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In this work we construct a weighted space L, p > 1, in which functions
with the norm of that space are presented by Walsh double series, which
coefficients are monotone in all ways.
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Introduction. Let |E| be the Lebesgue measure of a measurable set E C [0, 1)
(or E C [0,1) x [0,1) = [0,1)?), and let L7[0,1), p > I, be the class of all those
measurable functions f(x) on [0, 1) such that

1
[1r@rrds < (1)
0

Let p(x,y) be a positive Lebesgue-measurable function (weight function)
defined on [0,1)?. We denote by L}[0,1)* the space of all measurable functions
on [0, 1)? with the norm

1/p

11
g = | [ [1racendsay | <e: pelt). @
00

In the sequel we will accept the terms “measure” and “measurable” in the sense
of Lebesgue.

Definition 1. The nonzero members of a double sequence {bkas}zs:o
are said to be in a monotonically decreasing order over all rays, if by, s, < by,
when ky > ki, 5o > s1, ko + 852 > k1 + 51 (bkub‘i #0,i=1,2).
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Let f(x,y) € LP[0,1)?, p > 1, and let

i Cl,s P (X) @5 (y) 3)

k,s=0
be series with double Walsh system.

The spherical and rectangular partial sums of the series (3]) will be denoted by
N M

Sr(x,y) = Y cso(®X)os(y) and  Sym(xy) = Y Y crs@(x)os(y),
k2+s2<R? k=0s=0
respectively.
Definition 2. Let f(x,y) € L;[0,1)%. We will say that the series
converges to the function f(x,y) in Ly [0, 1)2-norm with respect to spheres, if
1 1 1/p
tim | [ [ 160c3) = £(e3) BGeydxay | =0,
00

R—c0

The convergence with respect to rectangles is defined in the same way. More
general statements of these definitions can be found in [[1412].

Definition 3. Aseries Z bie s Qi (x) @y (y) is called universal in L5 [0, 1)?
k,s=0
with respect to the subseries, if for every function f(x,y) € Lj[0,1)? there exists

a subseries Y by, O, (X)Qs, (y), which converges to f in Ly[0,1)*-norm.
i,j=0

In thisj work we will discuss the existence of Walsh universal double series
with respect to the subseries in weighted Lﬁ [0, 1)2-spaces.

Note that different kind of partial sums (e.g. spherical, rectangular, square)
behave differently in the concepts of convergence in L[0,1)2, p > 1, and convergence
almost everywhere. Also, many classical results (for instance, Carleson’s [2], Riesz’s
[13]] and Kolmogorov’s [[14] theorems) cannot be extended from the one-dimensional
case to the two-dimensional (see [3L[15]], [[16]).

In [14] Harris constructed a function f € L?[0,1)? with 1 < p < 2 such that the
Fourier—Walsh series of f(x,y) in the Walsh double system diverges almost
everywhere and in L”[0, 1)?-norm with respect to spheres.

Thus for a given function f(x,y) € L”[0,1)? it is impossible to find a double
series in the Walsh double system converging to f(x,y) either in L”[0, 1)>-norm or
almost everywhere with respect to spheres.

In the present work we prove that for any € > 0 there exists a measurable set
E C [0,1)? with |[E| > 1 — € such that for any function f(x,y) € LP(E), p > 1, one

can find a series Z bi sk (x) @5 (y) with respect to the Walsh double system, which
k,s=0
converges to the function f(x,y) in the L?(E)-norm with respect to spheres, that is

lim / /
R—o0
E

P
bk,s(Pk(x)(PS()’) —f(x,y) dxdy = 0.
k2+s2<R?
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The following theorem is true:

Theorem 1. Ve > 0 there exist a set E C [0,1)? with |E| > 1 — ¢ and
a measurable (weight) function w(x,y) : 0 < u(x,y) < 1,(x,y) € [0,1), with
u(x,y) =1 on E such that for each p € [l,0) and for every function
f(x,y) € Ly[0, 1)2 there exists a series with the following property:

11
lim//
R—so0
00

This stronger theorem follows from Theorem 1:
Theorem 2. For Ye > 0 there exist a set E C [0,1)%, |[E| > 1—¢,
<1

Y beso(x)os(y) — f(x,y)| u(x,y)dxdy =O0.

k2 +s2<R?

a measurable (weight) function p(x,y) : 0 < p(x,y) ,(x,y) € [0,1)?
with p(x,y) = 1 on E, a series of the form Z ds Pk (X)@s(y),  where
k,s=0

Z |dis|” <o forall r>2 and non-zero terms in {\dk’s| }:s:O are in the decreasing
k,s=0 '

order over all rays, such that for each p € [l,) and for every function
f(x,y) € Li[0, 1)? one can find numbers 8 s = 0 or 1 such that

11 p
lim / / Ok sclis P (x) @5 (y) — f(x,y)| p(x,y)dxdy = 0.
R—o0
00 k2+52§R2
Remark. Observe that one can not claim u(x,y) = 1 in Theorem 2.
It can be easily shown that the assumption of the existence of such universal series

Z Cks@r(x)@s(y) with respect to the subseries for the space LF[0,1)%,p > 1,
k,s=0
simply leads to contradiction. Indeed, if that assumption is true, then for the function
F(x,y) = Scky .50 Pro (X) @5, (), Where kg, so > 1 are any natural numbers and cy, s, # 0,
one can find numbers 6, = 0 or 1 such that

11
lim//
m—yoo
00

Hence, we will simply get &, ,, =5 > L.

The Main Lemma. The Walsh system is defined as follows. Let r(x) be a
1-periodic function on [0, 1) defined by r = x[o,1/2) — X[1/2,1), Where xg(x) denotes
the characteristic function of the set E, that is,

1, if xeE,
XE(x) =

Z (Sk,sck,s (% (x) Qs ()7) - Scko,so Pr (x) D5, (y) dxdy = 0.
k,s=0

0, if x¢E.
The Rademacher system R = {r,: n=0,1,...} is defined by
ra(x) =r(2"x) for allxeR, n=0,1,... ()]

Recall the definition of the Walsh system {¢,}(x) in Paley order (see [13]).
Define

@u(x) = [ [ (x), (5)
k=0
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where ¥ n2F is the unique binary expansion of n with n; 0 or 1.

k=0

The following lemma, which immediately follows from Lemma 4 from [17]],
plays a central role in the proof of our Theorem:

Lemma 1. Let {@} be the Walsh system. Then for each 0 < § < 1 there
exists a measurable positive function [L(x,y) with }{(x,y) €[0,1)% u(x,y) =1} >
1 — & such that for any numbers € € (0,1), N € N, po > 1 and for each function

£ eLr0,1)2,[|f|l,, >0, one can find a polynomial Q(x,y) of the form

M
Q(xvy) = Z Ck,s(Pk(x)(pS(y)v
k,s=N
satisfying the following conditions:
1)  the nonzero coefficients in {|ci,|, k,n =N,...,M} are in decreasing

order over all rays;

M
2 ) ekl < &
k,n=N

11
D [ 10t — e aeydsdy < e
00

11 » 1/p
4)  max // ChsPr(X) Qs (y)| H(x,y)dxdy <
v\ 2N2SkZZHZSR2 ks Qi () @5 (v)| p(x,y)
11 1/p
< //If(x,y)\”u(x,y)dxdy +& | forall pell,pol.
00

Proof of Theorem 2.
Proof. LetO<e<1, p, oo (p; >1)and let
{rew} ©)

be a sequence of all polynomials in the Walsh system with rational coefficients.

Successively applying Lemma 1, we can find a measurable weight function
1 (x,y), aset E C [0,1)? such that

u(xy)=1onE, |E|>1-¢, ()
and polynomials
my—1
0,x)= Y b ex)e(),m, )
k;t":mn—]

which satisfy the following conditions for every n > 1:
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" (x,y)dxdy < 27801

/I/I\any — fule,y)|”
00
n)

All nonzero members in the sequence {’b,(”‘

decreasing order over all rays for any fixed n > 1 and

max b,gns) < min b,(:’;l)‘ forall n=1,2...,
k,s€[mp_1,my) 1" (k,s)especQ,_ |
m,lfl 2+27n 1
(n)
k. < n>1,
ks N 28(n+1)
11 p 1/p
mx ([ [ bl (x)9.)| Bly)dady | <
\/imnflSR<\/§’nn 00 2m2 1<k2+52<R2

1/p

11
<2{ [ [1fenlPaceydsdy | 427 forall pe i, p,)
00

We put

b]({ns)7 kvse[mnflamn% nzlv
bks = ’ .
0, in other cases.

Let f(x,y) € Ly [0, 1)2,Vp > 1. Now assume that the polynomials

ml —1

0,(x,y) = Z b)), 1<j<q-1,

ksmll

have been defined satisfying the conditions

1 1 ’ P
g _ ’
[ [176n) = X0 w)| mixyydxdy <27, 124 < g1,
00 J=1
1 1 P
s / / b/(cl;ﬁ)fl’k(X)fps(y) p(x,y)dxdy <2747,
\/im[j,]SR<\ﬁm1]O 0 2ml2> <k2 $2<R2 ’
J

Choose the function f;, from the sequence F' (see @) such that

)

k,se [m,,_l,mn)} are in

(10)

(1)

12)

(13)

(14)

(15)

(16)
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11 o1 » 1/p
/ [ ) - [ ()~ L0, (x,y>] pley)dady | <2722 )
0 =1
It follows from (13]) and that
1/p
[ 1Al peyddy | <2222 as)
00
Taking into account (12)) and (16)—(18)), we have
11 g » 1/p
[ [ e =Y 0, 0n)| ntxydxay | <
00 =
11 1/p
< //‘ — fi, (x, )’)‘ p(x,y)dxdy) + (19)
00
11 1 p 1/p
| [ [l - [f(x,y) -Y0, <x,y>] plry)ddy) | <
00 =1
<27 8lg 4 2-2(4+2) £ 22
11 p
I, .
max ] / b ()@ (v)| p(x,y)dxdy <277, (20)
\/imlq—ISR<\ﬁmlq 00 12 <k2+52<R2
It is clear that we can define by induction polynomials
R m]q
0, (x.y) = Z bt ou(x)0,(0), 21
k,s= M,
satisfying conditions (I3) and (16) for all ¢ > 1. We set
5k = 17 {C,S € U(O]O:I [mqulamlq)a (22)
' 0, in other cases.
By (19)-(22) we have
» 1/p
lim / / Ssbis @k (X)0(y) — f(x,y)| mlxy)dxdy | =0, (23)
R=veo 0<k2+ €2<R2
i. e. the Theorem 2 is proved.
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L. U. ubUNuL3WL

HOFLUBPULLELD LEPUUBUSNFUL NFNISH UPELUUD SUUUWUUNGNY,
L4[0,1)? GBAUSHL SUPUGNFRSNFLLELNFY

Wu wolawpubpnud Gunmgymy £ LY, p > 1, poowghl ppupwdnipinih, nph
$ntghwdtipnh wyn pupudniejwd tnpuiny ohipujugynd &b popnp nunninia-
otpny dnmpnb gnpdwlihgbtip mbabkgnn Nknpph Yphowyh swpptipny:



