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THE NON-CLASSICAL PROBLEM OF AN ORTHOTROPIC BEAM
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On the basis of the refined theory of orthotropic plates of variable thick-
ness, the equations of the problem of bending of an elastically clamped beam in
the case of simultaneous action of its own weight and axial compressive forces
are obtained. The effects of transverse shear and the effect of reducing the
compressive force of the support are taken into account. Turning to dimension-
less quantities, the specific problem for a beam of linearly variable thickness is
solved by the collocation method. The question of the stability of the beam is
discussed.
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Introduction. While designing building structures and devices, situations of-
ten arise when it is necessary to solve the problem of bending of thin-walled elements
under the action of axial compressive forces and their own weight. There are many
papers in which the problems of intense deformation of the state and stability of such
elements are investigated within the framework of the classical theory of mechanics
(see [1]). The advent of modern materials has led to the need for the mentioned re-
search on refined theories that take into account those factors that are neglected in the
classical theory. This paper attempts to partially fulfill this gap.

Theoretical Part. Consider an orthotropic beam of length l, constant width b
and variable thickness h in the right-hand Cartesian coordinate system x, y, z. The
main directions of the anisotropy of the material are parallel to the coordinate axes.
The beam is elastically clamped at two ends and, in addition of its own weight, is also
affected by axial compressive forces T (see Fig. 1). It is taken into account that the
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elastically clamped support due to friction with an elastic array reduces the external
compressive force P, as a result of which the force

T = βP, β < 1, (1)

acts on the beam. The value of the coefficient β can be easily determined
experimentally.

In the paper [2] the conditions of the considered elastically clamped support
with a transverse bending of the beam were obtained. These conditions are:

dw
dx

= D(aNx−Mx) , w = a
dw
dx

+BNx, (2)

where w is the deflection; Nx and Mx are the transverse force and bending moment
of the beam, respectively; D and B are parameters of the elastically clamped support,
and are inverse quantities of the stiffness of the support against rotation and vertical
displacement, respectively. In the SI units they have dimensions D ∼ N−1m−1,
B∼ mN−1, respectively. Parameters D and B are connected by the relation

D =
3B
a2 . (3)

Fig. 1. The loading form.

Note that in the derivation of conditions (2) it was assumed that, due to the
relative smallness of length 2a, a part of the beam inserted into an elastic mass moves
without deformation progressively and rotates as one piece, in virtue of which the

derivative
dw
dx

of the deflection within the inserted parts do not change and are equal
to the values at x = 0 and x = l.

Using the refined theory of orthotropic plates of variable thickness (see [3]),
we obtain the following differential equations for the bending problem of the beam
under consideration:
(

Ebh2 d2h
dx2 +12βP

)
d2w
dx2 −bh

(
8+χh

d2h
dx2

)
dϕ1

dx
−16b

dh
dx

ϕ1=12ρgbh,

Eh2 d3w
dx3 +2Eh

dh
dx
·d

2w
dx2 −χh2 d2ϕ1

dx2 −2χh
dh
dx
·dϕ1

dx
+8ϕ1=0.

(4)

Due to the lack of stresses σy and neglecting of voltage σz, we have replaced
material parameter B11 by Young’s modulus E of axial direction, χ takes into account
the effect of transverse shear deformation exz, ϕ1 is a function characterizing the
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distribution of tangential stress τxz in the midplane z = 0 of the beam, ρ denotes the
density of the beam material, and g is the gravity acceleration.

Note that in the expression of the cargo term Z2 [4], the intensity of a fictitious
load resulting from the compression of a curved beam by forces βP is added to the
intensity of the vertical load arising from its own weight.

Thus, the problem we are considering reduces to solving the system of differ-
ential equations (4) under the boundary conditions (2) imposed on the both edges of
the beam, i.e., x = 0 and x = l.

For simplicity, we assume that both edges of the beam have the same elastically
pinched supports.

Let us apply the dimensionless notation

x = lx, h = m1lH, b = m2l, a = m1l, ϕ1 = Eϕ,

P = Em2
1l2P, ρ =

Em3
1ρ

m2gl
, D =

3B
Em2

1l3 , w = aw, BEl = B.
(5)

In the problem, we are considering, expressions for the shear force of the beam
Nx and the bending moment Mx can be obtained from the corresponding expressions
for the case of the plate [3], multiplying the letter by the width of the beam b. In this
way we get:

Nx =
bh
12

[
8ϕ1−h

dh
dx

(
E

d2w
dx2 −χ

dϕ1

dx

)]
,

Mx =−
bh3E

12

(
d2w
dx2 −a55

dϕ1

dx

)
.

(6)

In view of the notation (5) the equations (4) take the form:

m2
1

(
m1m2H2 d2H

dx2 +12βP
)

d2w
dx2 −m2H

(
8+χm2

1H
d2H
dx2

)
dϕ

dx
−

−16m2
dH
dx

ϕ = 12m3
1ρH,

m3
1H2 d3w

dx3 +2m3
1H

dH
dx
· d

2w
dx2 −χm2

1H2 d2ϕ

dx2 −2χm2
1H

dH
dx
· dϕ

dx
+

+8ϕ = 0.

(7)

The boundary conditions (2), which are imposed on both edges of the beam,
in view of (6), take the form:

dw
dx

=
Bm2H
4m1

[
8ϕ +m1H

(
H−m1

dH
dx

)(
m1

d2w
dx2 −χ

dϕ

dx

)]
,

w = m1
dw
dx

+
Bm2H
12m1

[
8ϕ−m2

1H
dH
dx

(
m1

d2w
dx2 −χ

dϕ

dx

)]
,

(8)

at x̄ = 0 and x̄ = 1.
Consider the case when the thickness of the beam varies linearly with x:

h = m1l +h1x = m1lH ⇒ H = 1+ γx, (9)
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where
γ =

h1

m1
, h > 0 ⇒ h1 >−m1. (10)

With this specification, the equations (7) take the form:
3βm2

1P
d2w
dx2 −2m2 (1+ γx)

dϕ

dx
−4m2γϕ = 3m3

1ρ (1+ γx) ,

m3
1 (1+ γx)2 d3w

dx3 +2m3
1γ (1+ γx)

d2w
dx2 −

−χm2
1 (1+ γx)2 d2ϕ

dx2 −2χm2
1γ (1+ γx)

dϕ

dx
+8ϕ = 0,

(11)

and the boundary conditions (8) take the form:

dw
dx

=
Bm2 (1+γx)

4m1

[
8ϕ +m1 (1+ γx)(1+ γx−m1γ)

(
m1

d2w
dx

2

−χ
dϕ

dx

)]
,

w = m1
dw
dx

+
Bm2 (1+ γx)

12

[
8ϕ−m2

1γ (1+ γx)
(

m1
d2w
dx2 −χ

dϕ

dx

)]
,

(12)
at x = 0 and x = 1.

Computational Part. Let
m1 = 0.1, m2 = 0.3, γ = 0; and 1, χ = 0; 5 and 10,
ρ = 0.012 and 0.006, β = 0.5, B = 1.

(13)

The task is convenient to solve by the collocation method. To this end, let us
represent the unknown functions w and ϕ in the form of polynomials:

w = a0 +
k

∑
i=1

aixi, ϕ = b0 +
k

∑
i=1

bixi. (14)

To determine the coefficients a0, ai and b0, bi we divide the interval 0≤ x≤ 1
into k equal parts. Considering the equations (11) at the dividing points and the
boundary conditions (12) at the endpoints, we obtain a system of 2(k+1) algebraic
equations with respect to the mentioned coefficients. Solving this system, we find the
values of this coefficients, with which we calculate the values of the functions w and
ϕ . At the endpoints and dividing points of the segment 0≤ x≤ 1, the dimensionless
shear force Nx and the bending moment Mx are calculated by the corresponding for-
mulas (5). These calculations will be repeated with increasing k in the expressions
(14) until the practical convergence of the calculated values w, Nx and Mx.zz

The calculation results are shown in the Tabs. 1−3 and in the Figs. 2−4 for
γ = 0 and γ = 1, respectively.

T a b l e 1

The value critical of the compressive force (γ=0; ρ=0.012)

χ 0 5 10

Pcr. 0.1945 0.1578 0.1318
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T a b l e 2

The deflection maximum (wmax·102) depending on P/Pcr. at γ=0 and
different values of χ (deflection point is at xmax=0.5)

P/Pcr.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

χ=0 0.2641 0.2923 0.3270 0.3724 0.4320 0.5150 0.6400 0.8400 1.2300 2.3300 22.720

χ=5 0.2645 0.2930 0.3280 0.3738 0.4344 0.5190 0.6459 0.8568 1.2780 2.5360 613.00

χ=10 0.2649 0.2932 0.3285 0.3739 0.4343 0.5186 0.6449 0.8549 1.2740 2.5260 716.00

T a b l e 3

The deflection values (w·103) at different points
(Nx = 0; Mx = 0)

x

0.0 0.2 0.4 0.6 0.8 1.0

γ=0 χ=0 0.14 2.26 4.93 4.77 1.95 0.06

ρ=0.012 χ=5 0.17 2.93 6.54 6.35 2.57 0.07

P=0.1 χ=10 0.19 4.27 9.79 9.54 3.82 0.16

γ=1 χ=0 0.049 0.46 0.7 0.52 0.17 0.032

ρ=0.006 χ=5 0.055 0.51 0.76 0.54 0.17 0.047

P=0.1 χ=10 0.059 0.57 0.839 0.588 0.18 0.057

It should be noted that in the scientific literature there are many works devoted
to the description and application of the collocation method, as well as to the study of
the bending and stability of thin-walled elements with different boundary conditions,
including the case of an elastically clamped support [5–16].
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Fig. 2. The deflection form (γ = 1, P = 0.2)
a : χ = 0, b : χ = 10.
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Fig. 3. The change in internal effort (γ = 1, P = 0.2)
a : χ = 0, b : χ = 10.
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Fig. 4. The moment change (γ = 1, P = 0.2)
a : χ = 0, b : χ = 10.

Now consider two beams made of the same isotropic elastic material. The
beams are elastically clamped at both ends and are compressed by axial forces βP
(Fig. 5). One of these beams (Fig. 5,a) has a constant thickness h0, and the other
(Fig. 5,b) has a variable thickness h = h0 +h1x.
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Fig. 5. The weight distribution form.

The width b and length l of both beams are the same. Elastically clamped
supports of both beams and the reduction of the compressive forces are also identica.
As a vertical load we will consider the dead weights of the beams with the intensity
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q = bhρg(Newton/Meter), where ρ is the beam material density; g is the
acceleration of gravity (force of gravity).

It is known [1], that when the value of the compressive forces increases and
approaches a critical value, then the maximum value of the deflection of a beam of
constant thickness tends to infinity (case a).

In the case of a beam of variable thickness (case b), the thicknesses of the
sections increase. The intensity of the own weight of this beam is greater than that of
the beam of constant thickness in accordance with the law of direct proportionality

(q = bhρg), and bending stiffness
(

Ebh3

12

)
grows in direct proportion to the cube of

thickness. Since the value of the deflection is inversely proportional to the stiffness,
then if the values of the compressive forces βP tend to be critical, then values of the
deflection, in contrast to the case of the beam of constant thickness, do not tend to
infinity, but to a finite value. This result is illustrated in this article when solving a
specific problem of stability of a beam of variable thickness.

Conclusion. The data we have obtained in this article allow us to draw the
following conclusions:

1. the effects of transverse shear deformations (cases χ > 0), as expected,
with the same values of the other quantities, leads to an increase in deflections and a
decrease in critical forces;

2. the effect of transverse shear deformations does not significantly affect the
character of changes in the value of the transverse force Nx and bending moment Mx.
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