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Introduction. Many problems of discrete mathematics, including problems,
which are traditionally considered to be complex, lead to the solutions of the systems
of Boolean equations of the form{

fi (x1, . . . ,xn) = 1,
i = 1, . . . , l

(1)

or to the revealing of those conditions, under which the system (1) has a solution.
In the general problem of realizing whether the system (l) has a solution or not is
NP-complete [1]. Therefore, it is often necessary to consider special classes of the
systems of equations, using their specificity, or explore a number of solutions in the
“typical" case.

Some Necessary Definitions. Let {M(n)}∞

n=1 be a collection of sets such that
|M(n)|−−−→n→∞∞

(
|M| is the cardinality of the set M

)
, and Ms(n) be the subset of all

elements of M(n), which have a property S. We say that almost all elements of the
set M(n) have a property S, if

∣∣MS(n)
∣∣/∣∣M(n)

∣∣−−−→n→∞
∞.

Lets denote by Sn,l the set of all systems of the form (1), where fi(x1, . . . ,xn),
i = 1, . . . , l, are pairwise different Boolean functions of variables x1,x2, . . . ,xn. It is
easy to see that |Sn,l|=Cl

22n .
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Let B = {0,1}, Bn = {α̃/α̃ = (α1,α2, . . . ,αn), αi ∈ B, 1≤ i≤ n}. The
vector α̃i = (α1,α2, . . . ,αn) ∈ Bn is called a solution of (1), if{

fi(α1,α2, . . . ,αn) = 1,
i = 1, . . . , l.

We denote by t(S) the number of solutions of the system S. It was found
in [2, 3] asymptotics of the number of the solutions t(S) for the almost all systems
S from Sn,l and it is done for the whole range of parameter l as n→ ∞. The paper
[4] considers a special class of equation systems, where it is found the asyptotics
behavior of the number of solutions.

In this work we consider a class of systems of equations with determinable
partial (not everywhere defined) Boolean functions. We will give the asymptotic
behavior of the number of solutions in a “typical" case.

A partial Boolean function at α̃ = (α1,α2, . . . ,αn) ∈ Bn is either not defined
or takes values 0 or 1.. Let Q(n) denote the set of all partial Boolean functions
depending on variables x1,x2, . . . ,xn. Obviously, |Q(n)| = 32n

. Let R(n, l) denote
the set of systems of l equations of the form (1), where fi (x1, . . . ,xn) , i = 1, . . . , l,
are pairwise different partial Boolean functions of variables x1,x2, . . . ,xn ( fi 6= f j, if
i 6= j condition holds). It is easy to see that |Rn,l|=Cl

32n .
The vector α̃ = (α1,α2, . . . ,αn) ∈ Bn is called a solution of (1), if{

fi(α1,α2, . . . ,αn) 6= 0,
i = 1, . . . , l,

and at least for one of the functions fi(x1, . . . ,xn), i = 1, . . . , l, we have
fi(α1,α2, . . . ,αn) = 1. Namely, one can define a partial function not defined
at α̃ to by 1.

For the numbers of solutions t(S) of almost all the systems S of R(n, l) the
following statement is true (here and further f (n)∼ g(n), if f (n)/g(n)→ 1 as n→∞,
f (n) = o(g(n)), if f (n)/g(n)→ 0 as n→ ∞. Everywhere below log stands for log2.

T h e o r e m .
1. If n− `(log3− 1)→ ∞ as n→ ∞, then for almost all the systems S of

R(n, l) we have t(S)∼ 2n(2l−1)3−l .
2. I f n− `(log3− 1)→ −∞ as n→ ∞, then almost all the systems S o f

R(n, l) have no solutions.
3. If n− `(log3−1) is restricted as n→ ∞, then for almost all the systems of

R(n, l,m) the number of solutions t(S) has upper bound ϕ(n) , satisfying the condition
ϕ(n)→ ∞ as n→ ∞.

P r o o f . The following inequalities are known and easy to check:
a) Chebyshev’s first inequality. Let a random variable ξ ≥ 0 have mathematical

expectation Mξ . Then for any t > 0 we have P(ξ ≥ t)≤Mξ/t [5].
b) Chebyshev’s second inequality. Let a random variable ξ has a dispersion

Dξ . Then for any t > 0 one has P(|ξ −Mξ | ≥ t)≤ Dξ/t2 [5].
c) For any x > 1 we have (1−1/x)x < e−1.
d) For any natural n and 1≤ m≤ n it holds Cm

n < (en/m)m.
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e) Let b(k;n, p) = Ck
n pkqn−k, where 0 < p, q < 1, p + q = 1 and r > np.

Then
n−r

∑
j=0

b(r + j;n, p) < b(r;n, p)(r + 1)q/(r + 1− (n + 1)p) (the estimate of the

“tail" of the binomial distribution [5]).
Let S be a system from R(n, l). Arranging the equations in S, we obtain l!

systems of equations. Thus, from the set R(n, l) we obtain a new set R′(n, l) of ordered
systems. It’s evident that

|R′(n, l)|= |R(n, l)|l!. (2)

Suppose that almost all the systems of R′(n, l) have a property E, which is
invariant against the rearrangements of the equations. It’s easy to see that almost all
the systems of R(n, l)will also have the property E. Thus to proof of the Theorem
it will be enough to consider the set R′(n, l) instead of R(n, l). Next, we denote by
R′′(n, l) the extension of R′(n, l), where the systems from R′(n, l) can have the same
equations. It is easy to see that

|R”(n, l)|= 3l2n
. (3)

From (2), (3) and d) we obtain

|R′(n, l)|
|R′′ (n, l)|

=
l!Cl

32n

3l2n → 1,

when l2 = o
(
32n)

(n→ ∞) . Thus, if l2 = o
(
32n)

, then any assertion for the almost
all systems of R′′(n, l) is true also for almost all the systems of R′(n, l).

We consider R′′(n, l) as a space of events, where every event S ∈ R′′(n, l) holds
with the probability 1/|R′′(n, l)|= 3−l2n

. Consider the random value ξS(α̃), which is
connected with S ∈ R′(n, l) as follows:

ξS(α̃) = 1, if α̃ is the solution of the system S, and ξS(α̃) = 0 otherwise.
From the definition it follows that the number of the system S ∈ R′(n, l),

for which α̃ is a solution, is equal to (2l−1)3l(2n−1). From this and (3) it follows that
P(ξS(α̃) = 1) = (2l − 1)3−l. Let p(l) = P(ξS(α̃) = 1) = (2l − 1)3−l,
q(l) = P(ξS(α̃) = 0) = 1− p(l) = 1− (2l−1)3−l . For the mathematical expectation
M ξS(α̃) and dispersions DξS(α̃) of the random variable ξS(α̃) we get

M ξS(α̃) = p(l) = (2l−1)3−l, DξS(α̃) = p(l)− p2(l) =

= p(l)q(l) = (2l−1)3−l(1− (2l−1)3−l).

Consider another random value v = ∑
α̃∈Bn

ξS(α̃), which is the number of

solutions of the system S. Random value v has a binomial distribution, because

p(v = j) =C j
2n3−l j(1−3−l)2n− j.

Hence, Mv= 2n3−land Dv= 2n3−l
(
1−3−l

)
, where Mv and Dv are the mathematical

expectation and dispersion of the random value v respectively. In fact,

Mv = ∑
α∈Bn

Mξ S(α̃) = 2n p(l) = 2n(2l−1)3−l,

Dv = ∑
α∈Bn

Dξ S(α̃) = 2n p(l)q(l) = 2n(2l−1)3−l
(

1− (2l−1)3−l
)
.
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Let n− `(log3− 1) → ∞ as n → ∞. It means that Mv = 2n(2l − 1)3−l =
= 2n−l(log3−1)(1− 2−l) → ∞ as n → ∞. Using the Chebishev’s inequality b) for
t = Mv/

√
n− l(log3−1), we obtain

P
(|v−Mv| ≥Mv√

n− l(log3−1)
≤ (n− l(log3−1))(1− (2l−1)3−l)

(2n−l(log3−1)(1−2−l))
−−−→n→∞0.

Hence, from the definition of random value v it follows that almost all the systems
of R′′(n, l) have number of solutions which asymptotically equals to Mv. Since
n− ` log3→ ∞ and l2 = o

(
32n)

, almost all the systems of R(n, l) have also number
of solutions, asymptotically equal to Mv = 2n(2l − 1)3−l . The first statement of the
Theorem is proved.

Let n− `(log3−1)−−−→n→∞−∞. Then

Mv = 2n(2l−1)3−l = 2n−l(log3−1)(1−2−l)→ 0 (n→ ∞).

Using Chebishev’s first inequation when t = l, we obtain P(v≥ 1)→ 0 as n→ ∞

and, therefore, P(v = 0)→ 1 as n→ ∞. Hence, it follows that almost all the systems
S of R′′(n, l) have no solution. Therefore, l2 = o

(
32n)

the second statement of the
Theorem is proved. It is easy to see that for greater values of the parameter l the
statement of the Theorem also holds (the number of solutions of the system does not
increase as the number of equation increases).

Now let n− `(log3− 1) is bounded as n→ ∞. Then Mv = 2n(2l − 1)3−l =
2n−l(log3−1)(1−2−l) is also bounded. Using the inequations 5), 4) and 3), we obtain

P(v > r) =
2n−r

∑
i=0

Cr+i
2n ((2l−1)3−l)r+i(1− (2l−1)3−l)2n−r−i ≤

≤Cr
2n
(3−l(2l−1))r(1−3−l(2l−1))2n−r(r+1)(1−3−l(2l−1))

r+1−3−l(2n +1)(2l−1)
≤

≤ (e2n3−lr−1(2l−1))r ≤ (eMv/r)r)−−−→r→∞0,

because Mv is bounded. Putting r = ϕ(n), where ϕ(n) is an arbitrary function ϕ(n),
satisfying the condition ϕ(n) → ∞ as n → ∞, we obtain P(v≤ ϕ(n)) → 1 when
n→ ∞. Therefore, for almost all the systems of R′′(n, l) the third statement of the
Theorem holds. Since n− `(log3−1) is bounded, we get l2 = o

(
32n)

and therefore
for almost all the systems of R(n, l) it holds the third statement of the Theorem.

Theorem is completely proved.
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ORO
ELI MASNAKI BULYAN FUNKCIANEROV HAVASARUMNERI
HAMAKARGERI LU
UMNERI QANAKI SAHMANAYIN

GNAHATAKANNER

Ays a�xatanqum hetazotvum en oro�eli masnaki (o� amenureq
oro�va�) bulyan funkcianeric kazmva� havasarumneri hamakarger:
Trvum en havasarumneri hamakargeri lu�umneri ayd qanaki
sahmanayin gnahatakanner \tipik" depqum (havasarumneri qanaki
�o�oxman ambo�j tiruy�i hamar):


