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In this paper we provide a necessity condition for embedding of the binary
algebra into the quasi-boolean power of a rectangular algebra. It is also proved
that every idempotent and hyperassociative algebra via the weak bihomomor-
phism maps in an idempotent and commutative algebra.
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Preliminaries. The concept of the boolean power of the algebra plays an
important role in the general theory of algebraic systems [1]. A close generalization
of this concept is the quasi-boolean power of algebra.

D e f i n i t i o n 1. Let L(+, ·) be a complete lattice. λ = {li ∈ L | i ∈ I}
subset of L is called orthogonal system if li · l j = 0, where i 6= j.

D e f i n i t i o n 2. Let L(+, ·) be a complete lattice. λ = {li ∈ L | i ∈ I}

orthogonal system is called independent if
(

∑
j∈J

l j

)
·
(

∑
k∈K

lk

)
= 0, where

J∪K = I, J∩K = /0.
D e f i n i t i o n 3. The complete, complemented lattice is called quasi-boolean

lattice, if its each orthogonal system is independent.
All complete boolean lattices are quasi-boolean lattices.
In the future we will consider algebras with binary operations only. Let L be

a quasi-boolean lattice and S = (Q;Σ) be an algebra. Consider Q[L] = {ν : Q→
L | ν(a) ·ν(b) = 0;a 6= b, ∑

a∈Q
ν(a) = 1}. For every operation X of Σ define on Q[L]

the following binary operation, which we denote by XL:

XL(µ,ν)(a) = ∑
a=X(b,c)

µ(b) ·ν(c).

Denote ΣL = {XL | X ∈ Σ}.
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D e f i n i t i o n 4. The algebra S[L] = (Q[L];ΣL) is called L-power of S or
quasi-boolean power of S.

D e f i n i t i o n 5. If L is a complete boolean algebra, then the algebra S[L]
is called boolean power of S.

D e f i n i t i o n 6. Let (A;Σ) and (B;Θ) be algebras, ϕ : A → B and
∼
ψ: Σ→ Θ be mappings such that X and

∼
ψ (X) have the same arity. The pair (ϕ,

∼
ψ)

is called bihomomorphism from algebra (A;Σ) to algebra (B;Θ), if the condition

ϕ(X(a1, . . . ,an)) =
∼
ψ (X)(ϕ(a1), . . . ,ϕ(an))

holds for any X ∈ Σ and for any a1, . . . ,an ∈ A [2].
D e f i n i t i o n 7. Let (A;Σ) and (B;Θ) be algebras with binary operations

and (ϕ,
∼
ψ) : (A;Σ)→ (B;Θ) be a bihomomorphism. The bihomomorphism (ϕ,

∼
ψ) is

called commutative bihomomorphism, if the following condition
∼
ψ (X)(ϕ(a),ϕ(b)) =

∼
ψ (X)(ϕ(b),ϕ(a))

holds for any X ∈ Σ and for any a,b ∈ A.
For the second order formulae (and the second order languages) see [3–5]. Let

us recall, that a hyperidentity [2, 6–10] (or ∀(∀)-identity) is a second-order formula
of the following form:

∀X1, . . . ,Xm∀x1, . . . ,xn(ω1 = ω2), (∗)
where ω1, ω2 are words (terms) in the alphabet of functional variables X1, . . . ,Xm and
objective variables x1, . . . ,xn. However hyperidentities are usually presented without
universal quantifiers: ω1 = ω2. The hyperidentity ω1 = ω2 is said to be satisfied in
the algebra (Q;Σ), if this equality holds whenever every object variable x j is replaced
by an arbitrary element from Q and every functional variable Xi is replaced by an
arbitrary operation of the corresponding arity from Σ. The possibility of such
replacement is supposed, that is

{|X1|, . . . , |Xm|} ⊆ {|A| | A ∈ Σ}= T(Q;Σ) = T(Σ),
where |S| is the arity of S, and T(Q,Σ) is called the arithmetic type of (Q;Σ).
A T -algebra is an algebra with arithmetic type T ⊆ N. A class of algebras is called a
class of T -algebras, if every algebra in it is a T -algebra.

The hyperidentity is said to be non-trivial if m > 1, and it is trivial if m = 1.
The number m is called the functional rank of the given hyperidentity (coidentity).

A binary algebra (Q;Σ) is said to be a q-algebra (e-algebra), if there is an
operation A ∈ Σ such that Q(A) is a quasigroup (a groupoid with a unit). A binary
algebra (Q;Σ) is called non-trivial if |Σ| > 1. It is known [2, 6] (see also [7, 11]),
that if an associative non-trivial hyperidentity is satisfied in a non-trivial q-algebra
(e-algebra), then this hyperidentity can only be of the functional rank 2 and of one of
the following forms:

X(x,Y (y,z)) = Y (X(x,y),z), (ass)1

X(x,Y (y,z)) = X(Y (x,y),z), (ass)2

Y (x,Y (y,z)) = X(X(x,y),z). (ass)3
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Moreover, in the class of q-algebras (e-algebras) the hyperidentity (ass)3
implies the hyperidentity (ass)2, which, in turn, implies the hyperidentity (ass)1.

A binary algebra (Q;Σ) is called hyperassociative, if it satisfies the following
hyperidentity of associativity:

X(x,Y (y,z)) = Y (X(x,y),z). (ass)1

T h e o r e m 1. Let S = (Q;Σ) be a hyperassociative algebra and L(+, ·)
be a complete boolean algebra. Then S[L] = (Q[L];ΣL) is a hyperassociative algebra.

P r o o f . We have

Q[L] =

{
ν : Q→ L | ν(a) ·ν(b) = 0;a 6= b, ∑

a∈Q
ν(a) = 1

}
.

We should proof the following hyperidentity of associativity:

XL(µ,YL(ν ,τ)) = YL(XL(µ,ν),τ). (1)

Take any a ∈ Q:
XL(µ,YL(ν ,τ))(a) = ∑

a=X(b,c)
µ(b) ·YL(ν ,τ)(c) =

= ∑
a=X(b,c)

µ(b) ·

(
∑

c=Y (d,e)
ν(d) · τ(e)

)
= ∑

a=X(b,Y (d,e))
µ(b) · (ν(d) · τ(e)),

(2)

YL(XL(µ,ν),τ)(a) = ∑
a=Y (b,c)

XL(µ,ν)(b) · τ(c) =

= ∑
a=Y (b,c)

(
∑

b=X(d,e)
µ(d) ·ν(e)

)
· τ(c) = ∑

a=Y (X(d,e),c)
(µ(d) ·ν(e)) · τ(c).

(3)

Note, that the last equalities in (2) and (3) follows from the distributivity of L.
According to the associativity of · in L, hyperassociativity of S and (2), (3),
we get (1). �

Auxiliary Results and Concepts.
T h e o r e m 2. [10]. The complete, complemented lattice L(+, ·) will be

quasi-boolean if and only if it admits (·)-homomorphism on some complete boolean
lattice. Therefore the homomorphism is one-to-one in the 0 and 1 and preserves
l.u.b.’s of orthogonal systems. Such homomorphism is called canonical.

L e m m a 1. Let S = (Q;Σ) be a rectangular algebra [12] and L0(+, ·) is a
complete boolean algebra. Then (S[L0];ΣL0) is a rectangular algebra.

P r o o f . We should show that XL0(µ,XL0(ν ,µ)) = µ. Indeed, take any
a ∈ Q:

XL0(µ,XL0(ν ,µ))(a) = ∑
a=X(b,c)

µ(b) ·XL0(ν ,µ)(c) =

= ∑
a=X(b,c)

µ(b) ·

(
∑

c=X(d,e)
ν(d) ·µ(e)

)
= ∑

a=X(b,X(d,e))
(µ(b) ·ν(d) ·µ(e)) =

= ∑
a=X(b,X(d,b))

(µ(b) ·ν(d) ·µ(b)) = ∑
d∈Q

µ(a) ·ν(d) =
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= µ(a) ·

(
∑

d∈Q
ν(d)

)
= µ(a) ·1 = µ(a).

�
L e m m a 2. Let Q be a relation defined on an idempotent hyperassociative

algebra S = (A;Σ) such that for all a,b ∈ A (X(a,b),X(b,a)) ∈ Q. Then θ ∗ ⊆ Q,
where θ ∗ = {(x,y) ∈ Q×Q | X(x,X(y,x)) = x,X(y,X(x,y)) = y, ∀X ∈ Σ}.

P r o o f . Let (a,b) ∈ θ ∗. Then

Y (X(a,b),X(b,a)) = X(a,Y (b,X(b,a))) =

= X(a,X(Y (b,b),a)) = X(a,X(b,a)) = a.

In the same way we can get that Y (X(b,a),X(a,b)) = b.
Because (Y (X(a,b),X(b,a)),Y (X(b,a),X(a,b))) ∈ Q, so (a,b) ∈ Q. �
Main Results.
T h e o r e m 3. Let B = (A;Σ) be an algebra, S = (Q;Σ) be a rectangular

algebra and L(+, ·) be a quasi-boolean lattice. If B is embedded into(S[L],ΣL),
then B will be idempotent and with transitive commutativity property [12].

P r o o f . Let us prove that (S[L],ΣL) is an idempotent algebra. Indeed, take
any ν ∈ S[L], any XL ∈ ΣL and any a ∈ Q:

XL(ν ,ν)(a) = ∑
a=X(b,c)

ν(b) ·ν(c) = ∑
a=X(b,b)

ν(b) ·ν(b) =

= ∑
a=b

ν(b) = ν(a)→ XL(ν ,ν) = ν .

Now indicate, that (S[L],ΣL) has a transitive commutativity property.
According to the Theorem 2, there exist complete boolean lattices L0 and

f0 : L→ L0 is a canonical (·)-homomorphism from a quasi-boolean lattice L to a
complete boolean lattice L0.

Consider the following map f : S[L]→ S[L0] :

f (ν) = ν ◦ f0.

Let us show that the map f is a homomorphism. We should prove that for
∀µ,ν ∈ S[L],∀X ∈ Σ

f (XL(µ,ν)) = XL0( f (µ), f (ν)). (4)

Indeed, take any a ∈ Q

f (XL(µ,ν))(a) = f0(XL(µ,ν)(a)) = f0

(
∑

a=X(b,c)
µ(b) ·ν(c)

)
. (5)

Consider the following system λ X
a = {µ(b) ·ν(c)|X(b,c) = a}. According to

the commutativity of operation · in lattice L, we have that λ X
a is an ortogonal system.

So, because the map f0 saves the supremums of ortogonal systems, we have

f0

(
∑

a=X(b,c)
µ(b) ·ν(c)

)
= ∑

a=X(b,c)
f0(µ(b)) · f0(ν(c)).
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So, according to the equalities (5), we have

f (XL(µ,ν))(a) = ∑
a=X(b,c)

f0(µ(b)) · f0(ν(c)). (6)

On the other hand,

XL0( f (µ), f (ν))(a) = ∑
a=X(b,c)

f (µ)(b) · f (ν)(c) = ∑
a=X(b,c)

f0(µ(b)) · f0(ν(c)). (7)

According to equalities (6) and (7), we get (4).
Let θ = {(µ,ν) ∈ S[L]|XL(µ,ν) = XL(ν ,µ); ∀XL ∈ ΣL} is a relation of

commutativity in S[L]. Let us show that ker( f ) = θ .

We have ker( f ) = {(µ,ν) ∈ S[L]| f (µ) = f (ν)}. It is enough to show that
f (µ) = f (ν)⇔ XL(µ,ν) = XL(ν ,µ); ∀XL ∈ ΣL.

Let f (µ) = f (ν). We show that XL(µ,ν) = XL(ν ,µ), ∀XL ∈ ΣL.

Indeed, consider the product µ(a) ·ν(b), where a 6= b. We have

f0(µ(a) ·ν(b)) = f0(µ(a)) · f0(ν(b)) = f0(ν(a)) · f0(ν(b)) =

= f0(ν(a) ·ν(b)) = f0(0) = 0.

So f0(µ(a) ·ν(b)) = 0. Since f0 is one-to-one in 0, we get µ(a) ·ν(b) = 0.
Take any XL ∈ ΣL and any a ∈ Q:

XL(µ,ν)(a) = ∑
a=X(b,c)

µ(b) ·ν(c) = ∑
a=X(b,b)

µ(b) ·ν(b) = µ(a) ·ν(a) = ν(a) ·µ(a) =

= ∑
a=X(b,c)

ν(b) ·µ(c) = XL(ν ,µ)(a)⇒ XL(µ,ν) = XL(ν ,µ).

Conversely, let XL(µ,ν) = XL(ν ,µ);∀XL ∈ ΣL. We have

XL0( f (µ), f (ν)) = f (XL(µ,ν)) = f (XL(ν ,µ)) = XL0( f (ν), f (µ)). (8)

Since the rectangular algebra is anticommutative, according to the Lemma 1
and the equality (8), we get that f (µ) = f (ν). So ker( f ) = θ .

The ker( f ) is a congruence on (S[L],ΣL). So θ is transitive.
We get that (S[L],ΣL) is idempotent and has a transitive commutativity

property. So each embedded algebra is idempotent and has transitive commutativity
property. �

T h e o r e m 4. Let S = (A;Σ) be an idempotent and hyperassociative
algebra. Then there exist an idempotent, commutative algebra T = (B;Θ) and a

weak bihomomorphism (ϕ,
∼
ψ) : S→ T such that the inverse image of any element of

T is an anticommutative idempotent semigroup. The bihomomorphism (ϕ,
∼
ψ) is the

weak in the sense that for any other commutative bihomomorphism (Φ,
∼
Ξ) from S to

T the following condition holds:

kerϕ ⊆ kerΦ.
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P r o o f . Consider the following relation on S:

θ
∗ =

{
(x,y) ∈ Q×Q | X(x,X(y,x)) = x,X(y,X(x,y)) = y, ∀X ∈ Σ

}
.

θ
∗
a = {x ∈ Q | (a,x) ∈ θ

∗},

A/θ
∗ = {θ ∗a | a ∈ A},

Σ/θ
∗ =

{
X∗ : A/θ

∗×A/θ
∗→ A/θ

∗ | X∗(θ ∗a ,θ ∗b ) = θ
∗
X(a,b),X ∈ Σ

}
.

It is shown that θ ∗ is a congruence and the quotient algebra S∗ = (A/θ ∗,Σ/θ ∗) is
an idempotent, commutative algebra and its elements are rectangular semigroups, so
also anticommutative, idempotent semigroups (see [12]).

Consider the mapping (ϕ,
∼
ψ) : S→ S∗:

ϕ : A→ A/θ
∗,ϕ(a) = θ

∗
a ,

∼
ψ: Σ→ Σ/θ

∗,
∼
ψ (X) = X∗,

which is evidently bihomomorphism. Let us show that ϕ−1(θ ∗a ) is an anticommuta-
tive idempotent semigroup for every θ ∗a ∈ A/θ ∗. Indeed,

ϕ
−1(θ ∗a ) =

{
b ∈ A|(a,b) ∈ θ

∗
}
= θ

∗
a ,

so since θ ∗a is an idempotent anticommutative semigroup, ϕ−1(θ ∗a ) is also an
idempotent anticommutative semigroup.

Let (Φ,
∼
Ξ) be a commutative bihomomorphism of S. Let us show that

kerϕ ⊆ kerΦ. Indeed, it is easy to see that kerϕ = θ ∗ and kerΦ is a congruence.
It is evident also that (X(a,b),X(b,a))∈ kerΦ, because the bihomomorphism (Φ,

∼
Ξ)

is commutative. It remains to use Lemma 2. �
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HANRAHA
IVNERI QVAZIBULYAN ASTI�AN EV

INQNAHAM�NKNO� HANRAHA
IVNER

A�xatanqum apacucvum � hanraha�vi` u��ankyun hanraha�vi

qvazibulyan asti�yani mej nerdrvelu hamar anhra�e�t payman:

Apacucvum � na , or cankaca� inqnaham�nkno� gerzugordakan

hanraha�iv �uyl bihomomorfizmi mijocov artapatkervum � inqna-

ham�nkno� te�a�oxakan hanrana�vi mej:


