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I n f o r m a t i c s
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We obtain lower bounds for the complexity of linearized coverings
for some sets of special solutions of the equation
x1x2x3 + x2x3x4 + ··· + x3nx1x2 + x1x3x5 + x4x6x8 + ··· + x3n−2x3nx2 = b
over an arbitrary finite field.
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Introduction. Throughout this paper Fq stands for a finite field with q elements
[1] (q is a power of a prime number), and Fn

q for an n-dimensional linear space over
Fq: Fn

q ≡ {α = (α1,α2, . . . ,αn)|αi ∈ Fq, i = 1,2, . . . ,n}. If L is a linear subspace in
Fn

q and α ∈ Fn
q , then the set α + L = {α + x|x ∈ L} is a coset (or translate) of the

subspace L and dim(α +L) coincides with dimL. An equivalent definition: a subset
H ⊆ Fn

q is a coset if whenever h1,h2, . . . ,hm are in H, so is any affine combination

of them, i.e.
m

∑
i=1

λihi ∈ H for any λ1,λ2, . . . ,λm in Fq such that
m

∑
i=1

λi = 1. It can be

readily verified that any m-dimensional coset in Fn
q can be represented as a set of

solutions of a certain system of linear equations over Fq of rank n−m and vice versa.
Let H be an m-dimensional coset in Fn

q . We identify H with a
(qm×n)-dimensional matrix, whose rows coincide with vectors from H. Obviously,
any affine combination of rows of H is also a row of this matrix, and any permutation
of rows of the matrix H does not change the properties of the coset. The matrix H
has the following basic properties:

(i) Any column in H either consists of qm copies of the same element of
Fq (such columns are referred to as constant) or each element of Fq occurs in the
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column exactly qm−1 times. Indeed, H is the set of solutions of a certain system of lin-
ear equations over Fq of rankn − m over unknowns x1,x2, . . . ,xn. If the
column that corresponds to xi is a constant one, we add an equation xi = β , β ∈ Fq,
to the original linear system. Obviously, the new system is of rank n−m+1 and has
exactly qm−1 solutions, which coincide with those rows in H with i-th coordinate
equal to β . The matrix formed by these rows will be denoted by Hβ . Each Hβ is
a (m− 1)-dimensional coset. Applying an appropriate permutation of rows in H,
which does not change the coset, one can rearrange the rows in such an order that
all rows in each Hβ follow each other in H. All matrices Hβ for different β ∈ Fq are
translates of the same linear (m−1)-dimensional subspace in Fn

q , and thus, translates
of each other.

(ii) Let n = n1 + n2 and the first n1 columns of the matrix H form a
submatrix H1, and the remaining n2 columns form a submatrix H2. We denote this by
H = H1|H2. Rows in each H i form a coset in Fni

q and dimH i ≤ dimH. It is clear that
H ⊆ H1×H2 and dimH ≤ dimH1 +dimH2.

D e f i n i t i o n . Let M be a subset in Fn
q and H1,H2, . . . ,Hm ⊆M be cosets

of linear subspaces in Fn
q . If M =

m⋃
i=1

Hi, then we say that {H1,H2, . . . ,Hm} is a

linearized covering of M of complexity (or length) m. The linearized covering of M
with minimal length is the shortest linearized covering of M.

The problem of minimal covering of a set of solutions of a polynomial equation
over a finite field by cosets of linear subspaces was first investigated in [2, 3] for the
simple field F2, in which the theory of disjunctive normal forms (DNF) over linear
functions (linearized DNF) was constructed. This is a natural generalization of the
theory of ordinary DNF, adequate to the problem of solving systems of nonlinear
Boolean equations. In the new mathematical model a transition was made from the
representation of Boolean functions by covering their carriers with n-dimensional
unit cube intervals to coverings using cosets of linear subspaces of the finite field F2n ,
which, as a linear space, is isomorphic to the set of n-dimensional unit cube. The new
model naturally summarizes the model of the ordinary DNF and in the framework
of the new theory, significant progress was obtained in the minimization problem
of Boolean functions, which is fundamentally unattainable in the framework of the
theory of ordinary DNF. For example, for Boolean functions that can be represented
as quadratic polynomials over F2, the members of the minimal covering were written
out in an explicit analytic form [4].

It was realized that the representation of functions by covering with cosets of
linear subspaces can be transferred to the case of an arbitrary finite field. Such a
representation is very useful in solving systems of equations over a finite field, as
well as a number of problems. Generally speaking, coverings with cosets are a very
convenient and efficient way to enumerate solutions of both single equations and
systems of equations in finite fields.

Some metric characteristics of the linearized coverings of subsets of a finite
field were investigated in [5, 6]. The problem of a linearized covering of symmetric
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subsets of a finite field was solved in [7], and other results on this topic can be found
in [4, 8–14].

Main Theorem. For a given b ∈ Fq and for n≥ 1 consider an equation

x1x2x3 + x2x3x4 + · · ·+ x3nx1x2 + x1x3x5 + x4x6x8 + · · ·+
+x3n−2x3nx2 = b

(1)

over Fq. We denote by M the set of solutions of (1). It is clear that M ⊆ F3n
q .

We rewrite Eq. (1) in the following form:
(x1 + x4)(x2 + x5)x3 +(x4 + x7)(x5 + x8)x6 + · · ·+

+(x3n−2 + x1)(x3n−1 + x2)x3n = b.
(2)

If n≡ 0(mod2) or q≡ 0(mod2), then

x3n−2 + x1 =
n−1

∑
i=1

(−1)i−1(x3i−2 + x3i+1),

and

x3n−1 + x2 =
n−1

∑
i=1

(−1)i−1(x3i−1 + x3i+2),

and Eq. (2) can be rewritten in the form

(x1 + x4)(x2 + x5)x3 +(x4 + x7)(x5 + x8)x6+

+ · · ·+(x3n−5 + x3n−2)(x3n−4 + x3n−1)x3(n−1)+ (3)

+

[
n−1

∑
i=1

(−1)i−1(x3i−2 + x3i+1)

][
n−1

∑
i=1

(−1)i−1(x3i−1 + x3i+2)

]
x3n = b.

For any vector α = (α1,α2, . . . ,α3n) ∈ Fq3n , when n ≡ 1(mod2) and
q≡ 1(mod2), we construct a new vector

α̃ = ((α1 +α4)(α2 +α5),(α4 +α7)(α5 +α8), . . . ,(α3n−2 +α1)(α3n−1 +α2)) ∈ Fn
q ,

and when n≡ 0(mod2) or q≡ 0(mod2), we construct a vector

α̃ = ((α1 +α4)(α2 +α5),(α4 +α7)(α5 +α8), . . . ,

(α3n−5 +α3n−2)(α3n−4 +α3n−1)) ∈ Fn−1
q .

Further, everywhere z(γ) denotes the number of zero coordinates of the vector
γ = (γ1,γ2, . . . ,γm) ∈ Fqm . Moreover, for any s ∈ {0,1, . . . ,n} we have the set

Ms ≡ {α = (α1,α2, . . . ,α3n) ∈M |z(α̃) = s}.
It should be noted that for n ≡ 0(mod2) or q ≡ 0(mod2) the set Mn does not exist.
It is clear that Ms∩Mt = /0⇐⇒ s 6= t and

M =
⋃
s

Ms.

We denote by Eq(n,s) the minimal complexity of the linearized covering of
the set Ms, and by Eq(n) we denote the complexity of the shortest covering of M by
cosets that are entirely contained in one of the sets Ms, s = 0,1, . . . ,n.

Our goal is to evaluate the values of Eq(n,s) and Eq(n). The upper bounds and
the case of n≡ 1(mod2) and q≡ 1(mod2) were obtained in [15].
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T h e o r e m . When n≡ 0(mod 2) or q≡ 0(mod 2), then

Eq(n,s)≥



Cs
n−1(q−1)2(n−s−1)

(
2− 1

q

)s

, i f 0≤ s < n−1 and b 6= 0,

1
q

Cs
n−1(q−1)2(n−s−1)

(
2− 1

q

)s

, i f 0≤ s < n−1 and b = 0,(
1− 1

q

)2[(
2− 1

q

)s

−2
(

1− 1
q

)s

+
(−1)s

qs

]
,

i f s = n−1 and b 6= 0,

1
q

(
3− 3

q
+

1
q2

)s(
2− 1

q

)2

+2
(

1− 1
q

)s+1

−(
1− 1

q

)3(
−1

q

)s

, i f s = n−1 and b = 0.

Eq(n)≥


(q−1)2(n−1)+o(q2(n−1)), i f b 6= 0,
1
q
(q−1)2(n−1)+o(q2(n−1)−1), i f b = 0.

P r o o f . Let n≡ 0(mod2) or q≡ 0(mod2).
For vectors α = (α1,α2, . . . ,αn−1), β = (β1,β2, . . . ,βn−1) ∈ Fn−1

q the product
α ·β is defined by the equality α ·β = (α1β1,α2β2, . . . ,αn−1βn−1). It is easy to verify
that for a fixed vector γ ∈ Fn−1

q the number of ordered pairs (α,β ) such that α,β ∈
Fn−1

q and α ·β = γ is equal to (2q−1)z(γ)(q−1)n−1−z(γ). Hence, if the vectors α,β ∈

Fn−1
q satisfy the equalities α · β = γ and

(
n−1

∑
i=1

(−1)i−1
αi

)(
n−1

∑
i=1

(−1)i−1
βi

)
= ω ,

where γ ∈ Fn−1
q and ω ∈ Fq, then we say that the vector pair (α,β ) generates a

vector (γ,ω) ∈ Fn
q , and this fact is fixed by writing (α,β )→ (γ,ω).

It was constructed in [15] a system of cosets covering the set Ms for the Eq. (3).
Cosets are represented by systems of linear equations over the field Fq. The set Ms,
where 0≤ s≤ n−1, is covered by the sets of the solutions of the following systems
of linear equations:

x3i−2 + x3i+1 = αi, i = 1,2, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = 1,2, . . . ,n−1,
γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b,

(4)

where the vector pair (α,β ) generates a vector

(γ1,γ2, . . . ,γn−1,ω) 6= (0,0, . . . ,0,0) ∈ Fn
q and z(αβ ) = z(γ) = s.

If s = n− 1 and b = 0 in Eq. (3), then the solution sets of systems (4) are
supplemented by the solution sets of the following systems:{

x3i−2 + x3i+1 = αi, i = 1,2, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = 1,2, . . . ,n−1,

(5)

where the vector pair (α,β ) generates a vector (0,0, . . . ,0,0) ∈ Fn
q .
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It is obvious that for different vector pairs (α,β ) the sets of solutions of the
above constructed systems of equations lie in Ms, are pairwise disjoint and the union
of all these sets coincides with Ms and so it is a disjoint covering of this set.

In [15] it was also counted the values of the |Ms| and |M|:
|Ms|=Cs

n−1(q−1)2(n−1−s)(2q−1)sqn+1, if 0≤ s < n−1,
|Mn−1|= (q−1)2 · [(2q−1)n−1−2(q−1)n−1 +(−1)n−1]q−2qn+1, if b 6= 0,
|Mn−1|= (q−1)2 · [(2q−1)n−1−2(q−1)n−1 +(−1)n−1]q−2qn+1+

+[(2q−1)n +2(q−1)n+1 +(−1)n(q−1)2]q−2qn+2, if b = 0,
|M|= [q2n− (2q−1)n−2(q−1)n+1 +(−1)n−1(q−1)2]qn−1, if b 6= 0,
|M|= [q2n +(q−1)(2q−1)n +2(q−1)n+2 +(−1)n(q−1)3]qn−1, if b = 0.

Now we suppose that for i= 1,2, . . . ,k the vectors α i = (α i
1,α

i
2, . . . ,α

i
n) belong

to Fn
q and their product is defined by the equality

α
1
α

2 · · ·αk = (α1
1 α

2
1 · · ·αk

1 ,α
1
2 α

2
2 · · ·αk

2 , . . . ,α
1
n α

2
n · · ·αk

n).

Then the following result was proved in [9]:
L e m m a 1. Suppose that the coset H consists of vectors of the form

(α1,α2, . . . ,αk) ∈ Fkn
q such that α i = (α i

1,α
i
2, . . . ,α

i
n) ∈ Fn

q for all i = 1,2, . . . ,k,
and z(α1α2 · · ·αk) = s, 0≤ s≤ n. Then dimH ≤ (k−1)s.

Now suppose that N(α,β ) denotes the cosets corresponding to the system (4)
or (5) for the vector pair (α,β ) = (α1,α2, . . . ,αn−1,β1,β2, . . . ,βn−1) ∈ F2(n−1)

q .
L e m m a 2. Let G be a coset in F3n

q ∩Ms. Then

dimG≤
{

s+n+1, if b 6= 0,
s+n+2, if b = 0,

where b is the right-hand side of Eq. (3).
P r o o f . A coset G can be represented as

G =
⋃

z(αβ )=s

(G∩N(α,β )),

because G⊆Ms.
Let H = {(α,β )|G∩N(α,β ) 6= /0} and pairs (α1,β 1),(α2,β 2), . . . ,(αm,β m)

belong to the set H. For elements λ1,λ2, . . . ,λm ∈ Fq such that
m

∑
j=1

λ j = 1 consider

the sum
λ1ϕ1 +λ2ϕ2 + · · ·+λmϕm ≡ ϕ,

where ϕ j ∈ G∩N(α j,β j), j = 1,2, . . . ,m. The vectors ϕ1,ϕ2, . . . ,ϕm belong to G
and G is a coset, therefore ϕ ∈ G. It is clear that for all i = 1,2, . . . ,n−1, the sum of
the (3i− 2)-th and (3i+ 1)-th coordinates of the vectors ϕ1,ϕ2, . . . ,ϕm respectively
is α1

i ,α
2
i , . . . ,α

m
i (system (4) or (5)), and the sum of the (3i− 1)-th and (3i+ 2)-th

coordinates of the same vectors are respectively β 1
i ,β

2
i , . . . ,β

m
i . Consequently, the

sum of the (3i− 2)-th and (3i + 1)-th coordinates of the vector ϕ is equal to
λ1α1

i + λ2α2
i + · · · + λmαm

i , and the sum of the (3i − 1)-th and (3i + 2)-th
coordinate of the same vector is equal to λ1β 1

i +λ2β 2
i + · · ·+λmβ m

i . Hence,
ϕ ∈ N(λ1α

1 +λ2α
2 + · · ·+λmα

m,λ1β
1 +λ2β

2 + · · ·+λmβ
m).



124 V. P. GABRIELYAN

Therefore,
ϕ ∈ G∩N(λ1α

1 +λ2α
2 + · · ·+λmα

m,λ1β
1 +λ2β

2 + · · ·+λmβ
m)

and
(λ1α

1 +λ2α
2 + · · ·+λm α

m,λ1β
1 +λ2β

2 + · · ·+λmβ
m) ∈ H.

That is H is a coset and satisfies the conditions of Lemma 1 for k = 2. Finally we
have that dimH ≤ s, i. e. |H| ≤ qs.

Next, consider a matrix of the coset G. Columns of the matrix G with numbers
of multiples of 3 form coset G1, and the remaining columns coset G2. For each pair
(α,β ) ∈ H there are rows in the matrix G2 that satisfy a linear system of equations{

x3i−2 + x3i+1 = αi, i = 1,2, . . . ,n−1,
x3i−1 + x3i+2 = βi, i = 1,2, . . . ,n−1,

(6)

and the corresponding rows in G1 satisfy the equation
γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b,

where (α,β )→ (γ,ω). The number of solutions of the system (6) in F2n
q is equal to

q2n−2(n−1) = q2, and the number of systems (6) does not exceed |H| ≤ qs.
Consequently, |G2| ≤ qs · q2 = qs+2 and dimG2 ≤ s + 2. It is clear that
dimG1 ≤ n. Thus dimG≤ dimG1 +dimG2 ≤ s+n+2.

When b 6= 0, the vector (0,0, . . . ,0)∈ Fn
q does not satisfy equations of the form

γ1x3 + · · ·+ γn−1x3(n−1)+ωx3n = b. Hence, for b 6= 0 we have dimG1 ≤ n− 1 and
dimG≤ dimG1 +dimG2 ≤ n−1+ s+2 = s+n+1. �

Obviously, if G is a coset in Ms, then Lq(n,s) ≥
|Ms|

qmaxdimG , and therefore for

0≤ s < n−1 we have the following:

Eq(n,s)≥
Cs

n−1(q−1)2(n−1−s)(2q−1)sqn+1

qs+n+1 =Cs
n−1(q−1)2(n−1−s)

(
2− 1

q

)s

if b 6= 0, and

Eq(n,s)≥
1
q

Cs
n−1(q−1)2(n−1−s)

(
2− 1

q

)s

if b = 0. And for s = n−1 we have that

Eq(n,s)≥
(q−1)2 · [(2q−1)n−1−2(q−1)n−1 +(−1)n−1]q−2qn+1

q2n =

=

(
1− 1

q

)2
[(

2− 1
q

)n−1

−2
(

1− 1
q

)n−1

+
(−1)n−1

qn−1

]
when b 6= 0, and

Eq(n,s)≥
(q−1)2 · [(2q−1)n−1−2(q−1)n−1 +(−1)n−1]q−2qn+1

q2n+1 +

+
[(2q−1)n +2(q−1)n+1 +(−1)n(q−1)2]qn

q2n+1 =

=
1
q

(
3− 3

q
+

1
q2

)(
2− 1

q

)n−1

+2
(

1− 1
q

)n+2

−
(

1− 1
q

)3(
−1

q

)n−1

if b = 0.
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It is also clear that the length of the covering of the set M of all solutions of
equation (3) with cosets from the sets Ms, s = 0,1, . . . ,n− 1, satisfies the following
inequalities:

Eq(n)≥
n−2

∑
s=0

Cs
n−1(q−1)2(n−1−s)(2q−1)sqn+1

qs+n+1 +

+
(q−1)2 · [(2q−1)n−1−2(q−1)n−1 +(−1)n−1]qn−1

q2n =

=

[
(q−1)2+

(
2−1

q

)]n−1

−1
q

(
2−1

q

)n−1

−2
(

1−1
q

)n+1

+

+

(
−1

q

)n−1(
1−1

q

)2

= (q−1)2(n−1)+o
(

q2(n−1)
)

if b 6= 0, and

Eq(n)≥
n−2

∑
s=0

Cs
n−1(q−1)2(n−1−s)(2q−1)sqn+1

qs+n+2 +

+
(q−1)2 · [(2q−1)n−1−2(q−1)n−1 +(−1)n−1]qn−1

q2n+1 =

=
1
q
(q−1)2(n−1)+o

(
q2(n−1)−1

)
if b = 0. �
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