THE REPRESENTATION OF FUNCTIONS BY WALSH DOUBLE SYSTEM IN WEIGHTED $L_{\mu}^{p}[0,1)^{2}$-SPACES

L. S. SIMONYAN *

Chair of Higher Mathematics, Faculty of Physics, YSU, Armenia

In this work we construct a weighted space $L_{\mu}^{p}, p \geq 1$, in which functions with the norm of that space are presented by Walsh double series, which coefficients are monotone in all ways.

MSC2010: 42C20.
Keywords: weighted space, Walsh double system, weight function.

Introduction. Let $|E|$ be the Lebesgue measure of a measurable set $E \subseteq[0,1)$ (or $E \subseteq[0,1) \times[0,1)=[0,1)^{2}$), and let $L^{p}[0,1), p \geq 1$, be the class of all those measurable functions $f(x)$ on $[0,1)$ such that

$$
\begin{equation*}
\int_{0}^{1}|f(x)|^{p} d x<\infty . \tag{1}
\end{equation*}
$$

Let $\mu(x, y)$ be a positive Lebesgue-measurable function (weight function) defined on $[0,1)^{2}$. We denote by $L_{\mu}^{p}[0,1)^{2}$ the space of all measurable functions on $[0,1)^{2}$ with the norm

$$
\begin{equation*}
\|\cdot\|_{L_{\mu}^{p}}=\left(\int_{0}^{1} \int_{0}^{1}|\cdot|^{p} \mu(x, y) d x d y\right)^{1 / p}<\infty: p \in[1, \infty) \tag{2}
\end{equation*}
$$

In the sequel we will accept the terms "measure" and "measurable" in the sense of Lebesgue.

Definition 1. The nonzero members of a double sequence $\left\{b_{k, s}\right\}_{k, s=0}^{\infty}$ are said to be in a monotonically decreasing order over all rays, if $b_{k_{2}, s_{2}}<b_{k_{1}, s_{1}}$ when $k_{2} \geq k_{1}, s_{2} \geq s_{1}, k_{2}+s_{2}>k_{1}+s_{1}\left(b_{k_{i}, s_{i}} \neq 0, i=1,2\right)$.

[^0]Let $f(x, y) \in L^{p}[0,1)^{2}, p \geq 1$, and let

$$
\begin{equation*}
\sum_{k, s=0}^{\infty} c_{k, s} \varphi_{k}(x) \varphi_{s}(y) \tag{3}
\end{equation*}
$$

be series with double Walsh system.
The spherical and rectangular partial sums of the series (3) will be denoted by $S_{R}(x, y)=\sum_{k^{2}+s^{2} \leq R^{2}} c_{k, s} \varphi_{k}(x) \varphi_{s}(y) \quad$ and $\quad S_{N, M}(x, y)=\sum_{k=0}^{N} \sum_{s=0}^{M} c_{k, s} \varphi_{k}(x) \varphi_{s}(y)$, respectively.

Definition 2. Let $f(x, y) \in L_{\mu}^{p}[0,1)^{2}$. We will say that the series (3) converges to the function $f(x, y)$ in $L_{\mu}^{p}[0,1)^{2}$-norm with respect to spheres, if

$$
\lim _{R \rightarrow \infty}\left(\int_{0}^{1} \int_{0}^{1}\left|S_{R}(x, y)-f(x, y)\right|^{p} \mu(x, y) d x d y\right)^{1 / p}=0
$$

The convergence with respect to rectangles is defined in the same way. More general statements of these definitions can be found in [1--12].

Definition 3. A series $\sum_{k, s=0}^{\infty} b_{k, s} \varphi_{k}(x) \varphi_{s}(y)$ is called universal in $L_{\mu}^{p}[0,1)^{2}$ with respect to the subseries, if for every function $f(x, y) \in L_{\mu}^{p}[0,1)^{2}$ there exists a subseries $\sum_{i, j=0}^{\infty} b_{k_{i}, s_{j}} \varphi_{k_{i}}(x) \varphi_{s_{j}}(y)$, which converges to f in $L_{\mu}^{p}[0,1)^{2}$-norm.

In this work we will discuss the existence of Walsh universal double series with respect to the subseries in weighted $L_{\mu}^{p}[0,1)^{2}$-spaces.

Note that different kind of partial sums (e.g. spherical, rectangular, square) behave differently in the concepts of convergence in $L^{p}[0,1)^{2}, p \geq 1$, and convergence almost everywhere. Also, many classical results (for instance, Carleson's [2], Riesz's [13] and Kolmogorov's [14] theorems) cannot be extended from the one-dimensional case to the two-dimensional (see [3, 15], [16]).

In [14] Harris constructed a function $f \in L^{p}[0,1)^{2}$ with $1 \leq p<2$ such that the Fourier-Walsh series of $f(x, y)$ in the Walsh double system diverges almost everywhere and in $L^{p}[0,1)^{2}$-norm with respect to spheres.

Thus for a given function $f(x, y) \in L^{p}[0,1)^{2}$ it is impossible to find a double series in the Walsh double system converging to $f(x, y)$ either in $L^{p}[0,1)^{2}$-norm or almost everywhere with respect to spheres.

In the present work we prove that for any $\varepsilon>0$ there exists a measurable set $E \subset[0,1)^{2}$ with $|E|>1-\varepsilon$ such that for any function $f(x, y) \in L^{p}(E), p \geq 1$, one can find a series $\sum_{k, s=0}^{\infty} b_{k, s} \varphi_{k}(x) \varphi_{s}(y)$ with respect to the Walsh double system, which converges to the function $f(x, y)$ in the $L^{p}(E)$-norm with respect to spheres, that is

$$
\lim _{R \rightarrow \infty} \iint_{E}\left|\sum_{k^{2}+s^{2} \leq R^{2}} b_{k, s} \varphi_{k}(x) \varphi_{s}(y)-f(x, y)\right|^{p} d x d y=0
$$

The following theorem is true:
Theorem 1. $\forall \varepsilon>0$ there exist a set $E \subset[0,1)^{2}$ with $|E|>1-\varepsilon$ and a measurable (weight) function $\mu(x, y): 0<\mu(x, y) \leq 1,(x, y) \in[0,1)^{2}$, with $\mu(x, y)=1$ on E such that for each $p \in[1, \infty)$ and for every function $f(x, y) \in L_{\mu}^{p}[0,1)^{2}$ there exists a series with the following property:

$$
\lim _{R \rightarrow \infty} \int_{0}^{1} \int_{0}^{1}\left|\sum_{k^{2}+s^{2} \leq R^{2}} b_{k, s} \varphi_{k}(x) \varphi_{s}(y)-f(x, y)\right|^{p} \mu(x, y) d x d y=0 .
$$

This stronger theorem follows from Theorem 1:
Theorem 2. For $\forall \varepsilon>0$ there exist a set $E \subset[0,1)^{2},|E|>1-\varepsilon$, a measurable (weight) function $\mu(x, y): 0<\mu(x, y) \leq 1,(x, y) \in[0,1)^{2}$, with $\mu(x, y)=1$ on E, \quad a series of the form $\sum_{k, s=0}^{\infty} d_{k, s} \varphi_{k}(x) \varphi_{s}(y)$, where $\sum_{k, s=0}^{\infty}\left|d_{k, s}\right|^{r}<\infty$ for all $r>2$ and non-zero terms in $\left\{\left|d_{k, s}\right|\right\}_{k, s=0}^{\infty}$ are in the decreasing order over all rays, such that for each $p \in[1, \infty)$ and for every function $f(x, y) \in L_{\mu}^{p}[0,1)^{2}$ one can find numbers $\delta_{k, s}=0$ or 1 such that

$$
\lim _{R \rightarrow \infty} \int_{0}^{1} \int_{0}^{1}\left|\sum_{k^{2}+s^{2} \leq R^{2}} \delta_{k, s} d_{k, s} \varphi_{k}(x) \varphi_{s}(y)-f(x, y)\right|^{p} \mu(x, y) d x d y=0 .
$$

Remark. Observe that one can not claim $\mu(x, y) \equiv 1$ in Theorem 2. It can be easily shown that the assumption of the existence of such universal series $\sum_{k, s=0}^{\infty} c_{k, s} \varphi_{k}(x) \varphi_{s}(y)$ with respect to the subseries for the space $L^{p}[0,1)^{2}, p \geq 1$, simply leads to contradiction. Indeed, if that assumption is true, then for the function $f(x, y)=5 c_{k_{0}, s_{0}} \varphi_{k_{0}}(x) \varphi_{s_{0}}(y)$, where $k_{0}, s_{0}>1$ are any natural numbers and $c_{k_{0}, s_{0}} \neq 0$, one can find numbers $\delta_{k}=0$ or 1 such that

$$
\lim _{m \rightarrow \infty} \int_{0}^{1} \int_{0}^{1}\left|\sum_{k, s=0}^{m} \delta_{k, s} c_{k, s} \varphi_{k}(x) \varphi_{s}(y)-5 c_{k_{0}, s_{0}} \varphi_{k_{0}}(x) \varphi_{s_{0}}(y)\right| d x d y=0
$$

Hence, we will simply get $\delta_{k_{0}, s_{0}}=5>1$.
The Main Lemma. The Walsh system is defined as follows. Let $r(x)$ be a 1-periodic function on $[0,1)$ defined by $r=\chi_{[0,1 / 2)}-\chi_{[1 / 2,1)}$, where $\chi_{E}(x)$ denotes the characteristic function of the set E, that is,

$$
\chi_{E}(x)= \begin{cases}1, & \text { if } x \in E \\ 0, & \text { if } x \notin E\end{cases}
$$

The Rademacher system $R=\left\{r_{n}: n=0,1, \ldots\right\}$ is defined by

$$
\begin{equation*}
r_{n}(x)=r\left(2^{n} x\right) \text { for all } x \in R, n=0,1, \ldots \tag{4}
\end{equation*}
$$

Recall the definition of the Walsh system $\left\{\varphi_{n}\right\}(x)$ in Paley order (see [13]). Define

$$
\begin{equation*}
\varphi_{n}(x)=\prod_{k=0}^{\infty} r_{k}^{n_{k}}(x) \tag{5}
\end{equation*}
$$

where $\sum_{k=0}^{\infty} n_{k} 2^{k}$ is the unique binary expansion of n with $n_{k} 0$ or 1 .
The following lemma, which immediately follows from Lemma 4 from [17], plays a central role in the proof of our Theorem:

Lemma 1. Let $\left\{\varphi_{k}\right\}$ be the Walsh system. Then for each $0<\delta<1$ there exists a measurable positive function $\mu(x, y)$ with $\left|\left\{(x, y) \in[0,1)^{2} ; \mu(x, y)=1\right\}\right|>$ $1-\delta$ such that for any numbers $\varepsilon \in(0,1), N \in \mathbb{N}, p_{0}>1$ and for each function $f \in L^{p_{0}}[0,1)^{2},\|f\|_{p_{0}}>0$, one can find a polynomial $Q(x, y)$ of the form

$$
Q(x, y)=\sum_{k, s=N}^{M} c_{k, s} \varphi_{k}(x) \varphi_{s}(y)
$$

satisfying the following conditions:

1) the nonzero coefficients in $\left\{\left|c_{k, n}\right|, k, n=N, \ldots, M\right\}$ are in decreasing order over all rays;
2) $\sum_{k, n=N}^{M}\left|c_{k, n}\right|^{2+\varepsilon}<\varepsilon ;$
3) $\int_{0}^{1} \int_{0}^{1}|Q(x, y)-f(x, y)|^{p_{0}} \mu(x, y) d x d y<\varepsilon^{p_{0}}$;
4) $\max _{\sqrt{2} N \leq R \leq \sqrt{2} M}\left(\int_{0}^{1} \int_{0}^{1}\left|\sum_{2 N^{2} \leq k^{2}+s^{2} \leq R^{2}} c_{k, s} \varphi_{k}(x) \varphi_{s}(y)\right|^{p} \mu(x, y) d x d y\right)^{1 / p} \leq$ $\leq\left(\left(\int_{0}^{1} \int_{0}^{1}|f(x, y)|^{p} \mu(x, y) d x d y\right)^{1 / p}+\varepsilon\right)$ for all $p \in\left[1, p_{0}\right]$.

Proof of Theorem 2.

Proof. Let $0<\varepsilon<1, p_{n} \nearrow \infty\left(p_{1}>1\right)$ and let

$$
\begin{equation*}
\left\{f_{k}(x, y)\right\}_{k=1}^{\infty} \tag{6}
\end{equation*}
$$

be a sequence of all polynomials in the Walsh system with rational coefficients.
Successively applying Lemma 1, we can find a measurable weight function $\mu(x, y)$, a set $E \subset[0,1)^{2}$ such that

$$
\begin{equation*}
\mu(x, y)=1 \text { on } E,|E|>1-\varepsilon \tag{7}
\end{equation*}
$$

and polynomials

$$
\begin{equation*}
\bar{Q}_{n}(x, y)=\sum_{k, s=m_{n-1}}^{m_{n}-1} b_{k, s}^{(n)} \varphi_{k}(x) \varphi_{s}(y), m_{n} \nearrow \tag{8}
\end{equation*}
$$

which satisfy the following conditions for every $n \geq 1$:

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1}\left|\bar{Q}_{n}(x, y)-f_{n}(x, y)\right|^{p_{n}} \mu(x, y) d x d y \leq 2^{-8 p_{n}(n+1)} . \tag{9}
\end{equation*}
$$

All nonzero members in the sequence $\left\{\left|b_{k, s}^{(n)}\right| k, s \in\left[m_{n-1}, m_{n}\right)\right\}$ are in decreasing order over all rays for any fixed $n \geq 1$ and

$$
\begin{gather*}
\max _{k, s \in\left[m_{n-1}, m_{n}\right)}\left|b_{k, s}^{(n)}\right|<\min _{(k, s) \in s p e c \bar{Q}_{n-1}}\left|b_{k, s}^{(n-1)}\right| \text { for all } n=1,2 \ldots \tag{10}\\
\sum_{k, s=m_{n-1}}^{m_{n}-1}\left|b_{k, s}^{(n)}\right|^{2+2^{-n}}<\frac{1}{2^{8(n+1)}}, n \geq 1, \tag{11}\\
\max _{\sqrt{2} m_{n-1} \leq R<\sqrt{2} m_{n}}\left(\int_{0}^{1} \int_{0}^{1}\left|\sum_{2 m_{n-1}^{2} \leq k^{2}+s^{2} \leq R^{2}} b_{k, s}^{(n)} \varphi_{k}(x) \varphi_{s}(y)\right|^{p} \mu(x, y) d x d y\right)^{1 / p} \leq \tag{12}\\
\leq 2\left(\int_{0}^{1} \int_{0}^{1}\left|f_{n}(x, y)\right|^{p} \mu(x, y) d x d y\right)^{1 / p}+2^{-2 n} \text { for all } p \in\left[1, p_{n}\right]
\end{gather*}
$$

We put

$$
b_{k, s}= \begin{cases}b_{k, s}^{(n)}, & k, s \in\left[m_{n-1}, m_{n}\right), \quad n \geq 1 \tag{13}\\ 0, & \text { in other cases }\end{cases}
$$

Let $f(x, y) \in L_{\mu}^{p}[0,1)^{2}, \forall p \geq 1$. Now assume that the polynomials

$$
\begin{equation*}
\bar{Q}_{l_{j}}(x, y)=\sum_{k, s=m_{l_{j}-1}}^{m_{l_{j}}-1} b_{k, s}^{\left(l_{j}\right)} \varphi_{k}(x) \varphi_{s}(y), \quad 1 \leq j \leq q-1 \tag{14}
\end{equation*}
$$

have been defined satisfying the conditions

$$
\begin{array}{r}
\int_{0}^{1} \int_{0}^{1}\left|f(x, y)-\sum_{j=1}^{q^{\prime}} \bar{Q}_{l_{j}}(x, y)\right|^{p} \mu(x, y) d x d y<2^{-2 q^{\prime}}, \quad 1 \leq q^{\prime} \leq q-1, \\
\max _{\sqrt{2} m_{l_{j}-1} \leq R<\sqrt{2} m_{l_{j}}} \int_{0}^{1} \int_{0}^{1}\left|\sum_{2 m_{l_{j}-1}^{2} \leq k^{2}+s^{2} \leq R^{2}} b_{k, s}^{\left(l_{j}\right)} \varphi_{k}(x) \varphi_{s}(y)\right|^{p} \mu(x, y) d x d y<2^{-l_{j} \cdot p} . \tag{16}
\end{array}
$$

Choose the function $f_{l_{q}}$ from the sequence F (see (6)) such that

$$
\begin{equation*}
\left(\int_{0}^{1} \int_{0}^{1}\left|f_{l_{q}}(x, y)-\left[f(x, y)-\sum_{j=1}^{q-1} \bar{Q}_{l_{j}}(x, y)\right]\right|^{p} \mu(x, y) d x d y\right)^{1 / p}<2^{-2(q+2)} \tag{17}
\end{equation*}
$$

It follows from (15) and (17) that

$$
\begin{equation*}
\left(\int_{0}^{1} \int_{0}^{1}\left|f_{l_{q}}(x, y)\right|^{p} \mu(x, y) d x d y\right)^{1 / p}<2^{-2(q-1)}+2^{-2(q+2)} \tag{18}
\end{equation*}
$$

Taking into account (12) and $(16)-(18)$, we have

$$
\begin{gather*}
\left(\int_{0}^{1} \int_{0}^{1}\left|f(x, y)-\sum_{j=1}^{q} \bar{Q}_{l_{j}}(x, y)\right|^{p} \mu(x, y) d x d y\right)^{1 / p} \leq \\
\left.\leq\left(\int_{0}^{1} \int_{0}^{1}\left|\bar{Q}_{l_{q}}(x, y)-f_{l_{q}}(x, y)\right|^{p} \mu(x, y) d x d y\right)\right)^{1 / p}+ \tag{19}\\
+\left(\int_{0}^{1} \int_{0}^{1} \mid f_{l_{q}}(x, y)-\left[f(x, y)-\left.\sum_{j=1}^{q-1} \bar{Q}_{l_{j}}(x, y)\right|_{\mid} ^{p} \mu(x, y) d x d y\right)\right)^{1 / p} \leq \\
\leq 2^{-8 l_{q}}+2^{-2(q+2)}<2^{-2 q}, \\
\max _{\sqrt{2} m_{l_{q}-1} \leq R<\sqrt{2} m_{l_{q}}} \int_{0}^{1} \int_{0}^{1}\left|\sum_{2 m_{l_{q}-1}^{2} \leq k^{2}+s^{2} \leq R^{2}} b_{k, s}^{\left(l_{q}\right)} \varphi_{k}(x) \varphi_{s}(y)\right|^{p} \mu(x, y) d x d y<2^{-l_{q} \cdot p .} . \tag{20}
\end{gather*}
$$

It is clear that we can define by induction polynomials

$$
\begin{equation*}
\bar{Q}_{l_{q}}(x, y)=\sum_{k, s=m_{l_{q}-1}}^{m_{l_{q}}-1} b_{k, s}^{\left(l_{q}\right)} \varphi_{k}(x) \varphi_{s}(y) \tag{21}
\end{equation*}
$$

satisfying conditions (15) and for all $q \geq 1$. We set

$$
\delta_{k, s}= \begin{cases}1, & k, s \in \bigcup_{q=1}^{\infty}\left[m_{l_{q}-1}, m_{l_{q}}\right) \tag{22}\\ 0, & \text { in other cases }\end{cases}
$$

By (19)-(22) we have

$$
\begin{equation*}
\lim _{R \rightarrow \infty}\left(\int_{0}^{1} \int_{0}^{1}\left|\sum_{0 \leq k^{2}+s^{2} \leq R^{2}} \delta_{k, s} b_{k, s} \varphi_{k}(x) \varphi_{s}(y)-f(x, y)\right|^{p} \mu(x, y) d x d y\right)^{1 / p}=0 \tag{23}
\end{equation*}
$$

i. e. the Theorem 2 is proved.

REFERENCES

1. Arutunyan F.G. On the Representation of Functions by Multiple Series. Dokl. AN Arm. SSR, 64 (1976), 72-76.
2. Carleson L. On Convergence and Growth of Partial Sumas of Fourier Series. Acta Math., 116 (1966), 135-157.
3. Fefferman C. On the Divergence of Multiple Fourier Series. Bull Amer. Math. Soc., 77 : 2 (1971), 191-195.
4. Galoyan L.N., Grigoryan M.G., Kobelyan A.Kh. Convergence of Fourier Series in Classical Systems. Mat. Sb., 206 : 7 (2015), 55-94.
5. Golubov B.I., Efimov A.F., Skvortsov V.A. Walsh Series and Transformations. Theory and Applications. M. (1987) (in Russian).
6. Grigoryan M.G. On the Representation of Functions by Orthogonal Series in Weighted L^{p} Spaces. Studia Math., $134: 3$ (1999), 211-237.
7. Grigoryan M.G. Series in the Classical Systems. Saarbruken, LAP LAMBERT Academic Publishing (2017) (in Russian).
8. Grigoryan M.G., Episkoposyan S.A. On Universal Trigonometric Series in Weighted Spaces $L_{\mu}^{1}[0 ; 2 \pi]$. East Journal on Approxim., $5: 4$ (1999), 483-492.
9. Kolmogorov A.H. Sur Les Fonctions Harmoniques Conjugeeset Les Series de Fourier. Fund. Math., 7 (1925), 23-28.
10. Riesz M. Sur Les Fonctions Conjugees. Math. Zeit, 27 (1927), 214-244.
11. Talalian A.A. On the Universal Series with Respect to Rearrangements. Izv. Akad. Nauk SSSR. Ser. Mat., 24 (1960), 567-604.
12. Walsh J.L. A Closed Set of Normal Orthogonal Functions. Amer. J. Math., 45 (1923), 5-24.
13. Paley R.E.A.C. A Remarkable Set of Orthogonal Functions. Proc. London Math. Soc., 34 (1932), 241-279.
14. Harris D.C. Almost Everywhere Divergence of Multiple Walsh-Fourier Series. American Math. Soc., 101 : 4 (1987).
15. Fefferman C. Multiple Problem for the Ball. Ann. Math., $94: 2$ (1971), 330-336.
16. Getsadze R.D. On Divergence in Measure of General Multiple Orthogonal Furier Series. Dokl. Akad. Nauk SSSR, 306 (1989), 24-25 (in Russian); English Transl.: Soviet Math. Dokl., 39 (1989).
17. Grigoryan M.G., Grigoryan T.M., Simonyan L.S. Convergence of Fourier-Walsh Double Series in Weighted $L_{\mu}^{p}[0 ; 1)^{2}$. Springer Proceedings in Mathematics and Statistics, Springer Nature Switzerland AG, 2 (2019), 109-137.

L. U. UhUnも3Uも

[^0]: * E-mail: lussimonyan@mail.ru

