sigma \in \Pi_k$, therefore, all they have to divide $q \in \Pi_{n-k}$. Therefore, we get from (3):

$$\sigma_0 \beta = \sigma \beta'$$
, where $\beta' \in \Pi_2$. (4)

Now, suppose first that the conic β is irreducible. Since the curves σ and σ_0 are different the conics β and β' also are different. Therefore, the conic β has to divide $\sigma \in \Pi_k$: $\sigma = \beta r$, $r \in \Pi_{k-2}$.

Now, we derive from this relation that the curve r passes through all the nodes of the set \mathcal{X} but two. Indeed, σ passes through all the nodes of \mathcal{X} . Therefore, these nodes are either in the curve r or in the conic β . But the latter conic passes through the triple of nodes B_1, B_2, B_3 , and according to the condition v), it passes through at most two nodes of \mathcal{X} . Thus r passes through at least d(n, k-2) nodes of \mathcal{X} . Since r is a curve of degree k-2, we conclude that r is a maximal curve and passes through exactly d(n, k-2) nodes of \mathcal{X} .

Next suppose that the conic β is reducible. Consider first the case when the pair of nodes associated with the line ℓ_{n-k-1} is collinear with a node from the triple B_1, B_2, B_3 , say with B_1 . Thus we have that $\beta = \ell_{n-k-1}\ell$, where the line ℓ passes through the nodes B_2, B_3 .

The line ℓ_{n-k-1} does not divide the polynomial $\sigma \in \Pi_k$, therefore it has to divide β' . Therefore we get from the relation (4) that

$$\sigma_0 \ell = \sigma \ell'$$
, where $\ell' \in \Pi_2$. (5)

Now, the lines ℓ and ℓ' are different, so ℓ has to divide $\sigma \in \Pi_k$:

$$\sigma = \ell r, \quad r \in \Pi_{k-1}.$$

In view of above condition iii), the line ℓ does not pass through any node of \mathfrak{X} . Therefore, the curve r of degree k-1 passes through all the nodes of \mathfrak{X} . Thus the proof of Theorem is completed in view of Lemma 7.

Observe that we may conclude from here that any line component of the curve σ , as well as of the curve σ_0 , passes through at least a node from \mathcal{X} . Thus, in view of (*iii*) the (three) lines through two nodes from $\{B_1, B_2, B_3\}$ are not a component of σ . Hence, in view of Lemma 6, we may assume that the nodes of \mathcal{A} do not belong to these three lines. Consequently, no extra case of a reducible β is possible.

Next let us establish the above mentioned division of the node set \mathcal{A} into n-k pairs such that the lines $\ell_1, \ldots, \ell_{n-k-1}$ through n-k-1 pairs from them, respectively, are not components of σ . Thus we need to have pairs of nodes not belonging to the same line component of σ .

Recall that the nodes of \mathcal{A} belong only to one component of the curve σ . Therefore, the line components do not intersect at the nodes of \mathcal{A} . By using induction on n-k, it can be proved easily that the mentioned division of \mathcal{A} is possible if and only if no n-k nodes of \mathcal{A} , not counting those two associated with the curve σ_0 , are located in a line component. Observe also that any two nodes of the set \mathcal{A} may be considered as associated with σ_0 .

Now note that there can be at most two undesirable line components of the curve σ , each of which contains n-k nodes from A. In this case one node from each of the two components we associate with σ_0 .

Suppose that there is only one undesirable line component with n - k or n - k + 1 nodes. Then one or two nodes from here we associate with σ_0 , respectively.

Finally consider the case of one undesirable line component ℓ with $m \geq n-k+2$ nodes. Recall that each line component passes through at least a node from \mathfrak{X} . We have that $\sigma = \ell q$, where $q \in \Pi_{k-1}$ is a component of σ . Now, in view of Lemma 6, ii), we will move m-n+k-1 nodes, one by one, from ℓ to the component q. For this it suffices to prove that during this process each node $A \in \ell \cap \mathcal{A}$ has no fundamental polynomial, for which the curve q is a component. Suppose conversely that $p_A^* = qr$, $r \in \Pi_{n-k+1}$. Now we have that r vanishes at $\geq n-k+1$ nodes in $\ell \cap \mathcal{A} \setminus \{A\}$, and at least at a node from $\ell \cap \mathcal{X}$ mentioned above. Thus r together with p_A^* vanishes at the whole line ℓ , including the node A, which is a contradiction. It remains to note that there will be no more undesirable line, except ℓ , in the resulted set \mathcal{A} after the described movement of the nodes, since we keep exactly n-k+1 nodes in $\ell \cap \mathcal{A}$. Finally let us consider

Case n = k + 1. Consider three collinear nodes $B_1, B_2, B_3 \notin \mathcal{X}$ such that the following two conditions are satisfied:

- i') the set $\mathcal{X} \cup \{B_1, B_2, B_3\}$ is *n*-independent;
- ii') the line through B_i , i = 1, 2, 3, does not pass through any node from \mathfrak{X} .

Let us verify that one can find such nodes B_1, B_2, B_3 , or the conclusion of Theorem 3 holds. Indeed, in view of Lemma 3, we can start by choosing some two nodes B'_i , i = 1, 2, such that

i'') the set $\mathfrak{X} \cup \{B_1, B_2, \}$ is *n*-independent.

Then, according to Lemma 2, for some positive ε all the nodes in ε neighborhoods of B_i' , i=1,2, satisfy i''). Thus, from this neighborhoods we can choose the nodes B_i , i=1,2, such that the line through them ℓ_0 does not pass through any node from \mathfrak{X} . Now it remains to prove Theorem 3 under the assumption that there is no node $B_3 \in \ell_0$ such that the condition i') holds.

Indeed, this means that any polynomial $p \in \Pi_n$ vanishing on $\mathfrak{X} \cup \{B_1, B_2, \}$ vanishes identically on ℓ_0 . In view of Lemma 5, we may choose a such polynomial p from the linear span of four linearly independent curves of the hypothesis. Then we get that $p \in \Pi_k$, $p|_{\ell_0} = 0$. Thus we have $p = \ell_0 q$, where $q \in \Pi_{k-1}$. Now, in view of ii') we readily deduce that the curve q of degree $\leq k-1$ passes through all the nodes of \mathfrak{X} . Thus the proof of Theorem is completed in view of Lemma 7.

Now we may assume that we have three collinear nodes $B_1, B_2, B_3 \notin \mathcal{X}$, satisfying the conditions i') and ii').

Next, as in the previous case, we get a curve of degree k, denoted by σ , which has no multiple component and passes through all the nodes of $\mathcal{X}' := \mathcal{X} \cup \{B_1, B_2, B_3\}$. Then, by using Proposition 6, we extend the set \mathcal{X}' till a maximal n-independent set $\mathcal{X}'' = \mathcal{X}' \cup \mathcal{A} \subset \sigma$. Note that $|\mathcal{A}| = 2$ in this case.

Then, as in the previous case, we get a curve σ_0 of degree k different from σ , passing through all the nodes of the set \mathcal{X} and two nodes of \mathcal{A} . Now observe that the polynomial $\sigma_0\ell_0 \in \Pi_{k+1}$ vanishes on the maximal n=(k+1)-independent set $\mathcal{X}'' \subset \sigma$. Therefore we have that $\sigma_0\ell_0 = \sigma\ell$ where $\ell \in \Pi_1$. Since σ_0 and σ are different so are also ℓ_0 and ℓ . Thus ℓ_0 is a component of σ , i.e., $\sigma = \ell_0 r$, where $r \in \Pi_{k-1}$. Now, in view of above condition ii'), the line ℓ_0 does not pass through any

node of \mathfrak{X} . Therefore, the curve r of degree k-1 passes through all the nodes of \mathfrak{X} . Thus the proof of Theorem is completed in view of Lemma 7.

An Application to the Gasca-Maeztu Conjecture. Recall that a node $A \in \mathcal{X}$ uses a line ℓ means that ℓ is a factor of the fundamental polynomial $p = p_A^{\star}$, i.e., $p = \ell r$ for some $r \in \Pi_{n-1}$.

A GC_n -set in the plane is an n-poised set of nodes, where the fundamental polynomial of each node is a product of n linear factors. The Gasca–Maeztu conjecture states that any GC_n -set possesses a subset of n+1 collinear nodes.

It was proved in [8], that any line passing through exactly 2 nodes of a GC_n -set \mathfrak{X} can be used at most by one node from \mathfrak{X} .

It was proved in [7] that any used line passing through exactly 3 nodes of a GC_n -set \mathcal{X} can be used either by exactly one or three nodes from \mathcal{X} .

Below we consider the case of lines passing through exactly 4 nodes.

Corollary. Let X be an n-poised set of nodes and ℓ be a line, which passes through exactly 4 nodes. Suppose ℓ is used by at least four nodes from \mathfrak{X} . Then it is used by exactly six nodes from X. Moreover, if it is used by six nodes, then they form a 2-poised set. Furthermore, in the latter case, if X is a GC_n set, then the six nodes form a GC_2 set.

Proof. Assume that $\ell \cap \mathfrak{X} = \{A_1, \dots, A_4\} =: \mathcal{A}$. Assume also that the four nodes in $\mathcal{B} := \{B_1, \dots, B_4\} \in \mathcal{X}$ use the line ℓ , that is,

$$p_{B_i}^{\star} = \ell q_i, \ i = 1, ..., 4, \text{ where } q_i \in \Pi_{n-1}.$$

The polynomials q_1, \ldots, q_4 vanish at N-8 nodes of the set $\mathfrak{X}' := \mathfrak{X} \setminus (\mathcal{A} \cup \mathcal{B})$. Hence through these N-8=d(n,n-3)+2 nodes pass four linearly independent curves of degree n-1. By Theorem 3, there exists a maximal curve μ of degree n-3passing through N-10 nodes of \mathfrak{X}' and the remaining two nodes denoted by C_1, C_2 are outside of it. Now, according to Proposition 5, the nodes C_1, C_2 use μ :

$$p_C^{\star} = \mu r_i, r_i \in \Pi_3, i = 1, 2.$$

 $p_{C_i}^\star = \mu r_i, \ r_i \in \Pi_3, \ i=1,2.$ These polynomials r_i have to vanish at the four nodes of $\mathcal{A} \subset \ell$. Hence $q_i = \ell \beta_i, \ i = 1, 2$, with $\beta_i \in \Pi_2$. Therefore, the nodes C_1, C_2 use the line ℓ :

$$p_{C_i}^{\star} = \mu \ell \beta_i, \ i = 1, 2.$$

Hence, if four nodes in $\mathcal{B} \subset \mathcal{X}$ use the line ℓ , then there exist two more nodes $C_1, C_2 \in \mathcal{X}$ using it and all the nodes of $\mathcal{Y} := \mathcal{X} \setminus (\mathcal{A} \cup \mathcal{B} \cup \{C_1, C_2\})$ lie in a maximal curve μ of degree n-3: $\mathcal{Y} \subset \mu$.

Next, let us show that there is no seventh node using ℓ . Assume by way of contradiction that except of the six nodes in $S := \{B_1, \dots, B_4, C_1, C_2\}$, there is a seventh node D using ℓ . Of course we have that $D \in \mathcal{Y}$.

Then we have that four nodes B_1, B_2, B_3 and D are using ℓ , therefore, as it was proved above, there exist two more nodes $E_1, E_2 \in \mathcal{X}$ (which may coincide or not with B_4 or C_1, C_2) using it and all the nodes of $\mathcal{Y}' := \mathcal{X} \setminus (\mathcal{A} \cup \{B_1, B_2, B_3, D, E_1, E_2\})$ lie in a maximal curve μ' of degree n-3. We have also that

$$p_D^{\star} = \mu' q', \ q' \in \Pi_3. \tag{6}$$

Now, notice that both the curves μ and μ' pass through all the nodes of the set $\mathcal{Z} := \mathcal{X} \setminus (\mathcal{A} \cup \mathcal{B} \cup \{C_1, C_2, D, E_1, E_2, \}) \text{ with } |\mathcal{Z}| \geq N - 13.$

Then, we get from Theorem 1 with k=n-4, that N-13=d(n,n-4)+2 nodes determine the curve of degree n-3 passing through them uniquely. Thus μ and μ' coincide. Therefore, in view of $\mathcal{Y} \subset \mu$ and (6), p_D^{\star} vanishes at all the nodes of \mathcal{Y} , which is a contradiction since $D \in \mathcal{Y}$.

Now let us verify the last "moreover" statement. Suppose the six nodes in $S \subset X$ use the line ℓ . Then, as we obtained earlier, the nodes $\mathcal{Y} := X \setminus (\mathcal{A} \cup \mathcal{B} \cup \{C_1, C_2\})$ are located in a maximal curve μ of degree n-3. Therefore, the fundamental polynomial of each $A \in S$ uses $\mu : p_A^* = \mu q_A$, where $q_A \in \Pi_2$. It is easily seen that q_A is a 2-fundamental polynomial of $A \in S$.

Received 25.03.2019 Reviewed 17.04.2019 Accepted 23.04.2019

REFERENCES

- 1. Eisenbud D., Green M., Harris J. Cayley-Bacharach Theorems and Conjectures. *Bull. Amer. Math. Soc.* (*N.S.*), **33**: 3 (1996), 295–324.
- 2. Hakopian H., Jetter K., Zimmermann G. Vandermonde Matrices for Intersection Points of Curves. *Jaen J. Approx.*, **1** (2009), 67–81.
- 3. Hakopian H., Malinyan A. Characterization of *n*-Independent Sets with No More Than 3*n* Points. *Jaen J. Approx.*, **4** : 2 (2012), 121–136.
- 4. Hakopian H. Multivariate Divided Differences and Multivariate Interpolation of Lagrange and Hermite Type. *J. Approx. Theory*, **34** (1982), 286–305.
- 5. Hakopian H., Toroyan S. On the Uniqueness of Algebraic Curves Passing Through *n*-Independent Nodes. *New York J. Math.*, **22** (2016), 441–452.
- 6. Rafayelyan L. Poised Nodes Set Constructions on Algebraic Curves. *East J. Approx.*, **17**: 3 (2011), 285–298.
- 7. Hakopian H., Toroyan S. On the Minimal Number of Nodes Determining Uniquelly Algebraic Curves. *Proceedings of YSU. Physical and Mathematical Sciences*, no. 3 (2015), 17–22.
- 8. Carnicer J.M., Gasca M. On Chung and Yao's Geometric Characterization for Bivariate Polynomial Interpolation. In Book: Curve and Surface Design (2002), 21–30.

T. Ա. ՀԱԿՈԲՅԱՐ, T. Մ. ԵՐԱՅՈՐ

n-ԱՆԿԱԽ ՀԱՆԳՈՒՅՅՆԵՐՈՎ ԱՆՅՆՈՂ ՀԱՆՐԱՀԱՆՎԱԿԱՆ ԿՈՐԵՐԻ ՏԱՐԱԾՈՒԹՅՈՒՆՆԵՐԻ ՉԱՓՈՂԱԿԱՆՈՒԹՅԱՆ ՎԵՐԱԲԵՐՅԱԼ

Դիցուք \mathfrak{X} -ը հարթության վրա n-անկախ հանգույցների բազմություն է, այսինքն` յուրաքանչյուր հանգույց ունի n աստիճանի ֆունդամենտալ բազմանդամ։ Ենթադրենք, որ $|\mathfrak{X}|=(n+1)+n+\cdots+(n-k+4)+2$ և $3\leq k\leq n-1$: \Sinhumonւմ ապացուցում ենք, որ կարող են լինել k-ից փոքր կամ հավասար աստիճանի ամենաշատը 4 գծորեն անկախ կորեր, որոնք անցնում են \mathfrak{X} -ի բոլոր հանգույցներով։ Մենք տալիս ենք այն դեպքի բնութագիրը, երբ կա այդպիսի ճիշտ 4 կոր։ Այն է, մենք ապացուցում ենք, որ այդ դեպքում \mathfrak{X} բազմությունն ունի շատ հատուկ կառուցվածք` բոլոր հանգույցները, բացի երկուսից, պատկանում են k-2 աստիճանի (մաքսիմալ) կորի։ Վերջում Գասքա-Մաեզթուի վարկածի համար բերվում է մի կարևոր կիրառություն։