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DEGENERATE FIRST ORDER DIFFERENTIAL-OPERATOR EQUATIONS
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We consider boundary value problem for degenerate first order differential-
operator equation Lu ≡ tα u′ − Pu = f , u(0)− µu(b) = 0, where t ∈ (0,b),
α ≥ 0, P : H → H is linear operator in separable Hilbert space H,
f ∈ L2,β ((0,b),H), µ ∈C. We prove that under some conditions on the operator
P and number µ the boundary value problem has unique generalized solution
u ∈ L2,β ((0,b),H) when 2α +β < 1, β ≥ 0 and for any f ∈ L2,β ((0,b),H).
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Introduction. In the present paper we consider boundary value problem for
degenerate differential-operator equations of the first order

Lu≡ tαu′(t)−Pu = f (t), u(0)−µu(b) = 0, (1)

where t ∈ (0,b),α ≥ 0,µ ∈C, P : H→H is a linear operator in the separable Hilbert
space H f ∈ L2,β ((0,b),H), β ≥ 0, i.e.

∥∥ f
∥∥2

β
=

b∫
0

tβ
∥∥ f (t)

∥∥2
H dt < ∞.

We assume that the operator P : H→H has complete system of eigenfunctions{
ϕk
}∞

k=1, which form a Riesz basis in H, i.e. Pϕk = pkϕk, k ∈ N, all x ∈ H
have representation

x =
∞

∑
k=1

xkϕk (2)

and for some positive constants c1 and c2 it is valid the inequality

c1

∞

∑
k=1
|xk|2 ≤

∥∥x
∥∥2

H ≤ c2

∞

∑
k=1

∥∥xk
∥∥2
. (3)
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Basics of the theory of differential-operator equations (i.e. ordinary differential
equations with operator coefficients) of the first and second order can be found in the
monograph of S. G. Krein (see [1]). Differential-operator equations of the first order
have been considered in the articles of A. A. Dezin [2], V. P. Glushko [3] and other
autors. In [4] N. Yataev considered operator equations of third order in weighted
Sobolev spaces. In the papers [5], [6] of the author there were considered degenerate
operator equations of the fourth order in a finite interval (0,b) and operator equations
of order 2m on the infinite interval (1,+∞). The article [7] investigated degenerate
operator equations with arbitrary weights. In this papers we study Dirichlet problem
in corresponding weighted Sobolev spaces.

First we consider one-dimensional case of operator Eq. (1), i.e. when Pu = pu,
p ∈C, and then we pass to the general case using general method of A. A. Dezin [2].

One-Dimensional Case. In this section we consider one dimensional case of
boundary value problem (1)

Su≡ tαu′− pu = f , u(0)−µu(b) = 0, (4)

were p and µ are constant complex numbers, α ≥ 0 and f ∈ L2,β (0,b).

We investigate the regular case (see [8]), when
b∫

0

1
tα

dt < ∞, i.e. α < 1.

To expand the space L2(0,b), we will assume in the sequel that β ≥ 0. Observe
that for the weighted L2,β (0,b) spaces for β1 ≤ β2 we have continuous embedding
L2,β1(0,b) ⊂ L2,β2(0,b), which for β1 < β2 is not compact. We investigate the
degeneration at the point t = 0, therefore, we do not consider the case µ = ∞, i.e.
the case of condition u(b) = 0.

We define the operator S : L2,β (0,b) → L2,β (0,b) as the extension of
the corresponding differential operation S, first defined for the smooth functions,
satisfying the boundary condition u(0)−µu(b) = 0 (see [8]).

Define a maximal operator S̃ : L2,β (0,b)→ L2,β (0,b) as an extension of the
differential operation S on L2,β (0,b).

Define the minimal operator S0 : L2,β (0,b)→ L2,β (0,b) as an extension of the
differential operation S on L2,β (0,b), initially defined for the smooth functions, which
satisfy the conditions u(0) = u(b) = 0.

D e f i n i t i o n 1. An operator S : L2,β (0,b)→ L2,β (0,b) is called proper
operator, if

S0 ⊂ S⊂ S̃, (5)

and the inverse operator S−1 : L2,β (0,b) → L2,β (0,b) is defined on the whole
space L2,β (0,b).

It follows from Definition 1 that the inverse operator S−1 : L2,β (0,b)→L2,β (0,b)
is bounded, since it is closed operator, defined on the whole space L2,β (0,b) (see [8]).

Our goal is to find the values of the numbers α ≥ 0, β ≥ 0, µ ∈ C, such that
boundary value problem (4) has unique solution for any f ∈ L2,β (0,b), i.e. to prove
that the operator S : L2,β (0,b)→ L2,β (0,b) is a proper operator.
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It is easy to find, that the general solution of the differential equation in (4)
has the following form:

u(t) =Ce−γt1−α

+ e−γt1−α

t∫
0

τ
−αeγτ1−α

f (τ)dτ, (6)

where γ =
p

1−α
. Now, using boundary condition in (4), we obtain

C
(

1−µe−γbα−1
)
= µe−γb1−α

b∫
0

τ
−αeγτ1−α

f (τ)dτ. (7)

For µ = 0 we conclude from (6) that C = 0. Thus the solution of the boundary
value problem (4) has the the following form:

u(t) = e−γt1−α

t∫
0

τ
−αeγτ1−α

f (τ)dτ. (8)

Now we consider the case µ 6= 0. Then the equality 1− µe−γb1−α

= 0 is equivalent
to the equality eγb1−α

= µ , i.e.
γb1−α = ln |µ|+ iarg µ +2πmi, m ∈ Z.

Since γ =
p

1−α
, from the last equality we obtain

p(m,α) := bα−1(1−α)(ln |µ|+ iarg µ +2πmi), m ∈ Z. (9)
The formula (9) determines the values of p, for which Eq. (7) is unsolvable

with respect to C. In other words, for this values of p boundary value problem (4) is
unsolvable for every f ∈ L2,β (0,b).

If p 6= p(m,α),m ∈ Z, then the equality (7) uniquely defines the number C.
Thus the solution of boundary value problem (4) has the following form:

u(t) =
µe−γt1−α

eγb1−α −µ

b∫
0

τ
−αeγτ1−α

f (τ)dτ + e−γt1−α

t∫
0

τ
−αeγτ1−α

f (τ)dτ. (10)

T h e o r e m 1. Generalized solution of boundary value problem (4) under
the condition p 6= p(m,α), m ∈Z, exists and is unique for every f ∈ L2,β (0,b), when

α ≥ 0, β ≥ 0, 2α +β < 1. (11)
P r o o f . Now we discuss the behaviour of the solution (10) depending on

α ≥ 0, β ≥ 0 for every function f ∈ L2,β (0,b). First note that eγt1−α

is bounded
function, since

∣∣eγt1−α
∣∣ = eγ1t1−α

, where γ = γ1 + iγ2, t ∈ (0,b) and 0 ≤ α < 1.
Consequently, to estimate the expression (10), it is enough to estimate the function

F(t) :=
t∫

0

τ
−α f (τ)dτ at f ∈ L2,β (0,b). Using the Cauchy inequality, we obtain

∣∣F(t)
∣∣2 =

∣∣∣∣∣∣
t∫

0

τ
−α

τ
− β

2 τ
β

2 f (τ)dτ

∣∣∣∣∣∣
2

≤
t∫

0

τ
−2α−β dτ

t∫
0

τ
β
∣∣ f (τ)∣∣2 dτ ≤

≤ c1t1−2α−β
∥∥ f
∥∥2

L2,β (0,b)
.
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Thus we obtain the following inequality∣∣F(t)
∣∣≤ ct

1−2α−β

2
∥∥ f
∥∥

L2,β (0,b)
, (12)

so we conclude that for

α ≥ 0, β ≥ 0, 2α +β < 1 (13)

the value of the function u(t), given by formula (10), is finite for t = 0 for any
f ∈ L2,β (0,b).

Now let us prove that the inequality (12) is exact, i.e. for α ≥ 0, β ≥ 0,
2α +β ≥ 1 there exists a function f ∈ L2,β (0,b), for which the function F(t) (thus
also the solution u(t)) for t → 0 is unbounded (tends to infinity). Let 2α + β > 1.
Then as a counterexample we can take, for example, the function f (t) = tγ and
choose the number γ such that tγ ∈ L2,β (0,b), but the value of F(t) at the point
t = 0 is not finite. Then we obtain the conditions β + 2γ + 1 > 0 and γ < α − 1,

i.e. γ ∈
(
−β +1

2
,α−1

)
, since from the condition 2α + β > 1 it follows that

−β +1
2

< α − 1. Now consider the case 2α + β = 1. Then as a counterexample

we can take the function f (t) = tγ | ln t|δ . Then for 2γ +β = −1, i.e. γ = α−1 and

for −1 < δ < −1
2

it is easy to clear that f ∈ L2,β (0,b), but the value of F(t) at the
point t = 0 is not finite. �

Now we estimate the function f (t), given by the formula (10), for f ∈L2,β (0,b).
Using inequality (12), we obtain∣∣u(t)∣∣≤ (c1 + c2t

1−2α−β

2

)∥∥ f
∥∥

L2,β (0,b)
. (14)

Before considering operator equation (1), we explore the spectrum of the closed
operator S : L2,β (0,b)→ L2,β (0,b). To do this we replace in boundary value problem
(4) the number p by the number p−λ and try to find the values of λ ∈ C, for which
boundary value problem (4) is uniquely solvable for any f ∈ L2,β (0,b). It follows
from the considerations for the case µ = 0 that each number λ ∈ C belongs to the
resolvent ρ(S) of the operator S. For the case µ 6= 0 we require that

p−λ 6= p(m,α),m ∈ Z
(see (9)), i.e. for any m ∈ Z

λ 6= p− p(m,α), (15)

in both cases under condition (11). Thus the spectrum of the operator
S : L2,β (0,b)→ L2,β (0,b) is discrete and coinsides with the set of points

σ(S) = σp(S) = {λ ∈ C : λ = p− p(m,α),m ∈ Z}. (16)

Differential-Operator Equation. In this section we consider boundary value
problem for differential-operator equation

Lu≡ tαu′(t)−Pu = f (t), u(0)−µu(b) = 0, (17)

where t ∈ (0,b),α ≥ 0,µ ∈ C, P : H → H is a linear operator in the separable
Hilbert space H and f ∈ L2,β ((0,b),H).
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Note that a wide class of linear operators P : H→ H, having complete system
of eigenfunctions, which form Riesz basis in H are so called Π-operators [9]. We
briefly describe these operators. Let V := [0,2π]n ⊂ Rn and differential expression
with constant coefficients

P(−iD)u = ∑
|γ|≤m

pγDαu

is first defined on the functions C∞(V ), which are periodical (with period 2π) with
respect to each variable xk,k = 1,2, . . . ,n. Define operator P : L2(V )→ L2(V ) as
closure of differential expression P(−iD), which are called Π-operators. To each
differential operator P(−iD) we can associate polynomial P(s), s ∈ Zn, such that
P(−iD)eis·x = P(s)eis·x, s · x = s1x1 + · · ·+ snxn.

Since the system of eigenfunctions {ϕk}k∈N of the operator P form Riesz
base in Hilbert space H, Pϕk = pkϕk, k ∈ N, and

u(t) =
∞

∑
k=1

uk(t)ϕk, (18)

from the boundary value problem (17) for operator equations we obtain infinite chain
of ordinary differential equations with the boundary conditions

Lkuk ≡ tαu′k(t)− pkuk = fk(t), uk(0)−µuk(b) = 0, k ∈ N. (19)

D e f i n i t i o n 2. The function u ∈ L2,β ((0,b),H) is called generalized
solution of the boundary value problem (17), if it can be represented by the formula
(18), where the functions uk(t), k ∈ N, are generalized solutions of the boundary
value problem (17).

Actually we defined the operator L : L2,β ((0,b),H) → L2,β ((0,b),H) as
closure of corresponding differential expression (17), initially defined on the finite
linear combinations of uk(t)ϕk, where uk ∈ D(Lk), k ∈ N.

The following theorem from the general results of A. A. Dezin [9].
T h e o r e m 2. Operator equation (17) is uniquely solvable for any

f ∈ L2,β ((0,b),H) if and only if the boundary value problems (19) for any
fk ∈ L2,β (0,b), k ∈ N, are uniquely solvable and the inequalities

‖uk‖L2,β (0,b) ≤ c‖ fk‖L2,β (0,b), c > 0, (20)

hold uniformly with respect to k ∈ N.
Now we give sufficient condition to fulfill conditions (20).
T h e o r e m 3. In the case µ = 0 inequalities (20) are uniformly satisfied

whenever
Re pk ≥M, k ∈ N, (21)

for some M ∈ R. If µ 6= 0, then they are satisfied under the conditions∣∣eγkb1−α −µ
∣∣≥ ε,

∣∣Re pk
∣∣≤ K (22)

valid for every k ∈ N and for some numbers ε > 0, K > 0, where γk =
pk

1−α
.
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P r o o f . For the case µ = 0 the solutions uk(t), k ∈ N, of the boundary
value problems (19) have the form (8) (with replacement γ by γk and f by fk, k ∈N).

Let γ1
k = Reγk =

Re pk

1−α
. For the

∣∣uk(t)
∣∣2 using the same argument as in the Proof of

Theorem 1, we get

|uk(t)|2 ≤
t∫

0

τ
−2α−β e−2γ1

k (t
1−α−τ1−α ) dτ ·

∥∥ fk
∥∥2

L2,β (0,b)
.

Since t1−α − τ1−α ≥ 0 for 0 ≤ τ ≤ t, under the conditions (21) we have
inequalities (20) uniformly with respect to k ∈ N due to conditions 0 < 2α +β < 1,
β ≥ 0 (see Theorem 1).

Let now µ 6= 0. The solutions uk(t), k ∈ N, of the boundary value problems
(19) have the form (8) (with substitution f by fk, k ∈ N). Estimating this solutions,
using inequalities (22), similar to the first case we get

|uk(t)|2 ≤

 |µ|
ε

b∫
0

τ
−2α−β e−2γ1

k (t
1−α−τ1−α ) dτ+

+

t∫
0

τ
−2α−β e−2γ1

k (t
1−α−τ1−α ) dτ

 · ‖ fk‖2
L2,β (0,b) .

In contrast to the previous case (µ = 0) here the expression t1−α − τ1−α

does not keep sign for 0 ≤ t ≤ b. Therefore, along with the first condition
in (22) we require a stronger condition |Re pk| ≤ K, k ∈ N, which implies
inequalities (20). �

Let us consider the following counterexample.
E x a m p l e . Consider Cauchy problem (17) for α = 0, β = 0, µ = 0, where

as operator P we take closed operator

P≡−D2
x ,Dx =

d
dx

,D(P) =
{

u ∈ L2(0,π), u′′ ∈ L2(0,π), u(0) = u(π) = 0
}
. (23)

It is easy to calculate that the numbers pk = k2, k ∈ N, are the eigenvalues for
the operator P and the role of the eigenfunctions ϕk, k∈N, play the functions sin(kx),
k ∈N. Observe that this system forms orthogonal basis in L2(0,b). It is easy to verify
that unique solutions of the boundary value problems

u′k(t)− k2uk(t) = ek2t , uk(0) = 0, k ∈ N,
are the functions uk(t) = tek2t , k ∈ N (see formula (8)), and are true the following
exact inequalities

‖uk‖L2(0,b) ≤
cek2b

k
‖ fk‖L2(0,b), c > 0.

It follows from the last inequality and Theorem 2 that it fails the unique solvability

of boundary value problem (23), since the number sequence ck =
cek2b

k
, k ∈N, tends

to infinity for k→ ∞.
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Observe also, that if we take in Example the operator P ≡ D2
x (with the same

domain of definition as above), then it is easy to verify that to inequalities (20) hold
uniformly with respect to k ∈ N. Therefore, this boundary value problem will be
correct. Here we have “inverse” and “direct” Cauchy problems for the heat equation,
and we once again proved incorrectness of the “inverse” Cauchy problem for the heat
equation.

Received 01.10.2019
Reviewed 10.10.2019
Accepted 18.11.2019

R E F E R E N C E S

1. Krein S.G. Linear Differential Equations in Banach Spaces. M., Nauka (1967).
2. Dezin A.A. On the Operators of the Form d/dt–A. Doklady AN SSSR,

164 : 5 (1965), 963–966 (in Russian).
3. Glushko V.P. Degenerate Linear Differential Equations. I. Differential Equations,

4 : 9 (1968), 1584–1597 (in Russian).
4. Yataev N.M. Unique Solvability of Certain Boundary-Value Problems for Dege-

nerate Third Order Operator Equations. Math. Notes, 54 : 1 (1993), 754–763.
5. Tepoyan L. Degenerate Fourth-Order Differential-Operator Equations.

Differentialnye Uravneniya, 23 : 8 (1987), 1366–1376 (in Russian).
6. Tepoyan L. Degenerate Differential-Operator Equations on Infinite Intervals.

Journal of Mathematical Sciences, 189 : 1 (2013), 164–172.
7. Tepoyan L. Degenerate Differential-Operator Equations of Higher Order and

Arbitrary Weight. Asian-European Journal of Mathematics (AEJM), 5 : 2 (2012),
1250030-1–1250030-8.

8. Neimark M.A. Linear Differential Operators. M., Nauka (1969).
9. Dezin A.A. Partial Differential Equations (An Introduction to a General Theory

of Linear Boundary Value Problems). Springer (1987).

L. P. TE�OYAN

VERASERVO� A�AJIN KARGI DIFERENCIAL-�PERATORAYIN

HAVASARUMNER

Hodva�um ditarkvum � het yal ezrayin xndir� veraservo� a�ajin

kargi diferencial-�peratorayin havasarman hamar

Lu≡ tαu′−Pu = f ,u(0)−µu(b) = 0,

orte� t ∈ (0,b), α ≥ 0, P : H → H �perator� g�ayin � H separabel

hilbertyan tara�u�yan mej, f ∈ L2,β ((0,b),H), µ ∈C: Apacucvum �, or P
�peratori  µ �vi vra drva� oro� paymanneri depqum ezrayin xndirn

uni miak �ndhanracva� lu�um u ∈ L2,β ((0,b),H), erb 2α + β < 1, β ≥ 0
 f ∈ L2,β ((0,b),H):


