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ON SOLVABILITY OF SOME BOUNDARY PROBLEM
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We constract the exact solution of the Dirichlet problem in the Sobolev
space for two-dimensional elliptic equation considered on the half-plane.
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Problem Setup. Let S'(R") be the space of tempered distributions (slowly
growing). It is well known that the Fourier transform

1 .
n _ _ i(Apxr -4 Axn)
a(A) = (Fu)(A) = Qi R/ u(x) e dx,

where A = (Ay,...,4,), x = (x1,...,X,), dx = dxy,...,dx,, is a linear continuous
isomorphism on L, (R") and can be continuously extended to a topological isomor-
phism of the space §'(IR") on itself (see, for exasmple, [1]).

Consider the Sobolev spaces

R = ueS®): [1a@)P (5P +1yd <o,
RYI
H*(RY) ::{u eS'(R"): suppu CR’, u=v on R’}
for some v GHS(Rﬁ)},

n
where s € R, R" = {x = (x1,...,x,) € R":x, >0}, |§|> = .Zléiz.
=

The space H°(R") with the norm ||ul|z(gm) = H(1+|x|2)5/2ﬁ Hs (B
is a Hilbert space. The space H*(R’) with the norm ||ul| H(R) = inf V]| s (rr) »

where the inf is taken over all continuations of u belonging to H*(R"), is also a
Hilbert space (see [1] or [2]).
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For a natural number s the Hilbert space H*(Q2) of functions, where Q C R”,
coincides with the set of functions D*u, where u € L,(Q), satisfies generalized
derivatives D% € L,(Q) for all 1 < |a| <s. Here @ = (ay,..., ), a; € NU{0},
o] = a1+ + a,

D _ olel

- 8xix‘ ey
Fourier image of the space H*(R”") will be denoted by A*(R"),

Hﬁng(Rn) = H”HHS(R")'

Let D(R™) and D(R") be the sets of infinitely differentiable functions with a
compact support defined respectively on Rﬁ’r and R”.

It is known (see [1]) that D(R") C H'(R") and the mapping u(x) — u(x’,0)
(x = (¥,x,), ¥ € R""!) acting from D(R™) to D(R"!) can be continuously
extended to the operator T : H' (R".) — H'/2(R"~'). For u € H'(R".) the functions
T u commonly called trace of the function u.

Observe that (see [2]) any function u(x',x,) € H'(R") is continuous with
respect to x € R” and takes values in H'/2(R"1), i.e.

Hu(x’,xn +yn) —u(xX,x,) HHl/Z(RH) —0
asy, — 0.

The papers [3-5] (see also [6]) investigated the diffraction problem of Som-
merfeld with boundary conditions of the first and second kind in the Sobolev space.

Our investigations are based on an explicit solution of the “weak” Dirichlet
problem of the equation

Au+kKu=0, 1)
92 92
2 + Tyz’
The latter claim to find the solution of Eq. (1) in H'(R?%) with a given trace.
In this paper we solve an analogous problem for the equation
(A+K +B(y)u=0, )
where Imk > 0 and B(y) = —2/ch?y.

Dirichlet Problem. Denote by (1) = (A —k?)'/2 the analytical branch of the
square root on the plane with an incision along the rays {+k +i®; ® > 0} tending
to +oo as A — oo,

The next theorem allows us to restore the solution of Eq. (2) in the class
H'(R?) with a given trace.

Theorem . Ifafunction g belongs to H'/*(R), then Eq. (2) has a unique
solution in the space H' (R%r), which satisfies to the boundary condition

ug (x) == u(x,+0) = g(x). 3)

This solution is given by the formula

u(x,y) = % /e_mxg(/l) <1+thy> e 'Avay. (4)

considered in the space H'(R%), where A = ke C and Imk>0.

1(4)
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Proof. We apply the Fourier transform to Eq. (2) with respect to the
variable x. Let

oo

A / e’“ dx. 5
v(4,) ﬁ (5)
The function v satisfies to the following ordinary differential equation
d*v

where Q(A4,y) = >(A) + B(y) = A2 — k> —2/ch?y. It is easy to check that the
functions

vi(A,y) = (t(4) = thy)d ™,
v2(A,) = (1(A) + thy)e )
with respect to the variable y form a fundamental system of solutions for Eq. (6).
Let function u € H'(R?2) be a solution of Eq. (2).

It is known (see [1]) that the function u belongs to H ! (]R%r) if and only if the
following conditions hold:

[t 3) iy < )
0

7 du
/ Hayu,y)
0

The extension of (7) has the form

[

2

X

dy < oo, (8)
)

2

1 7.
14 (A% 2n_/e’”u(x,y)dx dAdy =

—o0

8\8

= [ [a+1P) way) ardy <o,
0 —oo

where the function v is defined by (5). Using Fubin’s theorem, we get

J+12P) [P dyda <o
—oo 0

From here, in particular, it follows that for almost every A € R
the function v(A4,y) belongs to L,(R,). Thus, we can state that for the solution
ucH l(Ri) of Eq. (2) the function v (which is the solution of Eq. (6)) defined by
formula (5) has the following form

v(2,y) = c(A)a(A,y) = c(A)(t(A) + thy) e " *2. ©)
The equality
il_l;% HI/!(X,y) _g(-x)”Hl/Z(R) =0
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is equivalent to the equality
iig(l) (A, ) = &)l g2 w) =0
and, thus, it follows from (9) that
S(A

>

Thus we conclude, that if the solution of the problem (2), (3) exists, then it can be
uniquely represented by formula (4).

It remains to verify that for g € H'/?(R) the function u, which is defined by
(4), belongs to H'(R?).

Define functions w;, i = 1,2, 3:

oo

)= 5 [ e Fa)e Hhar,

wa(x,y) := % /e*”“‘ g(?L)) e Pl

Wwa(x,y) = % / P g(A) (M) e " PVdA.

—oo

The function w is a solution of (1), (3) in the class H'! (Ri) (see [3], [3D

/le(xay)H%ﬂ(Rx) dy < ee. (10)
0

Note that
£(A)] > Rer(2) =

= \/12 — (Rek)? + (Imk)% + \/(12 — (Rek)2+ (Imk)2)2 +4Rek - Imk > v2Imk.
Using the Parseval equality, we get

oo

[ Iwae) ey dy= [
0

0 —o

2

8A) iy (1+A%)dAdy <

@)

~

oo

<y [ [150)dndy <
0 —o0

M el (11)
2v2Imk

2

+
where M| = sup .
rer [1(A)]?
u(x,y) = wi(x,y) +thyws(x,y), it satisfies condition (7). It is easy to verify that
the generalized derivative

Since the function u defined by (4) satisfies the equality

du U o (L Ay gy, —
=z [ e (e~ ) e @an -
1

— sz(x,y)—thywl(x,y)—W3(x,y). (12)
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Let

wr(A,y) = “wi(x,y)dx, k=1,2,3.

sl

Then, using the Parseval equality, we get

oo

J i)y dy = [ 1A ey dy= [ [
0 0 0 —o

_ —(2\/ilmk)y/ 2 grdy < 1 )
= e X X X T = >
O/ Jletf asdy < 5l

2
g(x)f’“)y‘ dxdy =

/ 2. 3) 2 s, dy = / %22, 42 =

oo

zflmk/Alzdld<; 2
e J 18P ardy < o el e

0

/ I3 I, v = / w3 e,y a2 = [ [ 2
0 -

éMz/

0

where

2
e PV grdy <

8\8

&) @[ (1442 didy <ay / w1 o) s,y dy < o

oy — sup TP
aer 1+ A2

It follows from these inequalities and formula (11) that the conditions (8) hold.
The Proof is complete. U
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Whuwpwipnd Juonigwd £ Jhuwhwppenipjud dte nhypuplynn  vh

tplswthwth Eihyyhjuud hwdwuwpdwbd hphpoth pingph pupguhw)g nodnaip
Unpnjih quupwdnieynibind:

A. T. KAMAJIAH, M. . KAPAXAHAH
O PA3BPEHIMMOCTHU OJTHO TPAHUYHOI 3AJTAUYN
B pabore mocTpoeno siBHOe pelreHne 3amadn uprxiie B IpOCTPaHCTBE

CobosieBa OHOTO JIBYMEPHOIO JUIMIITHIECKOTO YPaBHEHUs, PACCMATPUBae-
MOI'0 Ha IOJIYIIJIOCKOCTH.



