PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2019, 53(3), p. 163-[169|

Mathematics

DEGENERATE FIRST ORDER DIFFERENTIAL-OPERATOR EQUATIONS
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We consider boundary value problem for degenerate first order differential-
operator equation Lu = t%u' — Pu = f, u(0) — pu(b) = 0, where ¢ € (0,b),
a >0, P: H— H is linear operator in separable Hilbert space H,
f€Lyp ((0,b),H), u € C. We prove that under some conditions on the operator
P and number u the boundary value problem has unique generalized solution
ueLyg((0,b),H) when 2ac+ 8 < 1, B >0 and for any f € L, g((0,b),H).
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Introduction. In the present paper we consider boundary value problem for
degenerate differential-operator equations of the first order

Lu=t%(t)—Pu= f(t), u(0)—pu(b)=0, (1)
where t € (0,b),ax > 0,u € C, P: H— H is alinear operator in the separable Hilbert
space H f € L, 3((0,b),H), B >0, i.e.

b

715 = [l dr <
0

We assume that the operator P : H — H has complete system of eigenfunctions
{@«},_,. which form a Riesz basis in H, ie. Py = prr, k € N, all x € H
have representation

X = Z X Qr (2)
k=1

and for some positive constants c; and c¢; it is valid the inequality

e Y b < Jlellf < e X 3
k=1 k=1
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Basics of the theory of differential-operator equations (i.e. ordinary differential
equations with operator coefficients) of the first and second order can be found in the
monograph of S. G. Krein (see [1]]). Differential-operator equations of the first order
have been considered in the articles of A. A. Dezin [2]], V. P. Glushko [3] and other
autors. In [4] N. Yataev considered operator equations of third order in weighted
Sobolev spaces. In the papers [S]], [6] of the author there were considered degenerate
operator equations of the fourth order in a finite interval (0, ) and operator equations
of order 2m on the infinite interval (1,4-o0). The article [7]] investigated degenerate
operator equations with arbitrary weights. In this papers we study Dirichlet problem
in corresponding weighted Sobolev spaces.

First we consider one-dimensional case of operator Eq. (1)), i.e. when Pu = pu,
p € C, and then we pass to the general case using general method of A. A. Dezin [2].

One-Dimensional Case. In this section we consider one dimensional case of
boundary value problem

Su=t*'—pu=f, u(0)—puu(b)=0, 4)

were p and i are constant complex numbers, o > 0 and f € L, (0,b).

b
1
We investigate the regular case (see [8]), when / t—adt < oo, e o< 1.
0

To expand the space L,(0,b), we will assume in the sequel that § > 0. Observe
that for the weighted L, g(0,b) spaces for B; < B, we have continuous embedding
Ly 5, (0,b) C Ly, (0,b), which for B; < B, is not compact. We investigate the
degeneration at the point ¢ = 0, therefore, we do not consider the case u = oo, i.e.
the case of condition u(b) = 0.

We define the operator S : L, g(0,b) — L, 5(0,b) as the extension of
the corresponding differential operation S, first defined for the smooth functions,
satisfying the boundary condition u(0) — pu(b) = 0 (see [8]).

Define a maximal operator S : L, g(0,b) — L, g(0,b) as an extension of the
differential operation S on L, g(0,b).

Define the minimal operator Sy : L, g(0,b) — L, g(0,b) as an extension of the
differential operation S on L, g(0, b), initially defined for the smooth functions, which
satisfy the conditions u(0) = u(b) =0.

Definition 1. An operator S : L, (0,b) — L, g(0,b) is called proper
operator, if

SocScs, )

and the inverse operator S~' : L, g(0,b) — L, g(0,b) is defined on the whole
space L, g(0,b).
It follows from Definition 1 that the inverse operator S~ : L, (0,5)—L, g (0,b)
is bounded, since it is closed operator, defined on the whole space L, B (0,b) (see [8]).
Our goal is to find the values of the numbers @ >0, B >0, u € C, such that
boundary value problem (&) has unique solution for any f € L, g(0,b), i.e. to prove
that the operator S : L, g(0,b) — L, g(0,b) is a proper operator.
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It is easy to find, that the general solution of the differential equation in (4]

has the following form:
t

u(t)=Ce " “ e " /T_aeyfl_af(f)d‘c, (6)
0
where v = %. Now, using boundary condition in (4)), we obtain

b
C (1 —ue‘ybafl) = pe " /f‘“e”lfaf(r) dr. (7)
0

For u = 0 we conclude from (6) that C = 0. Thus the solution of the boundary
value problem (4) has the the following form:

t
u(ty=e """ / T %" " f(1)dT. (8)
0
Now we consider the case y # 0. Then the equality 1 — ,ue*me = ( is equivalent
to the equality "' “ = p, i.e.
yb'=% =In|u|+iargu +2mmi, mecZ.

Since Y= %, from the last equality we obtain

p(m, ) :=b*""(1 —a)(In|u|+iargu +27mi), meZ. ©)

The formula (9) determines the values of p, for which Eq. is unsolvable

with respect to C. In other words, for this values of p boundary value problem () is
unsolvable for every f € L, (0,b).

If p # p(m,a),m € Z, then the equality (7) uniquely defines the number C.

Thus the solution of boundary value problem () has the following form:
b 1

,ue’?"Hx I-a l-a l-a

u(t) = 7/bl?/ﬂc“"e” f(r)dt+e " /f‘“e’” f(r)dr. (10)
et —p

0 0

Theorem 1. Generalized solution of boundary value problem (4) under

the condition p # p(m, ), m € Z, exists and is unique for every f € L, g(0,b), when
>0, B>0, 20+B<1. (11)

Proof. Now we discuss the behaviour of the solution (I0) depending on

a >0, B > 0 for every function f € L, g(0,b). First note that """ is bounded

. . 1- 1—- .
function, since |e7” a‘ =N " where Y=y +ip, t € (0,b) and 0 < a < 1.
Consequently, to estimate the expression (10), it is enough to estimate the function
t

F(t):= /'v_“f('v) dt at f € L, g(0,b). Using the Cauchy inequality, we obtain
0

‘F(t)\zz T %
/

2

f(r)dr

t t

/r’za’ﬁdf/rﬁ\f(r)}zdrg

0 0

[Slg=}
[Sgey

T

IN

IN

ey 2
cit! ﬁHfHLz,ﬁ(O»b)'
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Thus we obtain the following inequality

1-20—B
FOl < 7, 00 12
so we conclude that for
a>0, B>0, 20+B<1 (13)
the value of the function u(r), given by formula (I0), is finite for + = 0 for any

fe Lz,ﬁ (0,b).

Now let us prove that the inequality (12) is exact, i.e. for o > 0, B > 0,
2a+ B > 1 there exists a function f € L, g(0,b), for which the function F(¢) (thus
also the solution u(t)) for t — 0 is unbounded (tends to infinity). Let 2a+f3 > 1.
Then as a counterexample we can take, for example, the function f(r) =" and
choose the number y such that t” € L, g(0,b), but the value of F(t) at the point
t = 0 is not finite. Then we obtain the conditions S +2y+1>0and y < a — 1,

1
ie. Y€ <—ﬁ; L0 — 1>, since from the condition 2a + B > 1 it follows that
B+1 .
5 < a— 1. Now consider the case 200+ 3 = 1. Then as a counterexample

we can take the function f(¢) = *|In#|®. Then for 2y+f = —1,ie. y= o — 1 and

for -1 <0< —% it is easy to clear that f € L, g(0,b), but the value of F(t) at the
point ¢ = 0 is not finite. U

Now we estimate the function f(¢), given by the formula (I0), for f € L, g(0,b).
Using inequality (I2)), we obtain

1-20—

u(®)] < (cr+er )| Fllisy 0y (14)
Before considering operator equation (I)), we explore the spectrum of the closed
operator S : L, g (0,b) — L, g(0,b). To do this we replace in boundary value problem
(@) the number p by the number p — A and try to find the values of A € C, for which
boundary value problem (@) is uniquely solvable for any f € L, g(0,b). It follows
from the considerations for the case y = 0 that each number A € C belongs to the
resolvent p(S) of the operator S. For the case u # 0 we require that

p_;t' #p(mv(x)’m €L
(see (9)), i.e. forany m € Z
A # p—p(m,a), (15)
in both cases under condition (II). Thus the spectrum of the operator
S: L, (0,b) = L, g(0,b) is discrete and coinsides with the set of points
0(S)=0,(8)={AeC:A=p—p(m,a),meZ}. (16)
Differential-Operator Equation. In this section we consider boundary value
problem for differential-operator equation
Lu=1t%/(t)—Pu= f(t), u(0)—puu(b)=0, (17)
where t € (0,b),a0 > 0,u € C, P: H — H is a linear operator in the separable
Hilbert space H and f € L, g((0,b),H).
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Note that a wide class of linear operators P : H — H, having complete system
of eigenfunctions, which form Riesz basis in H are so called IT-operators [9]. We
briefly describe these operators. Let V := [0,27)" C R” and differential expression
with constant coefficients

P(—iDyu= Y pDD%
[Y|<m
is first defined on the functions C*(V'), which are periodical (with period 27) with
respect to each variable x;,k = 1,2,...,n. Define operator P : Ly(V) — Ly(V) as
closure of differential expression P(—iD), which are called IT-operators. To each
differential operator P(—iD) we can associate polynomial P(s), s € Z", such that
P(—iD)e™* = P(s)e"™, s-x = s1x1 + - - - + SpXp.

Since the system of eigenfunctions {¢y}ren of the operator P form Riesz

base in Hilbert space H, POy = px@r, k € N, and

u(t) =Y ue(t) o, (18)
k=1

from the boundary value problem (17)) for operator equations we obtain infinite chain
of ordinary differential equations with the boundary conditions

LkukEtauz(I)—pkuk:fk(l‘), uk(O)—,uuk(b):O, ke N. (19)

Definition 2. The function u € L, g((0,b),H) is called generalized
solution of the boundary value problem (17)), if it can be represented by the formula
(I8), where the functions u(t), k € N, are generalized solutions of the boundary
value problem (17).

Actually we defined the operator L : L, g((0,b),H) — L, 5((0,b),H) as
closure of corresponding differential expression (17), initially defined on the finite
linear combinations of u(¢) @k, where uy € D(Ly), k € N.

The following theorem from the general results of A. A. Dezin [9].

Theorem 2. Operator equation (I7) is uniquely solvable for any
f € Lyg((0,b),H) if and only if the boundary value problems (19) for any
fx € Ly 8(0,b), k € N, are uniquely solvable and the inequalities

luellz, g0y < €l fillLyg00), € >0, (20)

hold uniformly with respect to k € N.
Now we give sufficient condition to fulfill conditions (20).
Theorem 3. In the case U = 0 inequalities 20) are uniformly satisfied
whenever
Repr>M, keN, 2D

for some M € R. If u # 0, then they are satisfied under the conditions

" —p| > e, [Repi| <K (22)

Pk

valid for every k € N and for some numbers € > 0, K > 0, where y, = 1
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Proof. For the case u = 0 the solutions u(t), k € N, of the boundary
value problems (T9) have the form (§)) (with replacement y by . and f by fi, k € N).

R
Let ykl =Rey = %. For the ‘uk(t) ‘2 using the same argument as in the Proof of

Theorem 1, we get
t

’uk<l)‘2 < /,6720(7[3672)/]{1 (' —gl-a) dt- kaHizﬁ(O,b)'
0

Since t'"* — 717 >0 for 0 < t <t under the conditions (2I) we have
inequalities (20 uniformly with respect to k € N due to conditions 0 < 2+ < 1,
B > 0 (see Theorem 1).

Let now p # 0. The solutions u(¢), k € N, of the boundary value problems
(T9) have the form (8) (with substitution f by fi, k € N). Estimating this solutions,
using inequalities (22)), similar to the first case we get

b
’uk(t)‘z < |‘Z/’52a562y,§(11aﬂ51a) drs
0

t
_ _ gl l—a_ Ll-a
+/T P At ) flIZ, o) -
0

In contrast to the previous case (4 = 0) here the expression #!=% — 71-¢
does not keep sign for 0 < ¢ < b. Therefore, along with the first condition
in (22) we require a stronger condition |Repy| < K, k € N, which implies
inequalities (20). O

Let us consider the following counterexample.

Example. Consider Cauchy problem fora =0, B =0, u =0, where
as operator P we take closed operator

P=-D>D, = %,D(P) ={u€L(0,m), u" € L,(0,7), u(0) = u(m) =0} . (23)

It is easy to calculate that the numbers p; = k%, k € N, are the eigenvalues for
the operator P and the role of the eigenfunctions ¢y, k € N, play the functions sin(kx),
k € N. Observe that this system forms orthogonal basis in L,(0,b). It is easy to verify
that unique solutions of the boundary value problems

W (1) — Ru(t) = &', up(0)=0, keN,

are the functions u (1) = te ke N (see formula (8)), and are true the following

exact inequalities
cek’b
ltellza0) < == fella),  €> 0

It follows from the last inequality and Theorem 2 that it fails the unique solvability
kb
of boundary value problem (23)), since the number sequence ¢y = %7 k € N, tends

to infinity for k — oo.
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Observe also, that if we take in Example the operator P = D? (with the same
domain of definition as above), then it is easy to verify that to inequalities (20) hold
uniformly with respect to k € N. Therefore, this boundary value problem will be
correct. Here we have “inverse” and “direct” Cauchy problems for the heat equation,
and we once again proved incorrectness of the “inverse” Cauchy problem for the heat
equation.
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L. M. S6PN3UL

JEIUUeMrdNN UnUebhL GUrah 2hd6OELSPUL-OMBIUSNNUEBSHhL
NJuuuraruuee

Nnnudnid nhpuplynd © htaplyw; Ggpuyhtt ponhpp yipuubtpgnn wnwsht

upgh nhptipkbghw-owtipunpnpuijhtt hwjuwuwpdwt hwdwp
Lu=t*u— Pu= f,u(0) — pu(b) =0,

npbn ¢ € (0,b), a« >0, P: H— H owbtpuypnpp gduyhtt b A ubuupuply
hhiptipyul pupwdmpyub vk, f € L, g((0,b),H), u € C: Uuyugmgymd &, np P
owbipuyinph U 4 pYp Ypw npdud npnp wwjdwbbbph nhypmd bgpuht unhpt
nibh dhwy pnhwipugywd mdmd u € L, g((0,b),H), tipp 2a+p <1, B >0
'} f S L2,3(<07b)7H>



