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THE REPRESENTATION OF FUNCTIONS BY WALSH DOUBLE SYSTEM
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In this work we construct a weighted space Lp
µ , p ≥ 1, in which functions

with the norm of that space are presented by Walsh double series, which
coefficients are monotone in all ways.
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Introduction. Let |E| be the Lebesgue measure of a measurable set E ⊆ [0,1)
(or E ⊆ [0,1)× [0,1) = [0,1)2), and let Lp[0,1), p≥ 1, be the class of all those
measurable functions f (x) on [0,1) such that

1∫
0

| f (x)|pdx < ∞. (1)

Let µ(x,y) be a positive Lebesgue-measurable function (weight function)
defined on [0,1)2. We denote by Lp

µ [0,1)2 the space of all measurable functions
on [0,1)2 with the norm

‖.‖Lp
µ
=

 1∫
0

1∫
0

|.|pµ(x,y)dxdy

1/p

< ∞ : p ∈ [1,∞). (2)

In the sequel we will accept the terms “measure” and “measurable” in the sense
of Lebesgue.

D e f i n i t i o n 1. The nonzero members of a double sequence
{

bk,s
}∞

k,s=0
are said to be in a monotonically decreasing order over all rays, if bk2,s2 < bk1,s1

when k2 ≥ k1, s2 ≥ s1, k2 + s2 > k1 + s1 (bki,si 6= 0, i = 1,2).
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Let f (x,y) ∈ Lp[0,1)2, p≥ 1, and let

∞

∑
k,s=0

ck,sϕk(x)ϕs(y) (3)

be series with double Walsh system.
The spherical and rectangular partial sums of the series (3) will be denoted by

SR(x,y) = ∑
k2+s2≤R2

ck,sϕk(x)ϕs(y) and SN,M(x,y) =
N

∑
k=0

M

∑
s=0

ck,sϕk(x)ϕs(y),

respectively.
D e f i n i t i o n 2. Let f (x,y) ∈ Lp

µ [0,1)2. We will say that the series (3)
converges to the function f (x,y) in Lp

µ [0,1)2-norm with respect to spheres, if

lim
R→∞

 1∫
0

1∫
0

|SR(x,y)− f (x,y)|p µ(x,y)dxdy

1/p

= 0.

The convergence with respect to rectangles is defined in the same way. More
general statements of these definitions can be found in [1–12].

D e f i n i t i o n 3. A series
∞

∑
k,s=0

bk,sϕk(x)ϕs(y) is called universal in Lp
µ [0,1)2

with respect to the subseries, if for every function f (x,y) ∈ Lp
µ [0,1)2 there exists

a subseries
∞

∑
i, j=0

bki,s j ϕki(x)ϕs j(y), which converges to f in Lp
µ [0,1)2-norm.

In this work we will discuss the existence of Walsh universal double series
with respect to the subseries in weighted Lp

µ [0,1)2-spaces.
Note that different kind of partial sums (e.g. spherical, rectangular, square)

behave differently in the concepts of convergence in Lp[0,1)2, p≥ 1, and convergence
almost everywhere. Also, many classical results (for instance, Carleson’s [2], Riesz’s
[13] and Kolmogorov’s [14] theorems) cannot be extended from the one-dimensional
case to the two-dimensional (see [3, 15], [16]).

In [14] Harris constructed a function f ∈ Lp[0,1)2 with 1≤ p < 2 such that the
Fourier–Walsh series of f (x,y) in the Walsh double system diverges almost
everywhere and in Lp[0,1)2-norm with respect to spheres.

Thus for a given function f (x,y) ∈ Lp[0,1)2 it is impossible to find a double
series in the Walsh double system converging to f (x,y) either in Lp[0,1)2-norm or
almost everywhere with respect to spheres.

In the present work we prove that for any ε > 0 there exists a measurable set
E ⊂ [0,1)2 with |E| > 1− ε such that for any function f (x,y) ∈ Lp(E), p ≥ 1, one

can find a series
∞

∑
k,s=0

bk,sϕk(x)ϕs(y) with respect to the Walsh double system, which

converges to the function f (x,y) in the Lp(E)-norm with respect to spheres, that is

lim
R→∞

∫ ∫
E

∣∣∣∣∣ ∑
k2+s2≤R2

bk,sϕk(x)ϕs(y)− f (x,y)

∣∣∣∣∣
p

dxdy = 0.
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The following theorem is true:
T h e o r e m 1. ∀ε > 0 there exist a set E ⊂ [0,1)2 with |E| > 1− ε and

a measurable (weight) function µ(x,y) : 0 < µ(x,y) ≤ 1,(x,y) ∈ [0,1)2, with
µ(x,y) = 1 on E such that for each p ∈ [1,∞) and for every function
f (x,y) ∈ Lp

µ [0,1)2 there exists a series with the following property:

lim
R→∞

1∫
0

1∫
0

∣∣∣∣∣ ∑
k2+s2≤R2

bk,sϕk(x)ϕs(y)− f (x,y)

∣∣∣∣∣
p

µ(x,y)dxdy = 0.

This stronger theorem follows from Theorem 1:
T h e o r e m 2. For ∀ε > 0 there exist a set E ⊂ [0,1)2, |E| > 1 − ε ,

a measurable (weight) function µ(x,y) : 0 < µ(x,y) ≤ 1,(x,y) ∈ [0,1)2,

with µ(x,y) = 1 on E, a series of the form
∞

∑
k,s=0

dk,sϕk(x)ϕs(y), where

∞

∑
k,s=0
|dk,s|r <∞ f or all r > 2 and non-zero terms in

{
|dk,s|

}∞

k,s=0 are in the decreasing

order over all rays, such that for each p ∈ [1,∞) and for every function
f (x,y) ∈ Lp

µ [0,1)2 one can find numbers δk,s = 0 or 1 such that

lim
R→∞

1∫
0

1∫
0

∣∣∣∣∣ ∑
k2+s2≤R2

δk,sdk,sϕk(x)ϕs(y)− f (x,y)

∣∣∣∣∣
p

µ(x,y)dxdy = 0.

R e m a r k . Observe that one can not claim µ(x,y) ≡ 1 in Theorem 2.
It can be easily shown that the assumption of the existence of such universal series

∞

∑
k,s=0

ck,sϕk(x)ϕs(y) with respect to the subseries for the space Lp[0,1)2, p ≥ 1,

simply leads to contradiction. Indeed, if that assumption is true, then for the function
f (x,y) = 5ck0,s0ϕk0(x)ϕs0(y), where k0,s0 > 1 are any natural numbers and ck0,s0 6= 0,
one can find numbers δk = 0 or 1 such that

lim
m→∞

1∫
0

1∫
0

∣∣∣∣∣ m

∑
k,s=0

δk,sck,sϕk(x)ϕs(y)−5ck0,s0ϕk0(x)ϕs0(y)

∣∣∣∣∣dxdy = 0.

Hence, we will simply get δk0,s0 = 5 > 1.
The Main Lemma. The Walsh system is defined as follows. Let r(x) be a

1-periodic function on [0,1) defined by r = χ[0,1/2)− χ[1/2,1), where χE(x) denotes
the characteristic function of the set E, that is,

χE(x) =

{
1, if x ∈ E ,

0, if x /∈ E .

The Rademacher system R = {rn : n = 0,1, . . .} is defined by
rn(x) = r(2nx) for all x ∈ R, n = 0,1, . . . (4)

Recall the definition of the Walsh system {ϕn}(x) in Paley order (see [13]).
Define

ϕn(x) =
∞

∏
k=0

rnk
k (x), (5)



THE REPRESENTATION OF FUNCTIONS BY WALSH DOUBLE SYSTEM . . . 159

where
∞

∑
k=0

nk2k is the unique binary expansion of n with nk 0 or 1.

The following lemma, which immediately follows from Lemma 4 from [17],
plays a central role in the proof of our Theorem:

L e m m a 1. Let {ϕk} be the Walsh system. Then for each 0 < δ < 1 there
exists a measurable positive function µ(x,y) with

∣∣{(x,y) ∈ [0,1)2; µ(x,y) = 1}
∣∣ >

1− δ such that for any numbers ε ∈ (0,1), N ∈ N, p0 > 1 and for each function
f ∈ Lp0 [0,1)2,‖ f‖p0 > 0, one can find a polynomial Q(x,y) of the form

Q(x,y) =
M

∑
k,s=N

ck,sϕk(x)ϕs(y),

satisfying the following conditions:
1) the nonzero coefficients in {|ck,n|, k,n = N, . . . ,M} are in decreasing

order over all rays;

2)
M

∑
k,n=N

|ck,n|2+ε < ε;

3)
1∫

0

1∫
0

|Q(x,y)− f (x,y)|p0 µ(x,y)dxdy < ε
p0 ;

4) max√
2N≤R≤

√
2M

 1∫
0

1∫
0

∣∣∣∣∣ ∑
2N2≤k2+s2≤R2

ck,sϕk(x)ϕs(y)

∣∣∣∣∣
p

µ(x,y)dxdy

1/p

≤

≤


 1∫

0

1∫
0

| f (x,y)|p µ(x,y)dxdy

1/p

+ ε

 f or all p ∈ [1, p0].

Proof of Theorem 2.
P r o o f . Let 0 < ε < 1, pn↗ ∞ (p1 > 1) and let{

fk(x,y)
}∞

k=1
(6)

be a sequence of all polynomials in the Walsh system with rational coefficients.
Successively applying Lemma 1, we can find a measurable weight function

µ(x,y), a set E ⊂ [0,1)2 such that

µ(x,y) = 1 on E, |E|> 1− ε, (7)

and polynomials

Qn(x,y) =
mn−1

∑
k,s=mn−1

b(n)k,s ϕk(x)ϕs(y),mn↗, (8)

which satisfy the following conditions for every n≥ 1:
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1∫
0

1∫
0

∣∣Qn(x,y)− fn(x,y)
∣∣pn

µ(x,y)dxdy≤ 2−8pn(n+1). (9)

All nonzero members in the sequence
{∣∣∣b(n)k,s

∣∣∣ k,s ∈ [mn−1,mn)
}

are in
decreasing order over all rays for any fixed n≥ 1 and

max
k,s∈[mn−1,mn)

∣∣∣b(n)k,s

∣∣∣< min
(k,s)∈specQn−1

∣∣∣b(n−1)
k,s

∣∣∣ for all n = 1,2 . . . , (10)

mn−1

∑
k,s=mn−1

∣∣∣b(n)k,s

∣∣∣2+2−n

<
1

28(n+1) , n≥ 1, (11)

max√
2mn−1≤R<

√
2mn

 1∫
0

1∫
0

∣∣∣∣∣∣ ∑
2m2

n−1≤k2+s2≤R2

b(n)k,s ϕk(x)ϕs(y)

∣∣∣∣∣∣
p

µ(x,y)dxdy

1/p

≤

≤ 2

 1∫
0

1∫
0

| fn(x,y)|pµ(x,y)dxdy

1/p

+2−2n for all p ∈ [1, pn].

(12)

We put

bk,s =

{
b(n)k,s , k,s ∈ [mn−1,mn), n≥ 1,
0, in other cases.

(13)

�

Let f (x,y) ∈ Lp
µ [0,1)2,∀p≥ 1. Now assume that the polynomials

Ql j
(x,y) =

ml j−1

∑
k,s=ml j−1

b(l j)
k,s ϕk(x)ϕs(y), 1≤ j ≤ q−1, (14)

have been defined satisfying the conditions

1∫
0

1∫
0

∣∣∣∣∣ f (x,y)− q′

∑
j=1

Ql j
(x,y)

∣∣∣∣∣
p

µ(x,y)dxdy < 2−2q′ , 1≤ q′ ≤ q−1, (15)

max√
2ml j−1≤R<

√
2ml j

1∫
0

1∫
0

∣∣∣∣∣∣∣ ∑
2m2

l j−1≤k2+s2≤R2

b(l j)
k,s ϕk(x)ϕs(y)

∣∣∣∣∣∣∣
p

µ(x,y)dxdy < 2−l j·p. (16)

Choose the function flq from the sequence F (see (6)) such that
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0

1∫
0

∣∣∣∣∣ flq(x,y)−

[
f (x,y)−

q−1

∑
j=1

Ql j
(x,y)

]∣∣∣∣∣
p

µ(x,y)dxdy

1/p

< 2−2(q+2). (17)

It follows from (15) and (17) that 1∫
0

1∫
0

∣∣ flq(x,y)
∣∣p µ(x,y)dxdy

1/p

< 2−2(q−1)+2−2(q+2). (18)

Taking into account (12) and (16)–(18), we have 1∫
0

1∫
0

∣∣∣∣∣ f (x,y)− q

∑
j=1

Ql j
(x,y)

∣∣∣∣∣
p

µ(x,y)dxdy

1/p

≤

≤

 1∫
0

1∫
0

∣∣∣Qlq(x,y)− flq(x,y)
∣∣∣p µ(x,y)dxdy)

1/p

+

+

 1∫
0

1∫
0

∣∣∣∣∣ flq(x,y)−

[
f (x,y)−

q−1

∑
j=1

Ql j
(x,y)

]∣∣∣∣∣
p

µ(x,y)dxdy)

1/p

≤

≤ 2−8lq +2−2(q+2) < 2−2q,

(19)

max√
2mlq−1≤R<

√
2mlq

1∫
0

1∫
0

∣∣∣∣∣∣ ∑
2m2

lq−1≤k2+s2≤R2

b(lq)k,s ϕk(x)ϕs(y)

∣∣∣∣∣∣
p

µ(x,y)dxdy < 2−lq·p. (20)

It is clear that we can define by induction polynomials

Qlq(x,y) =
mlq−1

∑
k,s=mlq−1

b(lq)k,s ϕk(x)ϕs(y), (21)

satisfying conditions (15) and (16) for all q≥ 1. We set

δk,s =

{
1, k,s ∈

⋃
∞
q=1[mlq−1,mlq),

0, in other cases.
(22)

By (19)–(22) we have

lim
R→∞

 1∫
0

1∫
0

∣∣∣∣∣ ∑
0≤k2+s2≤R2

δk,sbk,sϕk(x)ϕs(y)− f (x,y)

∣∣∣∣∣
p

µ(x,y)dxdy

1/p

= 0, (23)

i. e. the Theorem 2 is proved.
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L. S. SIMONYAN

FUNKCIANNERI NERKAYACUMN UOL
I KRKNAKI HAMAKARGOV

Lp
µ [0,1)2 K
�AYIN TARA
U�YUNNERUM

Ays a�xatanqum ka�ucvum � Lp
µ , p≥ 1, q��ayin tara�u�yun, ori

funkcianern ayd tara�u�yan normov nerkayacvum en bolor u��u�yun-

nerov monoton gor�akicner uneco� Uol�i krknaki �arqerov:


