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Let the set of nodes X in the plain be n-independent, i.e., each node has a
fundamental polynomial of degree n. Suppose also that |X|= (n+1)+n+---+
+(n—k+4)+2and 3 <k <n— 1. We prove that there can be at most 4 line-
arly independent curves of degree less than or equal to k passing through all the
nodes of X. We provide a characterization of the case when there are exactly 4
such curves. Namely, we prove that then the set X has a very special construc-
tion: all its nodes but two belong to a (maximal) curve of degree k — 2. At the
end, an important application to the Gasca-Maeztu conjecture is provided.
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Introduction. Denote the space of all bivariate polynomials of total degree
<nbyll,, ie.,Il, = {Z,-ﬂ-gn a,-jxiyj} . We have that

N : =N, :=dimIl, = (1/2)(n+1)(n+2).

Consider a set of s distinct nodes X = X; = {(x1,y1), (x2,2), ..., (x5,¥5) }.

The problem of finding a polynomial p € IT,,, which satisfies the conditions
p(xl',yi):Cj, izla"'asv (1)
is called interpolation problem.

A polynomial p € I, is called a fundamental polynomial for a node
AeXif p(A)=1 and P|x\{A} = 0, where p|, means the restriction of p on X.
We denote the fundamental polynomial by p’. Sometimes we call fundamental also
a polynomial that vanishes at all nodes of X but one, since it is a nonzero constant
times a fundamental polynomial.

Definition 1. The interpolation problem with a set of nodes X and I1,
is called n-poised if for any data (ci,...,c;) there is a unique polynomial p € T1,
satisfying the interpolation conditions (1J).
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A necessary condition of poisedness is |X;|=s = N.

Proposition 1. A set of nodes Xy is n-poised if and only if

pell, and ply, =0 = p=0.

Next, let us consider the concept of n-independence (see [/1,2])).

Definition 2. A set of nodes X is called n-independent, if all its nodes
have n-fundamental polynomials. Otherwise, it is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary
condition of n-independence of X is s < N.

Some Properties of n-Independent Nodes. Let us start with the following
simple (see Lemma 2.2 [3]])

Lemma 1. Suppose that a node set X is n-independent and a node A ¢ X
has n-fundamental polynomial with respect to the set X\U{A}. Then the latter node
set is n-independent too.

Denote the distance between the points A and B by p(A,B). Let us recall the
following (see [4,/5]])

Lemma 2. Suppose that Xy = {A;}_, is an n-independent set. Then there is
a number € > 0 such that any set X = {Al}!_,, with the property that
p(A,A)) <€, i=1,...,s, is n-independent too.

Next result concerns the extension of n-independent sets (see Lemma 2.1 [2]).

Lemma 3. Any n-independent set X with |X|< N can be enlarged to an
n-poised set.

In the sequel we will need the following modification of the above result.

Lemma 4. Givenn-independent sets Xs;, i =1,...,m, where | Xy|=s; <N,
a node A and any number € > 0. Then there is a node A’ such that p(A,A’) < € and
each set Xs, U{A'}, i =1,...,m, is n-independent.

Proof. Letus use induction with respect to the number of sets: m. Suppose
that we have one set X;. Since s < N, there is a nonzero polynomial p € I, such that
ply, = 0. Now evidently there is a node B ¢ X such that p(A,B) < € and p(B) #
0. Thus p is an n-fundamental polynomial of the node B with respect to the set
X U{B}. Hence, in view of Lemma [I} the set Xy U {B} is n-independent. Then,
assume that Lemma is true in the case of m — 1 sets, i.e. there is a node B such that
p(A,B) < (1/2)€ and each set X;, U{B}, i=1,...,m— 1, is n-independent. In view
of Lemma [2] there is a number &’ < (1/2)€ such that for any C with p(C,B) < €
each set X5, U{C}, i=1,...,m—1, is n-independent. Next, in view of first step of
induction there is a node A’ such that p(A’,B) < (1/2)e and the set X;, U{A’} is
n-independent. Now, it is easily seen that A is a desirable node. 0

Denote the linear space of polynomials of total degree at most n vanishing
on X by

Pox={pell,: p[ly=0}.
The following two propositions are well-known [2]].

Proposition 2. Forany node set X we have that

dim®P,x =N~ [y,
where Y is a maximal n-independent subset of X.
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Proposition 3. If a polynomial p € 11, vanishes at n+ 1 points of
a line 0, then we have that p = 0r, where r € I1,,_;.

A plane algebraic curve is the zero set of some bivariate polynomial. To
simplify notation, we shall use the same letter p, say, to denote the polynomial p
of degree > 1 and the curve given by the equation p(x,y) = 0.

Set d(n,k) := N, — Ny—x = (1/2)k(2n + 3 — k). The following is a
generalization of Proposition [3|(see Prop. 3.1 [6])).

Proposition 4. Let g be an algebraic curve of degree k < n without
multiple components. Then the following hold:

i) any subset of q containing more than d(n,k) nodes is n-dependent;

ii) any subset Xy of q containing exactly d = d(n,k) nodes is n-independent if
and only if the following condition holds:

pell, and pl|x,=0= p=gqr, wherer €Il ;. 2)

Thus, according to Proposition [ i), at most d(n,k) nodes of X can lie in the
curve g of degree k < n. This motivates the following definition (see Def. 3.1 [6]).

Definition 3. Given an n-independent set of nodes Xs with s > d(n,k).
A curve of degree k < n passing through d(n,k) points of X is called maximal.

We say that a node A of an n-poised set X uses a line /, if the latter divides the
fundamental polynomial of A, i.e., p} = {q for some g € IT,,_;.

Let us bring a characterization of maximal curves (see Prop. 3.3 [6]):

Proposition 5. Let anode set X be n-poised. Then a curve | of degree
k, k < n, is a maximal curve if and only if it is used by any node in X'\ L.

Next result concerns maximal independent sets in curves (see Prop. 3.5 [5]).

Proposition 6. Assume that o is an algebraic curve of degree k with-
out multiple components and Xy C O is any n-independent node set of cardinality
s, s < d(n,k). Then the set X can be extended to a maximal n-independent set Xy C &
of cardinality d = d(n,k).

Finally, let us bring a well-known

Lemma 5. Suppose that m linearly independent curves pass through all the
nodes of X. Then for any node A ¢ X there are m — 1 linearly independent curves in
the linear span of given curves, passing through A and all the nodes of X.

Main Result. Let us start with (see Theorem 1 [7])).

Theorem 1. Assume that X is an n-independent set of d(n,k— 1) +2 nodes
lying in a curve of degree k with k < n. Then the curve is determined uniquely by
these nodes.

Next result in this series is the following (see Theorem 4.2 [S])

Theorem 2. Assume that X is an n-independent set of d(n,k— 1)+ 1 nodes
with k < n— 1. Then two different curves of degree k pass through all the nodes of X
if and only if all the nodes of X but one lie in a maximal curve of degree k — 1.

Now let us present the main result of this paper:

Theorem 3. Assume that X is an n-independent set of d(n,k—2)+2 nodes
with k < n— 1. Then four linearly independent curves of degree less than or equal
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to k pass through all the nodes of X if and only if all the nodes of X but two lie in a
maximal curve of degree k — 2.

Let us mention that the inverse implication here is evident. Indeed, assume that
d(n,k —2) nodes of X are located in a curve u of degree k — 2. Therefore, the curve
W is maximal and the remaining two nodes of X, denoted by A and B, are outside of
it: A,B ¢ u. Hence we have that

Prx={p:pell,p(A) = p(B) =0} = {qu : g € T1z,q(A) = q(B) = 0} .
Thus we readily get that dim P, x =dim{g € 1, : g(A) = g(B) = 0} =dim P, 4 py =
= 6 —2 =4. In the last equality we use the fact that any two nodes are 2-independent.

We get also that there can be at most 4 linearly independent curves of degree
< k passing through all the nodes of X.

Before starting the proof of Theorem [3|let us present two lemmas.

Lemma 6. Assume that X is an n-independent node set and a node A € X
has an n-fundamental polynomial p} such that p}(A’) # 0. Then we can replace
the node A with A’ such that the resulted set X' := XU {A’}\ {A} is again an n-
independent. In particular, such replacement can be done in the following two cases:

i) if a node A € X belongs to several components of G, then we can replace it
with a node A’, which belongs only to one component of G,

ii) if a curve q is not a component of an n-fundamental polynomial p} then we
can replace the node A with a node A’ lying in q.

Proof. Indeed, notice that p%(A’) # 0 means that pj is a fundamental
polynomial for the node A’ with respect to the set X’. Next, for /) note that a
fundamental polynomial of a node A differs from O in a neighborhood of A. Finally,
for ii) note that ¢ is not a component of p} means, that there is a point A’ € ¢
such that p%(A") # 0. O

Lemma 7. Assume that the hypotheses of Theorem [3| hold and assume
additionally that there is a curve qi_1 € I;_| passing through all the nodes of X.
Then all the nodes of X but two lie in a maximal curve W of degree k — 2.

Proof. First note that the curve g, is of exact degree k — 1, since it passes
through more than d(n,k — 2) n-independent nodes. This implies also that g;_; has
no multiple component. Therefore, in view of Proposition[6] we can extend the set X
till a maximal n-independent set Y C g1, by adding n — k+ 1 nodes, i.e.,

Y=XUA, where A = {Ao,..., A}

In view of Lemma @, i), we may suppose that the nodes from A are not intersection
points of the components of the curve g;_;.

Next, we are going to prove that these n — k+ 1 nodes are collinear together
with m > 2 nodes from X. To this end denote the line through the nodes Ag and A by
£o1. Then for each i =2...,n— k choose a line ¢; passing through the node A;, which
is not a component of g;_1. We require also that each line passes through only one of
the mentioned nodes and therefore the lines are distinct.

Now suppose that p € II; vanishes on X. Consider the polynomial
r= ploify---£,_;. We have that r € I, and r vanishes on the node set Y, which is
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a maximal n-independent set in the curve g;_;. Therefore, we obtain that r = g;_1s,
where s € I1,,_;, ;. Thus we have that

plorlz - Ly—k = gx—15.
The lines ¢;, i = 2,...,n —k, are not components of g;_. Therefore, they are
components of the polynomial s. Thus we obtain that

plot = qx—1B, where B € IT,.
Now let us verify that £y; is a component of g;_;. Indeed, otherwise it is a
component of the conic  and we get that

pell, ply =0 = p=qi_1¢, where ¢ € II;.
Therefore, we get dim Py - = 3, which contradicts the hypothesis.
Thus we conclude that
qk—1 = Lo1qx—2, Where gx_» € Tlx_».
The curve g, passes through at most d(n,k — 2) nodes from X. Hence we get that
at least 2 nodes from X belong to the line ¢y;.

Next we will show that exactly 2 nodes from X belong to £y;, which will prove
Lemma. Assume by way of contradiction that at least 3 nodes from X lie in £g;. First
let us show that all the nodes of A belong to £y;. Suppose conversely that a node from
A, say Ay, does not belong to the line £y;. Then in the same way as in the case of the
line £y; we get that {y; is a component of g;_;. Thus the node Ag is an intersection
point of two components of g;_1, i.e., o1 and £y, which contradicts our assumption.

Next let us verify that in the beginning we could choose a non-collinear
n-independent set A C g1, which will be a contradiction and will complete the
proof. To this end let us prove that one can move any node of A, say Ag, from £y; to
the other component g;_, such that the resulted set A remains n-independent.

In view of Lemmal6] ii), for this we need to find an n-fundamental polynomial
of Ag, for which g;_» is not a component. Let us show that any fundamental polyno-
mial of Ag has this property. Indeed, suppose conversely that for an n-fundamental
polynomial pzo € II, the curve gx_, is a component, i.e., pj‘o = @y_ot, where
r € Il,_ryo. We get from here that » vanishes at all the nodes in Y N £y, except Ag.
Thus r vanishes at > 3+ (n—k+1) — 1 = n—k+ 3 nodes in ¢. Therefore, in view
of Proposition r vanishes at all the points of ¢y including Ay, which is a
contradiction. 0

Now we are in a position to present

Proof of Theorem 3| Recall that it remains to prove the direct implication.
Let o1,...,04 be the four curves of degree < k that pass through all the nodes of the
n-independent set X with |X|= d(n,k —2) + 2. First we will consider

Case n > k +2. Let us start by choosing three nodes By, B;,B3 ¢ X such that
the following four conditions are satisfied:

i) the set XU {By, B>, B3} is n-independent;

ii) the nodes By, B,, B3 are non-collinear;

iii) each line through B; and B, 1 <i < j <3, does not pass through any node
from X;
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iv) for any subset A C X, |A|= 3 the set AU{B;,B>,B3} is 2-poised.

Let us verify that one can find such nodes. Indeed, in view of Lemma [3]
we can start by choosing some nodes B}, i = 1,2,3, satisfying the condition i).
Then, according to Lemma 2] for some positive € all the nodes in € neighborhoods
of B},i = 1,2,3, satisfy the condition 7). Next, by using Lemma |4} three times, for
the nodes B, i = 1,2,3, consecutively, we obtain that there are nodes B;”, i = 1,2,3,
satisfying the condition iv) and p(B;”,B!) < (1/2)€, i = 1,2,3. Now notice that both
conditions i) and iv) are satisfied for B;”, i = 1,2, 3. Then, according to Lemma 2] for
some positive € > 0 all the nodes in &’ neighborhoods of B/, i = 1,2,3, satisfy the
conditions ) and iv). Finally, from these &’ neighborhoods we can choose the nodes
B;, i =1,2,3, satisfying the conditions ii), iii), too.

Note that, in view of Proposition |1} the condition iv) means that

v) any conic through the triple By, B;, B3 passes through at most two nodes
from X.

Next, in view of Proposition 3] there is a curve of degree at most k, denoted by
o, which passes through all the nodes of X' := XU {B;,B,,B3}.

Now notice that the curve ¢ passes through more than d(n,k —2) nodes and,
therefore, its degree equals either to k — 1 or k. By taking into account Lemma
we may assume that the degree of the curve ¢ equals to k. Evidently, in view of
Lemma[7] we may assume also that ¢ has no multiple component.

Therefore, by using Proposition @ we can extend the set X’ till a maximal
n-independent set X" C o. Notice that, since |X"|= d(n,k), we need to add
a set of d(n,k) — (d(n,k —2)+2)—3 =2(n—k) nodes to X', denoted by
A= {A] yeus 7A2(nfk)} X" :=XU {B] 7B2,B3} UA.

Thus the curve o becomes maximal with respect to this set. In view of
Lemma @ i), we require that each node of A may belong only to one component
of the curve . Then, by using Lemma |5} we get a curve oy of degree at most k,
different from o that passes through all the nodes of X and two more arbitrary nodes,
which will be specified below.

We intend to divide the set of nodes A into n — k pairs such that the lines
li,....0y_g_1 through n — k — 1 pairs from them, respectively, are not components of
0. The remaining pair we associate with the curve 6p. More precisely, we require
that oy passes through the two nodes of the last pair.

Before establishing the mentioned division of A, let us verify how we can
finish the proof by using it. Denote by 8 the conic through the triple of the nodes
B, B>, B3 and the pair of nodes associated with the line £, _;_. Notice that the fol-
lowing polynomial oy 341 ¢5... ¢, of degree n vanishes at all the d(n,k) nodes
of X" C 0. Consequently, according to Proposition@], o divides this polynomial:

coBlity.. byyor=0q, qcll,_y. (3)

The distinct lines £y, 45, ...,¢,_;_» do not divide the polynomial ¢ € I, therefore,
all they have to divide ¢ € IT,_;. Therefore, we get from (3)):

oo = o B, where B’ € I1,. 4)
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Now, suppose first that the conic f is irreducible. Since the curves ¢ and oy
are different the conics § and B’ also are different. Therefore, the conic § has to
divideoc €Il;: o=pr, rell,.

Now, we derive from this relation that the curve r passes through all the nodes
of the set X but two. Indeed, o passes through all the nodes of X. Therefore, these
nodes are either in the curve r or in the conic 3. But the latter conic passes through
the triple of nodes B;, B, B3, and according to the condition v), it passes through at
most two nodes of X. Thus r passes through at least d(n,k —2) nodes of X. Since r
is a curve of degree k — 2, we conclude that r is a maximal curve and passes through
exactly d(n,k —2) nodes of X.

Next suppose that the conic 3 is reducible. Consider first the case when the
pair of nodes associated with the line ¢,,_j_; is collinear with a node from the triple
B1,B;,B3, say with By. Thus we have that § = ¢, ; £, where the line ¢ passes
through the nodes B», B3.

The line ¢, ;1 does not divide the polynomial ¢ € I, therefore it has to
divide B’. Therefore we get from the relation (4) that

ool =o', where ¢ €II,. 5)
Now, the lines ¢ and ¢ are different, so ¢ has to divide o € I;:
oc=/0r, rell_;.

In view of above condition iii), the line ¢ does not pass through any node of X.
Therefore, the curve r of degree k — 1 passes through all the nodes of X. Thus the
proof of Theorem is completed in view of Lemmal[7|

Observe that we may conclude from here that any line component of the curve
o, as well as of the curve oy, passes through at least a node from X. Thus, in view
of (iii) the (three) lines through two nodes from {Bj,B,,B3} are not a component of
o. Hence, in view of Lemma 6] we may assume that the nodes of A do not belong to
these three lines. Consequently, no extra case of a reducible f3 is possible.

Next let us establish the above mentioned division of the node set A into n —k
pairs such that the lines £y, ..., ¢, ;_ through n — k — 1 pairs from them, respectively,
are not components of 6. Thus we need to have pairs of nodes not belonging to the
same line component of G.

Recall that the nodes of A belong only to one component of the curve .
Therefore, the line components do not intersect at the nodes of A. By using induction
on n — k, it can be proved easily that the mentioned division of A is possible if and
only if no n — k nodes of A, not counting those two associated with the curve oy, are
located in a line component. Observe also that any two nodes of the set A may be
considered as associated with oy.

Now note that there can be at most two undesirable line components of the
curve o, each of which contains n — k nodes from A. In this case one node from each
of the two components we associate with 0.

Suppose that there is only one undesirable line component with n — k or
n—k+ 1 nodes. Then one or two nodes from here we associate with oy, respectively.
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Finally consider the case of one undesirable line component ¢ with
m > n—k+ 2 nodes. Recall that each line component passes through at least a node
from X. We have that 6 = {¢q, where g € I1;_ is a component of . Now, in view of
Lemma@ ii), we will move m — n+k — 1 nodes, one by one, from ¢ to the component
g. For this it suffices to prove that during this process each node A € /N A has no fun-
damental polynomial, for which the curve g is a component. Suppose conversely that
pi =qr, r €II,_;;1. Now we have that r vanishes at > n—k+ 1 nodes in /NA\ {A},
and at least at a node from £ N X mentioned above. Thus r together with p’ vanishes
at the whole line ¢, including the node A, which is a contradiction. It remains to note
that there will be no more undesirable line, except ¢, in the resulted set A after the
described movement of the nodes, since we keep exactly n — k+ 1 nodes in £N.A.
Finally let us consider

Case n =k + 1. Consider three collinear nodes By,B,B3 ¢ X such that the
following two conditions are satisfied:

i') the set XU {B1, B>, B3} is n-independent;

ii') the line through B;, i = 1,2, 3, does not pass through any node from X.

Let us verify that one can find such nodes Bi,B;, B3, or the conclusion of
Theorem [3| holds. Indeed, in view of Lemma [3| we can start by choosing some two
nodes B}, i = 1,2, such that

i) the set X U{B, B}, } is n-independent.

Then, according to Lemma 2] for some positive € all the nodes in € neighbor-
hoods of B., i = 1,2, satisfy i”). Thus, from this neighborhoods we can choose the
nodes B;, i = 1,2, such that the line through them ¢y does not pass through any node
from X. Now it remains to prove Theorem [3| under the assumption that there is no
node Bj € £ such that the condition i') holds.

Indeed, this means that any polynomial p € II, vanishing on XU {B;,B>,}
vanishes identically on {y. In view of Lemma 5] we may choose a such polynomial p
from the linear span of four linearly independent curves of the hypothesis. Then we
get that p € I, p|€0 = 0. Thus we have p = {yq, where g € IT;_;. Now, in view of
ii") we readily deduce that the curve ¢ of degree < k — 1 passes through all the nodes
of X. Thus the proof of Theorem is completed in view of Lemmal(7]

Now we may assume that we have three collinear nodes By,B,,B3 ¢ X,
satisfying the conditions i') and if’).

Next, as in the previous case, we get a curve of degree k, denoted by ¢, which
has no multiple component and passes through all the nodes of X' := XU{B1,B>,B3}.
Then, by using Proposition [6] we extend the set X till a maximal n-independent set
X" =X'UA C o. Note that |A|=2 in this case.

Then, as in the previous case, we get a curve Oy of degree k different from
o, passing through all the nodes of the set X and two nodes of A. Now observe
that the polynomial cply € I;; vanishes on the maximal n = (k 4 1)-independent
set X" C o. Therefore we have that cpfy = o¢ where ¢ € I1;. Since oy and o are
different so are also ¢y and ¢. Thus £y is a component of o, i.e., ¢ = {yr, where
r € I;_1. Now, in view of above condition ii'), the line £y does not pass through any
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node of X. Therefore, the curve r of degree k — 1 passes through all the nodes of X.
Thus the proof of Theorem is completed in view of Lemma(7] O

An Application to the Gasca-Maeztu Conjecture. Recall that a node A € X
uses a line ¢ means that ¢ is a factor of the fundamental polynomial p = pj,
i.e., p = {r for some r € I,,_;.

A GC,-setin the plane is an n-poised set of nodes, where the fundamental poly-
nomial of each node is a product of n linear factors. The Gasca—Maeztu conjecture
states that any GC,,-set possesses a subset of n+ 1 collinear nodes.

It was proved in [8]], that any line passing through exactly 2 nodes of a
GC,-set X can be used at most by one node from X.

It was proved in [7] that any used line passing through exactly 3 nodes of a
GC,-set X can be used either by exactly one or three nodes from X.

Below we consider the case of lines passing through exactly 4 nodes.

Corollary . Let X be an n-poised set of nodes and ¢ be a line, which
passes through exactly 4 nodes. Suppose 0 is used by at least four nodes from X.
Then it is used by exactly six nodes from X. Moreover, if it is used by six nodes, then
they form a 2-poised set. Furthermore, in the latter case, if X is a GC, set, then the
six nodes form a GCy set.

Proof. Assume that /NX = {Ay,...,A4} =: A. Assume also that the four
nodes in B := {By,...,Bs} € X use the line ¢, that is,

pp, ="Lqi, i=1,...,4, where q; € IT, ;.

The polynomials g1, .. .,q4 vanish at N — 8 nodes of the set X' := X\ (AU B).
Hence through these N — 8 = d(n,n —3) 42 nodes pass four linearly independent
curves of degree n — 1. By Theorem 3] there exists a maximal curve u of degree n—3
passing through N — 10 nodes of X’ and the remaining two nodes denoted by C;,C,
are outside of it. Now, according to Proposition 5] the nodes C;,C; use u :

pe, = uri, ri€ll3, i=1,2.

These polynomials r; have to vanish at the four nodes of A C ¢. Hence

qi ={B;, i = 1,2, with ; € I,. Therefore, the nodes C;,C; use the line ¢ :

P, = B, i=1,2.
Hence, if four nodes in B C X use the line ¢, then there exist two more nodes
C1,C, € X using it and all the nodes of Y := X\ (AUBU{C;,C,}) lie in a maximal
curve i of degreen—3: Y C u.

Next, let us show that there is no seventh node using ¢. Assume by way of
contradiction that except of the six nodes in 8 := {Bj,...,B4,C;,C,}, there is a
seventh node D using ¢. Of course we have that D € Y.

Then we have that four nodes B;, B, B3 and D are using ¢, therefore, as it was
proved above, there exist two more nodes E1, E» € X (which may coincide or not with
By or C1,C,) using it and all the nodes of Y := X\ (AU{By,B,,B3,D,E,E>}) lie in
a maximal curve u’ of degree n — 3. We have also that

pp=M4q, ¢ €Tl (6)

Now, notice that both the curves u and u’ pass through all the nodes of the set

Z:=X\(AUBU{C,C2,D,E,E,,}) with |Z|> N —13.



100 H. A. HAKOPIAN, H. M. KLOYAN

Then, we get from Theorem |l|with k =n—4, that N — 13 =d(n,n —4)+2
nodes determine the curve of degree n — 3 passing through them uniquely. Thus u
and ' coincide. Therefore, in view of Y C u and (6)), p}, vanishes at all the nodes of
Y, which is a contradiction since D € Y.

Now let us verify the last “moreover” statement. Suppose the six nodes in
8 C X use the line /. Then, as we obtained earlier, the nodes Y := X\ (AUB U
{C1,C,}) are located in a maximal curve u of degree n — 3. Therefore, the funda-
mental polynomial of each A € S uses i : p} = Uga, where g4 € I1,. Itis easily seen

that g4 is a 2-fundamental polynomial of A € §. O
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N W Suunesyy, N UL LLA3UL

n-TLUW SULAGNF33LENMNY. TLALNN NSULATNUSCIULUL UNEGrh
SUMYONFESAFLLENP QUENTTYTLAFG8TL JEMUAGM3UL

Yhgnp X-p hwppnipjud Yypw z-wiluu hwignygibph pugqdnipgnd L,
wyuhOpl’ jmpupwibsjnip hwbignyg mbh 7 wuphdwdh pnbnudtinpuy pugquiubnung:
Gopwnptibp, np [X|=(n+1)+n+--+(n—k+4)+2 03 <k <n—1:nnpudmu
wyugnigmu Lop, np Jupnn Gb (hdty k-hg thnpp ud hwjuuwp wugphdwibh
wikiwounpp 4 gdnpt wiwfu Ynpbp, npnop wogbmyd G X-h pnpnp hwbgnygob-
poy: Ukip yqrujhu Gip wyb ntwph phmpwghpp, tpp Jw wjnwhuh hop 4 Ynp:
Wik, dbbp wuyyugnignid Gap, np wyn nhiypnid X puquingeyniid nbp gwg hungpnidy
Jupmgudp pnnp hwbignyghbipp, pugh tpiynwhg, quplubino Gb & — 2 wuph-
SGwih (Jwpupdwy) Ynph: dbpenid Gwupw-Vwtiqenih Jupudh hwidwp pbipynod
L vh Jupunp Yhpwongaynib:



