PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2019, **53**(3), p. 170–176

Mathematics

QUASI-BOOLEAN POWER OF ALGEBRAS AND IDEMPOTENT ALGEBRAS

M. A. YOLCHYAN *

Chair of Algebra and Geometry, YSU, Armenia

In this paper we provide a necessity condition for embedding of the binary algebra into the quasi-boolean power of a rectangular algebra. It is also proved that every idempotent and hyperassociative algebra via the weak bihomomorphism maps in an idempotent and commutative algebra.

MSC2010: 03C05, 03C85, 06E10, 08A30.

Keywords: quasi-boolean power, idempotent algebra, complete lattice, bihomomorphism, commutative algebra, algebra with transitive commutativity property.

Preliminaries. The concept of the boolean power of the algebra plays an important role in the general theory of algebraic systems [1]. A close generalization of this concept is the quasi-boolean power of algebra.

Definition 1. Let $L(+, \cdot)$ be a complete lattice. $\lambda = \{l_i \in L \mid i \in I\}$ subset of L is called orthogonal system if $l_i \cdot l_j = 0$, where $i \neq j$.

Definition 2. Let $L(+,\cdot)$ be a complete lattice. $\lambda = \{l_i \in L \mid i \in I\}$ orthogonal system is called independent if $\left(\sum_{j \in J} l_j\right) \cdot \left(\sum_{k \in K} l_k\right) = 0$, where

 $J \cup K = I, \ J \cap K = \emptyset.$

Definition 3. The complete, complemented lattice is called quasi-boolean lattice, if its each orthogonal system is independent.

All complete boolean lattices are quasi-boolean lattices.

In the future we will consider algebras with binary operations only. Let *L* be a quasi-boolean lattice and $S = (Q; \Sigma)$ be an algebra. Consider $Q[L] = \{v : Q \to L \mid v(a) \cdot v(b) = 0; a \neq b, \sum_{a \in Q} v(a) = 1\}$. For every operation *X* of Σ define on Q[L] the following binary operation, which we denote by X_L :

$$X_L(\mu, \mathbf{v})(a) = \sum_{a=X(b,c)} \mu(b) \cdot \mathbf{v}(c).$$

Denote $\Sigma_L = \{X_L \mid X \in \Sigma\}.$

^{*} E-mail: marlen.yolchyan94@gmail.com

Definition 4. The algebra $S[L] = (Q[L]; \Sigma_L)$ is called L-power of S or quasi-boolean power of S.

Definition 5. If L is a complete boolean algebra, then the algebra S[L] is called boolean power of S.

Definition 6. Let $(A;\Sigma)$ and $(B;\Theta)$ be algebras, $\varphi : A \to B$ and $\widetilde{\Psi}: \Sigma \to \Theta$ be mappings such that X and $\widetilde{\Psi}(X)$ have the same arity. The pair $(\varphi, \widetilde{\Psi})$ is called bihomomorphism from algebra $(A;\Sigma)$ to algebra $(B;\Theta)$, if the condition

$$\boldsymbol{\varphi}(X(a_1,\ldots,a_n)) = \boldsymbol{\Psi}(X)(\boldsymbol{\varphi}(a_1),\ldots,\boldsymbol{\varphi}(a_n))$$

holds for any $X \in \Sigma$ *and for any* $a_1, \ldots, a_n \in A$ [2].

Definition 7. Let $(A; \Sigma)$ and $(B; \Theta)$ be algebras with binary operations and $(\varphi, \widetilde{\Psi}) : (A; \Sigma) \to (B; \Theta)$ be a bihomomorphism. The bihomomorphism $(\varphi, \widetilde{\Psi})$ is called commutative bihomomorphism, if the following condition

$$\Psi(X)(\varphi(a),\varphi(b)) = \Psi(X)(\varphi(b),\varphi(a))$$

holds for any $X \in \Sigma$ and for any $a, b \in A$.

For the second order formulae (and the second order languages) see [3–5]. Let us recall, that a hyperidentity [2, 6–10] (or $\forall(\forall)$ -identity) is a second-order formula of the following form:

$$\forall X_1, \dots, X_m \forall x_1, \dots, x_n (\boldsymbol{\omega}_1 = \boldsymbol{\omega}_2), \qquad (*)$$

where ω_1, ω_2 are words (terms) in the alphabet of functional variables X_1, \ldots, X_m and objective variables x_1, \ldots, x_n . However hyperidentities are usually presented without universal quantifiers: $\omega_1 = \omega_2$. The hyperidentity $\omega_1 = \omega_2$ is said to be satisfied in the algebra $(Q; \Sigma)$, if this equality holds whenever every object variable x_j is replaced by an arbitrary element from Q and every functional variable X_i is replaced by an arbitrary operation of the corresponding arity from Σ . The possibility of such replacement is supposed, that is

$$\{|X_1|,\ldots,|X_m|\} \subseteq \{|A| \mid A \in \Sigma\} = T_{(Q;\Sigma)} = T_{(\Sigma)},$$

where |S| is the arity of *S*, and $T_{(Q,\Sigma)}$ is called the arithmetic type of $(Q;\Sigma)$. A *T*-algebra is an algebra with arithmetic type $T \subseteq N$. A class of algebras is called a class of *T*-algebras, if every algebra in it is a *T*-algebra.

The hyperidentity is said to be non-trivial if m > 1, and it is trivial if m = 1. The number *m* is called the functional rank of the given hyperidentity (coidentity).

A binary algebra $(Q; \Sigma)$ is said to be a *q*-algebra (*e*-algebra), if there is an operation $A \in \Sigma$ such that Q(A) is a quasigroup (a groupoid with a unit). A binary algebra $(Q; \Sigma)$ is called non-trivial if $|\Sigma| > 1$. It is known [2, 6] (see also [7, 11]), that if an associative non-trivial hyperidentity is satisfied in a non-trivial *q*-algebra (*e*-algebra), then this hyperidentity can only be of the functional rank 2 and of one of the following forms:

$$X(x, Y(y, z)) = Y(X(x, y), z), \qquad (ass)_1$$

$$X(x, Y(y, z)) = X(Y(x, y), z), \qquad (ass)_2$$

$$Y(x, Y(y, z)) = X(X(x, y), z).$$
 (ass)₃

Moreover, in the class of q-algebras (e-algebras) the hyperidentity $(ass)_3$ implies the hyperidentity $(ass)_2$, which, in turn, implies the hyperidentity $(ass)_1$.

A binary algebra $(Q; \Sigma)$ is called hyperassociative, if it satisfies the following hyperidentity of associativity:

$$X(x, Y(y, z)) = Y(X(x, y), z).$$
(ass)₁

Theorem 1. Let $S = (Q; \Sigma)$ be a hyperassociative algebra and $L(+, \cdot)$ be a complete boolean algebra. Then $S[L] = (Q[L]; \Sigma_L)$ is a hyperassociative algebra. **Proof.** We have

$$Q[L] = \left\{ \mathbf{v} : Q \to L \mid \mathbf{v}(a) \cdot \mathbf{v}(b) = 0; a \neq b, \sum_{a \in Q} \mathbf{v}(a) = 1 \right\}.$$

We should proof the following hyperidentity of associativity:

$$X_L(\mu, Y_L(\nu, \tau)) = Y_L(X_L(\mu, \nu), \tau).$$
(1)

Take any $a \in Q$:

$$X_{L}(\mu, Y_{L}(\nu, \tau))(a) = \sum_{a=X(b,c)} \mu(b) \cdot Y_{L}(\nu, \tau)(c) =$$

$$= \sum_{a=X(b,c)} \mu(b) \cdot \left(\sum_{c=Y(d,e)} \nu(d) \cdot \tau(e)\right) = \sum_{a=X(b,Y(d,e))} \mu(b) \cdot (\nu(d) \cdot \tau(e)),$$

$$Y_{L}(X_{L}(\mu, \nu), \tau)(a) = \sum_{a=Y(b,c)} X_{L}(\mu, \nu)(b) \cdot \tau(c) =$$

$$= \sum_{a=Y(b,c)} \left(\sum_{r=Y(d,c)} \mu(d) \cdot \nu(e)\right) \cdot \tau(c) = \sum_{r=Y(b,c)} (\mu(d) \cdot \nu(e)) \cdot \tau(c).$$
(2)

$$-\sum_{a=Y(b,c)} \left(\sum_{b=X(d,e)} \mu(a) \cdot v(e) \right)^{-1} (c) = \sum_{a=Y(X(d,e),c)} (\mu(a) \cdot v(e))^{-1} (c).$$
Note, that the last equalities in (2) and (3) follows from the distributivity of *L*.

According to the associativity of \cdot in *L*, hyperassociativity of *S* and (2), (3), we get (1).

Auxiliary Results and Concepts.

Theorem 2. [10]. The complete, complemented lattice $L(+, \cdot)$ will be quasi-boolean if and only if it admits (\cdot)-homomorphism on some complete boolean lattice. Therefore the homomorphism is one-to-one in the 0 and 1 and preserves *l.u.b.'s of orthogonal systems*. Such homomorphism is called canonical.

Lemma 1. Let $S = (Q; \Sigma)$ be a rectangular algebra [12] and $L_0(+, \cdot)$ is a complete boolean algebra. Then $(S[L_0]; \Sigma_{L_0})$ is a rectangular algebra.

Proof. We should show that $X_{L_0}(\mu, X_{L_0}(\nu, \mu)) = \mu$. Indeed, take any $a \in Q$:

$$X_{L_0}(\mu, X_{L_0}(\mathbf{v}, \mu))(a) = \sum_{a=X(b,c)} \mu(b) \cdot X_{L_0}(\mathbf{v}, \mu)(c) =$$

$$=\sum_{a=X(b,c)}\mu(b)\cdot\left(\sum_{e=X(d,e)}\nu(d)\cdot\mu(e)\right)=\sum_{a=X(b,X(d,e))}(\mu(b)\cdot\nu(d)\cdot\mu(e))=$$
$$=\sum_{a=X(b,X(d,b))}(\mu(b)\cdot\nu(d)\cdot\mu(b))=\sum_{d\in Q}\mu(a)\cdot\nu(d)=$$

$$= \mu(a) \cdot \left(\sum_{d \in Q} \nu(d)\right) = \mu(a) \cdot 1 = \mu(a).$$

Lemma 2. Let *Q* be a relation defined on an idempotent hyperassociative algebra $S = (A; \Sigma)$ such that for all $a, b \in A$ $(X(a,b), X(b,a)) \in Q$. Then $\theta^* \subseteq Q$, where $\theta^* = \{(x,y) \in Q \times Q \mid X(x,X(y,x)) = x, X(y,X(x,y)) = y, \forall X \in \Sigma\}$. *Proof.* Let $(a,b) \in \theta^*$. Then

Y(X(a, b) X(b, a)) - X(a Y(b X(b, a))) -

$$= X(a, X(Y(b,b), a)) = X(a, X(b,a)) = a.$$

In the same way we can get that Y(X(b,a),X(a,b)) = b.

Because $(Y(X(a,b),X(b,a)),Y(X(b,a),X(a,b))) \in Q$, so $(a,b) \in Q$. Main Results.

Theorem 3. Let $B = (A; \Sigma)$ be an algebra, $S = (Q; \Sigma)$ be a rectangular algebra and $L(+, \cdot)$ be a quasi-boolean lattice. If B is embedded into $(S[L], \Sigma_L)$, then B will be idempotent and with transitive commutativity property [12].

Proof. Let us prove that $(S[L], \Sigma_L)$ is an idempotent algebra. Indeed, take any $v \in S[L]$, any $X_L \in \Sigma_L$ and any $a \in Q$:

$$X_L(\mathbf{v},\mathbf{v})(a) = \sum_{a=X(b,c)} \mathbf{v}(b) \cdot \mathbf{v}(c) = \sum_{a=X(b,b)} \mathbf{v}(b) \cdot \mathbf{v}(b) =$$
$$= \sum_{a=b} \mathbf{v}(b) = \mathbf{v}(a) \to X_L(\mathbf{v},\mathbf{v}) = \mathbf{v}.$$

Now indicate, that $(S[L], \Sigma_L)$ has a transitive commutativity property.

According to the Theorem 2, there exist complete boolean lattices L_0 and $f_0: L \to L_0$ is a canonical (·)-homomorphism from a quasi-boolean lattice L to a complete boolean lattice L_0 .

Consider the following map $f: S[L] \to S[L_0]$:

$$f(\mathbf{v}) = \mathbf{v} \circ f_0.$$

Let us show that the map f is a homomorphism. We should prove that for $\forall \mu, \nu \in S[L], \forall X \in \Sigma$

$$f(X_L(\mu, \nu)) = X_{L_0}(f(\mu), f(\nu)).$$
(4)

Indeed, take any $a \in Q$

$$f(X_L(\mu, \mathbf{v}))(a) = f_0(X_L(\mu, \mathbf{v})(a)) = f_0\left(\sum_{a=X(b,c)} \mu(b) \cdot \mathbf{v}(c)\right).$$
 (5)

Consider the following system $\lambda_a^X = \{\mu(b) \cdot v(c) | X(b,c) = a\}$. According to the commutativity of operation \cdot in lattice *L*, we have that λ_a^X is an ortogonal system. So, because the map f_0 saves the supremums of ortogonal systems, we have

$$f_0\left(\sum_{a=X(b,c)}\mu(b)\cdot\mathbf{v}(c)\right)=\sum_{a=X(b,c)}f_0(\mu(b))\cdot f_0(\mathbf{v}(c)).$$

173

So, according to the equalities (5), we have

$$f(X_L(\mu, \nu))(a) = \sum_{a=X(b,c)} f_0(\mu(b)) \cdot f_0(\nu(c)).$$
(6)

On the other hand,

$$X_{L_0}(f(\mu), f(\nu))(a) = \sum_{a=X(b,c)} f(\mu)(b) \cdot f(\nu)(c) = \sum_{a=X(b,c)} f_0(\mu(b)) \cdot f_0(\nu(c)).$$
(7)

According to equalities (6) and (7), we get (4).

Let $\theta = \{(\mu, \nu) \in S[L] | X_L(\mu, \nu) = X_L(\nu, \mu); \forall X_L \in \Sigma_L\}$ is a relation of commutativity in S[L]. Let us show that ker $(f) = \theta$.

We have $\ker(f) = \{(\mu, \nu) \in S[L] | f(\mu) = f(\nu)\}$. It is enough to show that $f(\mu) = f(\nu) \Leftrightarrow X_L(\mu, \nu) = X_L(\nu, \mu); \quad \forall X_L \in \Sigma_L.$

Let $f(\mu) = f(\nu)$. We show that $X_L(\mu, \nu) = X_L(\nu, \mu), \quad \forall X_L \in \Sigma_L$. Indeed, consider the product $\mu(a) \cdot \nu(b)$, where $a \neq b$. We have

$$f_0(\mu(a) \cdot \mathbf{v}(b)) = f_0(\mu(a)) \cdot f_0(\mathbf{v}(b)) = f_0(\mathbf{v}(a)) \cdot f_0(\mathbf{v}(b)) =$$
$$= f_0(\mathbf{v}(a) \cdot \mathbf{v}(b)) = f_0(0) = 0.$$

So $f_0(\mu(a) \cdot \mathbf{v}(b)) = 0$. Since f_0 is one-to-one in 0, we get $\mu(a) \cdot \mathbf{v}(b) = 0$. Take any $X_L \in \Sigma_L$ and any $a \in Q$:

$$X_{L}(\mu, \mathbf{v})(a) = \sum_{a=X(b,c)} \mu(b) \cdot \mathbf{v}(c) = \sum_{a=X(b,b)} \mu(b) \cdot \mathbf{v}(b) = \mu(a) \cdot \mathbf{v}(a) = \mathbf{v}(a) \cdot \mu(a) =$$
$$= \sum_{a=X(b,c)} \mathbf{v}(b) \cdot \mu(c) = X_{L}(\mathbf{v}, \mu)(a) \Rightarrow X_{L}(\mu, \mathbf{v}) = X_{L}(\mathbf{v}, \mu).$$

Conversely, let $X_L(\mu, \nu) = X_L(\nu, \mu); \forall X_L \in \Sigma_L$. We have

$$X_{L_0}(f(\mu), f(\nu)) = f(X_L(\mu, \nu)) = f(X_L(\nu, \mu)) = X_{L_0}(f(\nu), f(\mu)).$$
(8)

Since the rectangular algebra is anticommutative, according to the Lemma 1 and the equality (8), we get that $f(\mu) = f(\nu)$. So ker $(f) = \theta$.

The ker(*f*) is a congruence on $(S[L], \Sigma_L)$. So θ is transitive.

We get that $(S[L], \Sigma_L)$ is idempotent and has a transitive commutativity property. So each embedded algebra is idempotent and has transitive commutativity property.

Theorem 4. Let $S = (A; \Sigma)$ be an idempotent and hyperassociative algebra. Then there exist an idempotent, commutative algebra $T = (B; \Theta)$ and a weak bihomomorphism $(\varphi, \widetilde{\Psi}) : S \to T$ such that the inverse image of any element of T is an anticommutative idempotent semigroup. The bihomomorphism $(\varphi, \widetilde{\Psi})$ is the weak in the sense that for any other commutative bihomomorphism $(\Phi, \widetilde{\Xi})$ from S to T the following condition holds:

$$\ker \varphi \subseteq \ker \Phi.$$

$$Proof. \text{ Consider the following relation on } S:$$

$$\theta^* = \left\{ (x,y) \in Q \times Q \mid X(x,X(y,x)) = x, X(y,X(x,y)) = y, \forall X \in \Sigma \right\}.$$

$$\theta^*_a = \{ x \in Q \mid (a,x) \in \theta^* \},$$

$$A/\theta^* = \{ \theta^*_a \mid a \in A \},$$

$$\Sigma/\theta^* = \left\{ X^* : A/\theta^* \times A/\theta^* \to A/\theta^* \mid X^*(\theta^*_a, \theta^*_b) = \theta^*_{X(a,b)}, X \in \Sigma \right\}.$$

It is shown that θ^* is a congruence and the quotient algebra $S^* = (A/\theta^*, \Sigma/\theta^*)$ is an idempotent, commutative algebra and its elements are rectangular semigroups, so also anticommutative, idempotent semigroups (see [12]).

Consider the mapping $(\varphi, \widetilde{\psi}) : S \to S^*$:

$$\varphi: A \to A/\theta^*, \varphi(a) = \theta_a^*,$$

 $\widetilde{\psi}: \Sigma \to \Sigma/\theta^*, \widetilde{\psi}(X) = X^*,$

which is evidently bihomomorphism. Let us show that $\varphi^{-1}(\theta_a^*)$ is an anticommutative idempotent semigroup for every $\theta_a^* \in A/\theta^*$. Indeed,

$$\varphi^{-1}(\theta_a^*) = \left\{ b \in A | (a,b) \in \theta^* \right\} = \theta_a^*,$$

so since θ_a^* is an idempotent anticommutative semigroup, $\varphi^{-1}(\theta_a^*)$ is also an idempotent anticommutative semigroup.

Let $(\Phi, \widetilde{\Xi})$ be a commutative bihomomorphism of *S*. Let us show that $\ker \varphi \subseteq \ker \Phi$. Indeed, it is easy to see that $\ker \varphi = \theta^*$ and $\ker \Phi$ is a congruence. It is evident also that $(X(a,b), X(b,a)) \in \ker \Phi$, because the bihomomorphism $(\Phi, \widetilde{\Xi})$ is commutative. It remains to use Lemma 2.

Received 12.09.2019 Reviewed 24.11.2019 Accepted 10.12.2019

REFERENCES

 Pinus A.G. Boolean Constructions in Universal Algebra. Uspekhi Mat. Nauk, 47: 4 (286) (1992), 145–180 (in Russian).

M. A. YOLCHYAN

- 2. Movsisyan Yu.M. *Introduction to the Theory of Algebras with Hyperidentities*. Yer., YSU Press (1986) (in Russian).
- 3. Church A. *Introduction to Mathematical Logic*. **1**. Princeton, Princeton University Press (1956).
- 4. Mal'tsev A.I. Some Questions of the Theory of Classes of Models. *Proceedings* of the IVth All-Union Mathematical Congress, **1**(1963), 169–198 (in Russian).
- 5. Mal'tsev A.I. *Algebraic Systems*. Berlin–Heidelberg–New York, Springer-Verlag (1973).
- 6. Movsisyan Yu.M. *Hyperidentities and Hypervarieties in Algebras.* Yer., YSU Press (1990) (in Russian).
- Movsisyan Yu.M. Hyperidentities in Algebras and Varieties. *Uspekhi Mat. Nauk*, 53 : 1 (319) (1998), 61–114; Russian Math. Surveys, 53 : 1 (1998), 57–108.
- 8. Movsisyan Yu.M. Hyperidentities and Related Concepts. I. AJM, 2 (2017), 146–222.
- 9. Movsisyan Yu.M. Hyperidentities and Related Concepts. II. AJM, 4 (2018), 1–85.
- 10. Skornyakov L.A. General Algebra. M., Nauka (1991) (in Russian).
- 11. Movsisyan Yu.M. Hyperidentities and Hypervarieties. *Scientiae Mathematicae Japonicae*, **54** : 3 (2001), 595–640.
- 12. Movsisyan Yu.M., Yolchyan M.A. On Idempotent and Hyperassociative Structures. *Lobachevskii J. Math.*, **40** : 8 (2019), 1113–1121.

บ น อกเวอนป

ՀԱՆՐԱՀԱՇԻՎՆԵՐԻ ՔՎԱՉԻԲՈՒԼՅԱՆ ԱՍՏԻՃԱՆ ԵՎ ԻՆՔՆԱՀԱՄԸՆԿՆՈՂ ՀԱՆՐԱՀԱՇԻՎՆԵՐ

Աշխատանքում ապացուցվում է հանրահաշվի՝ ուղղանկյուն հանրահաշվի քվազիբուլյան աստիճյանի մեջ ներդրվելու համար անհրաժեշտ պայման։ Ապացուցվում է նաև, որ ցանկացած ինքնահամընկնող գերզուգորդական հանրահաշիվ թույլ բիհոմոմորֆիզմի միջոցով արտապատկերվում է ինքնա– համընկնող տեղափոխական հանրանաշվի մեջ։