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In this paper a universal function U € L'[0,1)?, which with respect to the
double Walsh system has universal property in the sense of modification, is
constructed.
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Introduction. The problems of the existence of so called “universal functions”
and the “universal series” are classical, and there is an extensive literature on the
theory of functions, which are universal in different senses. The first example is
due to Birkhoff [1]], who proved the existence of an entire function f(z) with the
property that for an arbitrary entire function g(z) there exists a subsequence {n;};>_,
of the natural numbers N, such that { f(z+ny)};2, converges to g(z), compactly on
C. Hence the sequence {f(z+n)};_, of “additive translates” is dense in the space of
all entire functions endowed with the topology of compact convergence.

In [2] MacLane proved a similar result for another type of universality, namely,
that there exists an entire function f(z), which is universal with respect to deriva-
tives; that is, for every entire function g(z) and for each number r > 0, there exists a
increasing sequence of natural numbers {n;}?_;, so that the sequence {f")(z)}_,
uniformly converges to g(z) on |z| < r.

In [3] Marcinkiewicz proved that for any nonzero null sequence %, — 0 there
exists a continuous function F € C[0,1] F: [0,1] — R having the property: for
any measurable function f(x) : [0,1] there is a subsequence n; * such that almost
everywhere on [0, 1]

F(x+hy,,)—F(x)
hnk

— g(x), k— oo
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In [4] Grosse-Erdmann proved the existence of an infinitely differentiable
function with universal Taylor expansion. Namely, there exists a function
g(x) € C*(R), with g(0) = 0 such that the Taylor series at xo = 0 is locally
uniformly universal in C(R), that is for any function f(x) € C(R) with f(0) =0
and a number r > 0 there exists a subsequence

1 o (m)
Snk(g70) = Z L@xm

|
m=1 M

of partial sums of the Taylor series for g(x), which converges to f(x) uniformly on
the interval (—r,r).

In [[5H13]] we constructed functions, whose universality is manifested through
Fourier series with respect to the classical systems. Here we present results having a
direct relation to the present work, in [J5] it is proved

Theorem 1. There exists a (universal) function U € L'[0,1) with strictly
decreasing Fourier—Walsh coefficients such that for every almost everywhere
finite measurable function on [0, 1] one can find a (modified) function g € L=[0,1),
mes{x € [0,1);g # f} < € such that |cx(g)| = cx(U), Yk € spec(g), and the Fourier—

1
Walsh series of g(x) converges uniformly on [0,1), where c;(f) = / F(x)or(x)dx
0

and spec(f) ={k € N,cx(f) # 0}.

In this paper we consider the following question: whether it is possible to get
the similar result in two-dimensional case.

Note that a number of one dimensional classical results (theorems such as the
L. Carleson theorem [14]: Fourier series of any function f € L2[0,27) in the trigono-
metric system converges almost everywhere on [0,27); the M. Riesz theorem [15]:
Fourier series of any function f € L?[0,27), p > 1, in the trigonometric system
converges in L”[0,27) norm; the A. M. Kolmogorov theorem [[16]: Trigonomet-
ric Fourier series of any function f € LP[0,27) converges in L”[0,2x), p € (0,1),
metric) cannot be extended to two-dimensional case. In this respect, even different
(spherical, rectangular, square, etc.) partial sums differ sharply from each other in
their properties in matters like convergence in L”[0,27), p > 1, and convergence
almost everywhere. For example, in [|17,|18]] Fefferman proved:

1) for each p # 2 there exists a function f(x,y) from L?[0,27), for which the
spherical partial sums of the trigonometric Fourier series do not converge in L”[0,27)
norm;

2) there exists a continuous function f(x,y), whose rectangular partial sums of
the double trigonometric Fourier series diverge at any point [0,27)2. In [19]
Grigoryan constructed a function, whose spherical partial sums of the trigonometric
double Fourier series diverge in L”[0,27) metrics for any p € (0,1). In paper [20]
Harris constructed a function f € LP[0,1), 1 < p < 2, such that the spherical partial
sums of its Fourier series in the double Walsh system diverges almost everywhere and
in L”]0,1) norm. Note also that the almost everywhere convergence of the spherical
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partial sums of double Fourier and Fourier—Walsh series of continuous functions is
still unknown.

Let |E| be the Lebesgue measure of a measurable set E C [0,1) or E C [0,1)2.
By L*[0,1) we denote the space of all bounded measurable functions on [0, 1)? with
the norm [[ - [0 = || [|r=jo.12 = sup  {[-[}.

(x,)€[0,1)?

Let ® = {¢g(x)} be the Walsh system in the Payley ordering (see [21,22]).
We denote by ¢y (f) the Fourier coefficients in the double Walsh system and by
Snvm((x,y),f) the rectangular partial sum of the Fourier—Walsh series of a function

f(x,y) € LP[0, 1)2
Crs(f //fxy Ok (%) @5 (y)dx, Snm((x,), Z crs(f os(y)-

The spectmm of f(x,y) (denoted by spec(f)) is the support of ci(f),
i.e. the set of the pairs of integers, where ¢y s(f) is non-zero.

In this paper we will proof the following Theorem.

Theorem 2. There exists a (universal) function U € L'[0,1)? such that
for every almost everywhere finite measurable on [0,1)* function f(x,y) one can
find a (modified) function g(x,y) € L*[0,1)?,mes{(x,y) € [0,1)*;g # f} < & with
crs(8)] = cxs(U),V(k,s) € spec(g), whose Fourier—Walsh double series converges
uniformly on [0,1)? by rectangles.

We note that these universal functions are interesting in light of well-known
classical theorems of Luzin [23]] and Menshov [24] conserning the “correction of
functions”.

The following problems remain open:

Question 1. Is it possible to choose a modified function g(x) in the
Theorem 1 that g € C[0,1)?

Question 2. Isthe Theorems 1 and 2 true for the trigonometric system?

Main Lemmas. In the paper we use the following lemma, previously proved
in [5]].

Lemma A . Letadyadic interval A and numbers my € N,y #0,6 € (0,1),
0c <O,’5ﬂ> ,0<0< ’g’,beglven

Then there exists a function g(x), a measurable set E C Awith |[E| > (1—8)|A|
and polynomials H(x), Q(x) in the Walsh system { @y} of the form

om om]
Hx) = ), bip(x),000) = Y ebuepu(x), e =0,£1,¥k € [2,2"),
k=2"0-1 k=20
which satisfy the conditions:
1
1) /\H(x)\dx <6

\ ifxek,
g =4 TrEE
0, ifx ¢ A,
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3) ||g(x) —Q(x)|| <6:;

oo
n

Y &bigi(x) ‘
k=20

n
5) Jso-ow| <o, max | ¥ ano
Using this Lemma and an argument of [25]], we obtain the following lemma.
Lemma B . Let number Ny > 1, 6,6 € (0,1) and let f(x,y) be a polyno-
mial in the Walsh double system {@y(x)@;(y)}. Then there exists a function g(x,y),
a measurable set E C [0,1)? with |E| > (1 — 8) and polynomials H(x,y), Q(x,y) in
the Walsh double system {@y(x)@s(y)} of the following form

3|yl
< 5

4)  max
2"0-1 <p<2m

oo

3yl
< T.

oo

oo

N N
H(x7y) = Z bk,s(Pk(x)(Ps(y)v Q(X,Y) = Z gk,57bk,s(pk(x)(ps(y)7 s = O;:tl,
k,s=Ny k,s=Ny

which satisfy the conditions:

1)/1/1|H(x,y)|dx<9;

00
2) g(x,y) = fx,y), for all (x,y)€E;

@Hﬂ%ﬂ-Q@W‘ <6

L°[0,1)2
16]| 1l =10,172

o}, %

L[0,1)2
" 15| f1l 20,12
5) max &.sb X _—
) x| X Sl D) sly) oy 52
Proof of Theorem 2. Numbering all Walsh polynomials with rational
coefficients, we can represent them as a sequence

{fa(x,y) s )]

Consecutively, applying Lemma B, one can find a sequence of functions
{gS,J ) (x,y)}'_,n > 1, sets {E,(/ N n> 1, and polynomials of the form

=1 j=1°
. My -1
B (xy) = Y bua@)e).1<j<n, @)
k,s:M,Sjil)
. M/(zj)_l . .
0= ¥ &b (g5 =+1:0),1<j<n @)
k,s:M,(,jfl)

where
1< M <M =M <« MV < M <

4
<MV =M <MV <. <M =M @

(1)
it <Mplyeos
which satisfy the conditions
g (13) = fule,y) for (xy) € B, |EY| = 1-277", 5)
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18 =01 < 22| full =0y 1185 = O lmpap < 27%, 1< j<n,  (6)

I,m . .
max e bpi(x) 0,(y) < fillpaps ()
MYV <t memy) (-1)
k=2 L2[0,1)2

HY (x,9)| dxdy < 4001 < j <. (8)

We define the function U (x,y) in following way:

Zn: Y o)) | = i brs@(X)os(»). (9

1j=1 \ g y=pg0 Y k.s=0

It is clear that

11 1
b n . =)
[ [Wweplaxay< ¥ ¥ Diey|dsay | < ¥ 54709 <1 o)
00 n=1j=1 00 n=1 j=1
From this and (8], (9) we have
brs=crs(U), k,s=0,1,2,... an

Let f(x,y) be an almost everywhere finite measurable function on [0,1)2.
Taking into account Luzin’s theorem, without loss of generality, one may assume that
f(x,y) € C[0,1)2. It is easy to see, that one can choose a subsequence { fi, (x,¥)}7,
from the sequence (1)) such that

lim Z S, — f =0, |Ifillr=po.2 <472,
N = o o (12)
n>2 k >j0:[10g%5]+1.
We put
1) o+ 1 1
01(xy) = 0" (xy), EL=ES, gi(xy) =g Vxy). (3
Suppose that natural numbers k; = v; < ... < V,_, functions fy, (x,y),
gn(x,y), 1 <n<g—1,sets E,, | <n<g—1,and polynomials
M\(/Iﬁ’j()) 1
Cuxy) =00y = Y 8 b o) 0,(y)
kl’s:M‘(/nJrjO—l)

are already defined and for all 1 <n < g — 1, and they satisfy the conditions:
gn(x,y) = fi, (x,y), (x, y) € Ey, |Es| >1-627",

HgnHL” 0,12 <567 20 (n=8) Z [Ok — k] <2741,
L=[0,1)2 (14)
Im (Vi n+Jo) yn
max L &y brs Pk (%) @5 (v) <2

My 07D <t b 00 g0

L=[0,1)2



ON THE UNIFORM CONVERGENCE OF DOUBLE FOURIER-WALSH SERIES 25

It is easy to see that one can choose a function qu (x,) (Vg > v4—1) from the
sequence (T) such that

g—1
7= (- 10 )
By virtue of (12), (T4) and (I3)), we have

<274, (15)
L[0,1)2

qg—1
”quHooS qu_ (fkq_ 'Zl [Qi‘&']) 2+
= -
o =[0,1) (16)
+ fe =002 + || X [Qi —gil <2743,
i=1 L=[0,1)?
We put
8q(Y) = fi, (6.2) + & (v,3) = o, (e3)], Eg =B, (D)
M(ﬁj())fl
. Vg .
Q) =0 y)= X e eeb).  (8)
k s:M(quj(rU
9 Vq
Taking into account (3) and (I7), we get
g(x,y) = fi,(x,y), (x,y) € Eg. (19)
By virtue of (6)) and (T4) (T3), (17) and (I8)) we obtain
q q—1
Y [0j—g)] =L [Q—gl+Q—gq <
=1 =2 171 L£=[0,1)2
q-1 (20)
<\[fv,— | fi,— X [Qj—g/] +
\ J=1 ‘ L=[0,1)2
+| |g(vz+]°) - Q(vZJr]O)HLw[o,l)Z <27
Obviously (see (7) and (16)),
bm (VQ7‘I+j0) —
s max Y g T b (0 () <271 @)
A T L L=[0,1)2
From (6), (14)—(L6) it follows that
q—1 g—1
lealispae < 7~ (5~ E l0-al)|  +|Tloel]
i=1 L2[0,1)2 j=1 L=[0,1)2
18y o < 472 4712 4 2280y (1)l o0 12 < 5527
(22)
Using induction one can find a sequence of functions {g, (x,y)};’:l, sets

{Eq};_. polynomials {Q,(x,y)}, satisfying the conditions — for all ¢ > 1.
We put

E=()E, (23)
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From (@), (I7), (22)) and (23)) it follows that

oo

qu

q=1

< X llggllz=pp,1)2 < e (24)
rop,12 97

E|>1-38,

We define the function f(x,y) and the sequence of numbers {€ksti—o in
following way:

flx,y) = qu(x ) (25)

q_

e,fvj’q”“) ks e [Mv (atio=1) M§Z+"°)> Lg=1.2,...,
) (26)

ks = 0; k,s¢ U [ (q+jo— 1)’ Méqﬂ'o)

q

From (12)), (T6), (I8)—(26) it follows that
fley) L7017, Flxy) = flxy), (xy) €E,

(g—1+ijg)
My, =1

Z 'gk,sbk,s O (x) O (Y) - f =
k,s=0

oo

g1 [ My

1L X einewen | -7 =

n=1 k:M\(,ZHO 1)

oo

q—] oo
< Z (On —8n) + Z HgnHL""[OJ)2 < 5577270710,
20,02 =1 L=, "=

From this and it follows that the series Z €k.sbi s P (x) @5 (y) converges
k,s=0

to the function f(x,y) uniformly on [0, 1)? and, therefore (see , ),

11
crs(f // (x,y) Ok (x) @5 (y)dxdy = & sbi s = € scks(U), k,s =0,1,2,...
00

Theorem 2 is proved.
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U. Q. &rpanNr3uL, W L AUQuUrsuy, 9. ¢ 1UuQuUr3uu

NFAICh UMPYLUGD SUUTYUCSNd, SOFCHER SUHUUENMTIUD
QNFAUUDPSNFE-3NFLL

Whiwpuipmd quomgud £ U € LY0,1)? muhytpuwy $mblghw, npp
Minph Ypyowyh hwdwupgh Gqupdwdp odpwd L ninniwl  hdwuypny
nibhytpuw hwpynipjudp:

M. I. TPUT'OPAH, A.JI. KABAPAH, I. I KASAPAH

PABHOMEPHA S CXOANMOCTDH KOROOPUINEHTOB ®VPLE I10
JBOMHON CUCTEME YOJIIIIA

B pabore mocrpoena yuusepcasibnas dyukiusa U € LI[O,I)Z7 KOTOpast
110 JIBOIHOI cucTeMe YoJIIa 00J1a1aeT YHUBEPCAJIbHBIM CBOHCTBOM B CMBICIIE
MO UKAITI.



