Physical and Mathematical Sciences

2020, **54**(1), p. 35–43

Mathematics

ON THE $\langle \rho_j, W_j \rangle$ GENERALIZED COMPLETELY MONOTONE FUNCTIONS

B. A. SAHAKYAN *

Chair of the General Mathematics YSU, Armenia

We consider sequences $\{\rho_j\}_0^{\infty}$ $(\rho_0 = 1, \rho_j \ge 1), \{\alpha_j\}_0^{\infty} (\alpha_0 = 0, \alpha_j = 1 - (1/\rho_j)), \{W_j(x)\}_0^{\infty} \in W$, where

$$W = \left\{ \left\{ W_j(x) \right\}_0^{\infty} / W_0(x) \equiv 1, \ W_j(x) > 0, \ W'_j(x) \le 0, \ W_j(x) \in C^{\infty}[0, a] \right\},\,$$

 $C^{\infty}[0,a]$ is the class of functions of infinitely differentiable. For such sequences we introduce systems of operators $\left\{A_{a,n}^*f\right\}_0^{\infty}$, $\left\{\tilde{A}_{a,n}^*f\right\}_0^{\infty}$ and functions $\left\{U_{a,n}(x)\right\}_0^{\infty}$, $\left\{\Phi_n(x,t)\right\}_0^{\infty}$. For a certain class of functions a generalization of Taylor–Maclaurin type formulae was obtained. We also introduce the concept of $\langle \rho_j, W_j \rangle$ generalized completely monotone functions and establish a theorem on their representation.

MSC2010: 30H05.

Keywords: operators of Rimman–Liouville type, $\langle \rho_j, W_j \rangle$ generalized completely

monotone functions.

Introduction. First of all we note that in author's works [1–5] and jointly with prof. M.M. Dzhrbashyan works [6–8] there were obtained generalized formulas of Taylor–Maclaurin type. In these papers there were introduced the concepts of $\langle \rho \rangle$, $\langle \rho_j \rangle$, $\langle \rho, \lambda_j \rangle$, $\langle \rho_j, W_j \rangle$ generalized absolutely monotone functions. The papers study their problems of representation.

The papers [?, 3] introduced the following systems of operators $\{A_n^*f\}_0^{\infty}$, $\{\tilde{A}_n^*f\}_0^{\infty}$ and functions $\{U_n(x)\}_0^{\infty}$, $\{\Phi_n(t,x)\}_0^{\infty}$:

$$A_{n}^{*}f(x) \equiv \prod_{j=0}^{n-1} D_{j}f(x), \ D_{j}f(x) = D^{1/\rho_{j}} \left\{ \frac{f(x)}{W_{j}(x)} \right\}, \ A_{0}^{*}f \equiv f, \ j \geq 0, \ n \geq 1,$$

$$\tilde{A}_{n}^{*}f(x) \equiv D^{-\alpha_{n}} \left\{ \frac{A_{n}^{*}f(x)}{W_{n}(x)} \right\}, \ n \geq 0,$$
(1)

where
$$D^{1/\rho}\varphi(x) \equiv \frac{d}{dx}D^{-\alpha}\varphi(x)$$
, $D^{-\alpha}\varphi(x) \equiv \frac{1}{\Gamma(\alpha)}\int_{0}^{x}(x-t)^{\alpha-1}\varphi(t)dt$
 $(\rho \geq 1, 1-\alpha=1/\rho)$.

^{*} E-mail: maneat@rambler.ru

$$U_{0}(x) \equiv 1, \quad U_{1}(x) \equiv \frac{1}{\Gamma(\rho_{1}^{-1})} \int_{0}^{x} \xi_{1}^{1/\rho_{1}-1} W_{1}(\xi_{1}) d\xi_{1},$$

$$U_{n}(x) \equiv \frac{1}{\prod_{j=1}^{n} \Gamma(1/\rho_{j})} \int_{0}^{x} W_{1}(\xi_{1}) d\xi_{1} \int_{0}^{\xi_{1}} (\xi_{1} - \xi_{2})^{1/\rho_{1}-1} W_{2}(\xi_{2}) d\xi_{2} \times \cdots \times$$

$$\times \int_{0}^{\xi_{n-1}} (\xi_{n-1} - \xi_{n})^{1/\rho_{n-1}-1} \xi_{n}^{1/\rho_{n}-1} W_{n}(\xi_{n}) d\xi_{n}, \quad n \geq 2.$$

$$\Phi_{0}(t,x) \equiv \begin{cases} 1, & 0 \leq t < x, \\ 0, & x \leq t < l, \end{cases}$$

$$\Phi_{1}(t,x) = \begin{cases} \frac{1}{\Gamma(\rho_{1}^{-1})} \int_{t}^{x} (x - \xi_{1})^{\frac{1}{\rho_{1}}-1} W_{1}(\xi_{1}) d\xi_{1}, & 0 \leq t < x, \\ 0, & x \leq t < l; \end{cases}$$

$$\Phi_{n}(t,x) = \begin{cases} \frac{1}{\prod_{j=1}^{n} \Gamma(\rho_{j}^{-1})} \int_{t}^{x} W_{1}(\xi_{1}) d\xi_{1} \int_{t}^{\xi_{1}} (\xi_{1} - \xi_{2})^{\frac{1}{\rho_{1}}-1} W_{2}(\xi_{2}) d\xi_{2} \times \cdots \times$$

$$\times \int_{t}^{\infty} (\xi_{n-1} - \xi_{n})^{\frac{1}{\rho_{n-1}}-1} (\xi_{n} - t)^{\frac{1}{\rho_{n}}-1} W_{n}(\xi_{n}) d\xi_{n}, \quad 0 \leq t < x, \\ 0, & x \leq t < l, \end{cases}$$

$$0, \quad x \leq t < l, \quad n \geq 2.$$

$$(3)$$

We assume $\rho_j \ge 1$ $(\rho_0 = 1)$, $\alpha_j = 1 - 1/\rho_j$ $(\alpha_0 = 0)$, $W_j(x) \in W$ (see the annotation).

In the works [3, 4] it was obtained a certain class of functions that is a generalization of the Taylor–Maclaurin type formula. The papers also introduce the concept of $\langle \rho_j, W_j \rangle$ generallized absolutely monotone functions and study their problems of representations. We note that for $W_j(x) \equiv 1, \ j=0,1,\ldots$, these systems

of operators
$$\{A_n^*f\}_0^{\infty}$$
, $\{\tilde{A}_n^*f\}_0^{\infty}$ and functions $\left\{\frac{x^{\lambda_n}}{\Gamma(1+\lambda_n)}\right\}_0^{\infty} \left(\lambda_n = \sum_{j=1}^n \frac{1}{\rho_j}\right)$ were introduced in [1].

In [1] it was introduced the concept of $\langle \rho_j \rangle$ generalized absolutely monotone functions and studied their representation problems.

For $\rho_j \equiv 1 (j \ge 0), \ \{W_j(x)_0^\infty \in W\}$ these operators were introduced in [9]. For $\rho_j \equiv 1 (j \ge 0), \ W_j(x) = X^{\gamma_j - \gamma_{j-1} - 1}$ these operators were introduced in [10].

In the present paper we introduce the systems of operators $\left\{A_{a,n}^*f\right\}_0^\infty$, $\left\{\tilde{A}_{a,n}^*f\right\}_0^\infty$, and functions $\left\{U_{a,n}(x)\right\}_0^\infty$, $\left\{\Phi_n(x,t)\right\}_0^\infty$.

In this paper we obtain a generalization of the Taylor–Maclaurin type formula, then we introduce the concept of $\langle \rho_j, W_j \rangle$ generalized completely monotone functions and study their representation problems. We note that for $W_j \equiv 1, \quad \rho_j \geq 1$,

 $j=0,1,\ldots$, the concept of $\langle \rho_j \rangle$ generalized completely monotone functions was introduced in [5].

Preliminaries Information. Let $f(x) \in L(0,l)$ $(0 < l < +\infty)$, $\alpha \in (0,+\infty)$. The function

$$_{0}D^{-\alpha}f(x) \equiv D^{-\alpha}f(x) \equiv \frac{1}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1}f(t)dt$$

is called the Riemann–Liouville integral of order α of function f(x) with a lower integration limit x = 0, and the function

$$D_l^{-\alpha} f(x) \equiv \frac{1}{\Gamma(\alpha)} \int_{x}^{l} (t - x)^{\alpha - 1} f(t) dt$$

is called the Riemann–Liouville integral of order α of function f(x) with an upper integration limit x = l.

Let $\alpha \in [0,1), 1-\alpha=1/\rho$ $(\rho \geq 1), \ f(x) \in L(0,l)$. Then the function $D^{1/\rho}f(x) \equiv \frac{d}{dx}D^{-\alpha}f(x)$ is called the Riemann–Liouville derivative of order $1/\rho$ of f(x) with the initial point x=0, and the function $D_l^{1/\rho}f(x) \equiv \frac{d}{dx}D_l^{-\alpha}f(x)$ is called the Riemann–Liouville derivative of order $1/\rho$ of f(x) with the upper limit x=l.

It is known that in all Lebesque points of $f(x) \lim_{\alpha \to +0} D^{-\alpha} f(x) = f(x)$ (and hence almost everywhere) and, therefore, $[D^{-\alpha} f(x)]_{\alpha=0} = f(x)$ and $D^1 f(x) = f'(x)$. The operators $D^0 f(x) = f(x)$, $D^1 f(x) = f'(x)$, $D^{1/\rho} f, \ldots, D^{n/\rho} f = D^{1/\rho} D^{n-1/\rho} f$, $n \geq 2 \left(D_l^{1/\rho} f, \ldots, D_l^{n/\rho} f = D_l^{1/\rho} D_l^{n-1/\rho} f \right)$ are called Riemann–Liouville operators of successive differentiation of order n/ρ of function f(x). For more information on Riemann–Liouville operators see Chapt. IX, [11].

The Mittag-Leffler type function $E_{\rho}(z,\mu) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\mu + n\rho^{-1})}, \rho > 0$, is an entire function of order ρ with an arbitrary value of parameter μ (see Chapt. VI, §1, [11]).

For any $\mu > 0$, $\alpha > 0$ the following formula holds

$$\frac{1}{\Gamma(\alpha)} \int_{0}^{z} (z - \xi)^{\alpha - 1} E_{\rho}(\lambda \xi^{1/\rho}; \mu) \xi^{\mu - 1} d\xi = z^{\mu + \alpha - 1} E_{\rho}(\lambda z^{1/\rho}; \mu + \alpha), \quad (4)$$

where λ is a complex parameter and the integration is taken along the intercept connecting the points 0 and z (see Chapt. III, (1.16), [11]).

Formula of Taylor–Maclaurin Type. Let the sequences $\{\rho_j\}_0^\infty$ $(\rho_0=1)$, $\{\alpha_j\}_0^\infty$ $(\alpha_0=0)$, $\{W_j(x)\}_0^\infty$ satisfy the conditions $\rho_j\geq 1, \alpha_j=1-1/\rho_j$, $\{W_j(x)\}_0^\infty\in W, j=0,1,\ldots$, where $W=\Big\{\big\{W_j(x)\big\}_0^\infty\big/W_0(x)\equiv 1,\ W_j(x)>0,\ W_j'(x)\leq 0,\ W_j(x)\in C^\infty[0,a]\Big\}$.

We introduce the following systems of operators and functions: $\left\{A_{a,n}^*f(x)\right\}_0^\infty$, $\left\{\tilde{A}_{a,n}^*f(x)\right\}_0^\infty$, $\left\{U_{a,n}(x)\right\}_0^\infty$, $\left\{\Phi_n(x,t)\right\}_0^\infty$:

$$A_{a,n}^* f(x) = \prod_{j=0}^{n-1} D_{a,j} f(x) \ (n \ge 1), \ D_{a,j} f(x) = D_a^{1/\rho_j} \left\{ \frac{f(x)}{W_j(x)} \right\}$$

$$(A_{a,0}^* f \equiv f, \ A_{a,1}^* f \equiv f'(x), \ j \ge 1),$$

$$\tilde{A}_{a,n}^* f(x) = D_a^{-\alpha_n} \left\{ \frac{A_{a,n}^* f(x)}{W_n(x)} \right\}, \ n \ge 0, \ x \in (0,a],$$

$$(5)$$

$$U_{a,0}(x) \equiv 1, \quad U_{a,1}(x) \equiv \frac{1}{\Gamma(\rho_1^{-1})} \int_{x}^{a} (a - \xi_1)^{1/\rho_1 - 1} W_1(\xi_1) d\xi_1,$$

$$U_{a,n}(x) \equiv \frac{1}{\prod_{j=1}^{n} \Gamma(\rho_j^{-1})} \int_{x}^{a} W_1(\xi_1) d\xi_1 \int_{\xi_1}^{a} (\xi_2 - \xi_1)^{1/\rho_1 - 1} W_2(\xi_2) d\xi_2 \times \cdots \times$$

$$\times \int_{\xi_{n-1}}^{a} (\xi_n - \xi_{n-1})^{1/\rho_{n-1} - 1} (a - \xi_n)^{1/\rho_n - 1} W_n(\xi_n) d\xi_n, \ x \in (0, a], \ n \geq 2.$$

$$(6)$$

$$\Phi_0(x,t) = \begin{cases} 0, & 0 \le t \le x, \\ 1, & x < t \le a, \end{cases} \quad \Phi_1(x,t) = \begin{cases} 0, & 0 \le t \le x, \\ \frac{1}{\Gamma(\rho_1^{-1})} \int_x^t (t - \xi_1)^{\frac{1}{\rho_1} - 1} W_1(\xi_1) d\xi_1, \end{cases}$$

$$\Phi_{n}(t,x) = \begin{cases}
0, & 0 \leq t \leq x, \\
\frac{1}{\prod_{j=1}^{n} \Gamma(\rho_{j}^{-1})} \int_{x}^{t} W_{1}(\xi_{1}) d\xi_{1} \int_{\xi_{1}}^{t} (\xi_{2} - \xi_{1})^{\frac{1}{\rho_{1}} - 1} W_{2}(\xi_{2}) d\xi_{2} \times \cdots \times \\
\times \int_{\xi_{n-1}}^{t} (\xi_{n} - \xi_{n-1})^{\frac{1}{\rho_{n-1}} - 1} (t - \xi_{n})^{\frac{1}{\rho_{n}} - 1} W_{n}(\xi_{n}) d\xi_{n}, x < t \leq a, n \geq 2.
\end{cases}$$
(7)

We note that similar operators and functions were introduced in [?, 3, 4] for $W_j(x) \equiv 1, \ \rho_j \geq 1, \ j = 0, 1, ...,$ in [1].

Lemma 1. Let $\varphi(x) \in L(0,a)$. Then the problem of Cauchy type

$$A_{a,n+1}^* y(x) = \varphi(x), \quad D_a^{-\alpha_j} \left\{ \frac{A_{a,j}^* y(x)}{W_j(x)} \right\} \Big|_{x=a} = 0, \ j = 0, 1, \dots, n,$$
 (8)

has a unique solution Y(x), which can be expressed in the form

$$Y(x) = (-1)^{n+1} \int_{x}^{a} \Phi_n(x,t) \varphi(t) dt.$$
 (9)

We do not give the proof of Lemma 1 for not loading of work.

Lemma 2. Let $\rho_j \geq 1$ $(\rho_0 = 1, \alpha_j = 1 - 1/\rho_j (\alpha_0 = 1), j \geq 1, \{W_j(x)\}_0^{\infty} \in W$. Then for any $n \geq 1$ the following relations holds:

1.
$$A_{a,k}^* \{ U_{a,n}(x) \} = \tilde{A}_{a,k}^* \{ U_{a,n}(x) \} \equiv 0, \ k \ge n+1, \ x \in (0,a];$$
 (10)

2.
$$\tilde{A}_{a,n}^* \{ U_{a,n}(x) \} = (-1)^n,$$
 (11)

3.
$$\tilde{A}_{a,k}^* \{ U_{a,n}(x) \} \Big|_{x=a} = 0, \ 0 \le k \le n-1.$$
 (12)

Using the definition of operators and functions, we get the proof of Lemma with an easy calculation.

Lemma 3. For any $n \ge 0$ in a sum of the form

$$P_n(x) = \sum_{k=0}^{n} C_k U_{a,k}(x), \tag{13}$$

the coefficients $\{C_k\}_{0}^{n}$ may be determined for the formulas

$$C_k = (-1)^k \widetilde{A}_{a,k}^* \{ P_n(x) \} \Big|_{x=a}, \ \ 0 \le k \le n.$$
 (14)

Proof. Assuming $0 \le j \le n$, we apply the operator $\tilde{A}_{a,j}^*$ to the function $P_n(x)$. Then using (10)–(12), we obtain

$$\tilde{A}_{a,j}^{*}\left\{P_{n}(x)\right\} = \sum_{k=0}^{n} C_{k} \tilde{A}_{a,j}^{*}\left\{U_{a,k}(x)\right\} = C_{j} \tilde{A}_{a,j}^{*}\left\{U_{a,j}(x)\right\} + \sum_{k=j+1}^{n} C_{k} \tilde{A}_{a,j}^{*}\left\{U_{a,k}(x)\right\}.$$

$$(15)$$

From (15) we get

$$\tilde{A}_{a,j}^* \{P_n(x)\}\big|_{x=a} = (-1)^j C_j$$
, i.e. $C_j = (-1)^j \tilde{A}_{a,j}^* \{P_n(x)\}\big|_{x=a}$.

We denote by $C_{n+1}\{(0,a),\langle \rho_j,W_j\rangle\}$ the set of functions f(x) satisfying the following conditions:

- 1) the functions $\tilde{A}_{a,k}^* f(x)$, k = 0, 1, ..., n, are continuous on [0, a];
- 2) the functions $A_{a,k}^* f(x)$, k = 0, 1, ..., n, n + 1, are continuous on (0, a) and belongs to L(0, a).

It is easy to see that each function $U_{a,n}(x)$, n = 0, 1, ..., and each polinom $P_n(x) = \sum_{k=0}^n C_k U_{a,k}(x) \text{ belongs to the class } C_{n+1}\{(0,a), \langle \rho_j, W_j \rangle\}.$ $T \ h \ e \ o \ r \ e \ m \ 1. \ If \ f(x) \in C_{n+1}\{(0,a), \langle \rho_j, W_j \rangle\}, \ then \ for \ any \ n \ge 1$

$$f(x) = \sum_{k=0}^{n} (-1)^{k} \tilde{A}_{a,k}^{*} f(a) U_{a,k}(x) + R_{n}(x),$$
(16)

where

$$R_n(x) = (-1)^{n+1} \int_{x}^{a} \Phi_n(x,t) A_{a,n+1}^* f(t) dt.$$
 (17)

Proof. We put

$$P_n(x,f) = \sum_{k=0}^n (-1)^k \tilde{A}_{a,k}^* f(a) U_{a,k}(x) \text{ and } f(x) = P_n(x,f) + R_n(x).$$

It is easy to see that

$$\tilde{A}_{a,k}^* \{R_n(x)\} \Big|_{x=a} = 0, \ k = 0, 1, \dots, n, \text{ and } A_{a,n+1}^* \{R_n(x)\} = A_{a,n+1}^* f(x).$$

We notice that the function $R_n(x)$ satisfies the conditions of Lemma 1, consequently

$$R_n(x) = (-1)^{n+1} \int_{x}^{a} \Phi_n(x,t) A_{a,n+1}^* f(t) dt$$
, i.e.

$$f(x) = \sum_{k=0}^{n} (-1)^{k} \tilde{A}_{a,k}^{*} f(a) U_{a,k}(x) + (-1)^{n+1} \int_{x}^{a} \Phi_{n}(x,t) A_{a,n+1}^{*} f(t) dt.$$

 $\langle \rho_j, W_j \rangle$ Generalized Completely Monotone Functions. We denote by $C_{\infty}\{(0,a),\langle \rho_j,W_j \rangle\}$ the set of functions $f(x) \in C_{n+1}\{(0,a),\langle \rho_j,W_j \rangle\}$ for any $n \geq 0$. We say that f(x) is $\langle \rho_j,W_j \rangle$ generalized completely monotone, if

1.
$$f(x) \in \{C_{\infty}(0, a), \langle \rho_j, W_j \rangle\};$$

2. $(-1)^n A_{a,n}^* f(x) \ge 0, \ n \ge 0, \ x \in (0, a].$ (18)

We denote by $\{C_{\infty}^*(0,a),\langle \rho_j,W_j\rangle\}$ the class of $\langle \rho_j,W_j\rangle$ generalized completely monotone functions. We note that in [5] in the case of $W_j(x)\equiv 1$, $\rho_j\geq 1$ ($\rho_j=1$), $j\geq 1$, it was introduced the concept $\langle \rho_j\rangle$ generalized completely monotone functions and studied their problems of representation. Note that in the case of $\rho_j=1,W_j(x)=x^{\gamma_j-\gamma_{j-1}-1}$ $\gamma_0=0<\gamma_1\leq \gamma_2<\ldots,j=1,2,\ldots,$ in [12] it was introduced the concept of regular monotone functions and studied their problems of representation.

Theorem 2. Let $f(x) \in C^*_{\infty}\{(0,a), \langle \rho_i, W_i \rangle\}$ and

$$\lim_{n \to \infty} \prod_{j=1}^{n} \frac{W_j(\vartheta x_0)}{W_j(a)} \left(\frac{a - \vartheta x_0}{a - x_0}\right)^{\lambda_n} = 0,$$
(19)

where $\forall x_0 \in (0,a), \ x_0 < \vartheta x_0 < a \ \left(1 < \vartheta < \frac{a}{x_0}\right), \ \lambda_n = \sum_{j=1}^n \frac{1}{\rho_j}$. Then

$$f(x) = \sum_{k=0}^{\infty} (-1)^k \tilde{A}_{a,k}^* f(a) U_{a,k}(x) dx.$$
 (20)

Proof. Notice that from (16), (17) we have

$$f(x) = \sum_{k=0}^{n} (-1)^{k} \tilde{A}_{a,k}^{*} f(a) U_{a}, k(x) + R_{n}(x),$$

where

$$R_n(x) = (-1)^{n+1} \int_{x}^{a} \Phi_n(x,t) A_{a,n+1}^* f(t) dt.$$

First of all we note that $(-1)^k \tilde{A}_{a,k}^* f(x) \ge 0$, $k \ge 0$, since

$$(-1)^k \tilde{A}_{a,k}^* f(x) = (-1)^k D_a^{-\alpha_k} \left\{ \frac{A_{a,k} f(x)}{W_k(x)} \right\} \ge 0, \ k \ge 0.$$

Notice that

$$R_{n}(\vartheta x_{0}) = \int_{\vartheta x_{0}}^{a} \Phi_{n}(\vartheta x_{0}, t) \left\{ (-1)^{n+1} A_{a,n+1}^{*} f(t) \right\} dt =$$

$$= \int_{\vartheta x_{0}}^{a} \frac{\Phi_{n}(\vartheta x_{0}, t)}{\Phi_{n}(x_{0}, t)} \Phi_{n}(x_{0}, t) \left\{ (-1)^{n+1} A_{a,n+1}^{*} f(t) \right\} dt \leq$$

$$\leq \max_{\vartheta x_{0} \leq t \leq a} \left\{ \frac{\Phi_{n}(\vartheta x_{0}, t)}{\Phi_{n}(x_{0}, t)} \right\} \int_{\vartheta x_{0}}^{a} \Phi_{n}(x_{0}, t) \left\{ (-1)^{n+1} A_{a,n+1}^{*} f(t) \right\} dt \leq$$

$$\leq \max_{\vartheta x_{0} \leq t \leq a} \left\{ \frac{\Phi_{n}(\vartheta x_{0}, t)}{\Phi_{n}(x_{0}, t)} \right\} \int_{x_{0}}^{a} \Phi_{n}(x_{0}, t) \left\{ (-1)^{n+1} A_{a,n+1}^{*} f(t) \right\} dt =$$

$$= \max_{\vartheta x_{0} \leq t \leq a} \left\{ \frac{\Phi_{n}(\vartheta x_{0}, t)}{\Phi_{n}(x_{0}, t)} \right\} R_{n}(x_{0}) \leq \max_{\vartheta x_{0} \leq t \leq a} \left\{ \frac{\Phi_{n}(\vartheta x_{0}, t)}{\Phi_{n}(x_{0}, t)} \right\} f(x_{0}).$$

$$(21)$$

It is easy to see that

$$\Phi_{n}(\vartheta x_{0},t) = \frac{1}{\prod_{j=1}^{n} \Gamma(\rho_{j}^{-1})} \int_{\vartheta x_{0}}^{t} W_{1}(\xi_{1}) d\xi_{1} \int_{\xi_{1}}^{t} (\xi_{2} - \xi_{1})^{1/\rho_{1} - 1} W_{2}(\xi_{2}) d\xi_{2} \times \cdots \times \\
\times \int_{\xi_{n-1}}^{t} (\xi_{n} - \xi_{n-1})^{1/\rho_{n-1} - 1} (t - \xi_{n})^{1/\rho_{n} - 1} W_{n}(\xi_{n}) d\xi_{n} < \\
< \frac{1}{\prod_{j=1}^{n} \Gamma(\rho_{j}^{-1})} \prod_{j=1}^{n} W_{j}(\vartheta x_{0}) \int_{\vartheta x_{0}}^{t} d\xi_{1} \int_{\xi_{1}}^{t} (\xi_{2} - \xi_{1})^{1/\rho_{1} - 1} d\xi_{2} \times \cdots \times \\
\times \int_{\xi_{n-1}}^{t} (\xi_{n} - \xi_{n-1})^{1/\rho_{n-1} - 1} (t - \xi_{n})^{1/\rho_{n} - 1} d\xi_{n}. \tag{22}$$

It is obvious that

$$\frac{1}{\prod_{j=1}^{n} \Gamma(\rho_{j}^{-1})} \int_{\vartheta x_{0}}^{t} d\xi_{1} \int_{\xi_{1}}^{t} (\xi_{2} - \xi_{1})^{1/\rho_{1} - 1} d\xi_{2} \times \cdots \times
\times \int_{\xi_{n-1}}^{t} (\xi_{n} - \xi_{n-1})^{1/\rho_{n-1} - 1} (t - \xi_{n})^{1/\rho_{n} - 1} d\xi_{n} = \frac{(t - \vartheta x_{0})^{\lambda_{n}}}{\Gamma(1 + \lambda_{n})}, \quad n \ge 2.$$
(23)

From (22) and (23) we get

$$\Phi_n(\vartheta x_0, t) \le \prod_{j=1}^n W_j(\vartheta x_0) \frac{(t - \vartheta x_0)^{\lambda_n}}{\Gamma(1 + \lambda_n)}, \quad n \ge 1, \quad \vartheta x_0 \le t \le a.$$
 (24)

Further

$$\Phi_{n}(x_{0},t) \geq \frac{1}{\prod_{j=1}^{n} \Gamma(\rho_{j}^{-1})} \prod_{j=1}^{n} W_{j}(t) \int_{x_{0}}^{t} d\xi_{1} \int_{\xi_{1}}^{t} (\xi_{2} - \xi_{1})^{1/\rho_{1} - 1} d\xi_{2} \times \cdots \times \\
\times \int_{\xi_{n-1}}^{t} (\xi_{n} - \xi_{n-1})^{1/\rho_{n-1} - 1} (t - \xi_{n})^{1/\rho_{n} - 1} d\xi_{n} = \prod_{j=1}^{n} W_{j}(t) \frac{(t - x_{0})^{\lambda_{n}}}{\Gamma(1 + \lambda_{n})}, \tag{25}$$

$$\vartheta x_{0} \leq t \leq a, \quad n \geq 1.$$

From (24) and (25) we get

$$\max_{\vartheta x_0 \le t \le a} \left\{ \frac{\Phi_n(\vartheta x_0, t)}{\Phi_n(x_0, t)} \right\} \le \max_{\vartheta x_0 \le t \le a} \prod_{i=1}^n \frac{W_j(\vartheta x_0)}{W_i(t)} \left(\frac{t - \vartheta x_0}{t - x_0} \right)^{\lambda_n}. \tag{26}$$

From (21) and (26) we obtain

$$R_n(\vartheta x_0) \le \prod_{i=1}^n \frac{W_j(\vartheta x_0)}{W_j(a)} \left(\frac{a - \vartheta x_0}{a - x_0}\right)^{\lambda_n} f(x_0) \longrightarrow 0, \text{ as } n \longrightarrow \infty,$$
 (27)

consequently $\lim_{n \to \infty} R_n(\vartheta x_0) = 0$. Since $x > \vartheta x_0$, $R_n(x) < R_n(\vartheta x_0)$, we have $\lim_{n \to \infty} R_n(x) = 0$, $\forall x \in [\vartheta x_0, a]$.

So
$$f(x) = \sum_{k=0}^{\infty} (-1)^k \tilde{A}_{a,k}^* f(a) U_{a,k}(x), \quad x \in (0, a].$$

Received 04.12.2018 Reviewed 10.02.2020 Accepted 30.00.2020

REFERENCES

- 1. Sahakyan B.A. Differential Operators of Fractional Orders and Associated with $\langle \rho_j \rangle$ Absolutely Monotone Functions. *Izv. AN Arm. SSR. Ser. Matematica*, **4** (1974), 285–307 (in Russian).
- 2. Sahakyan B.A. Classes of Taylor–Maclaurin Type Formulae in Complex Domain. *Proceedings of the YSU. Physical and Mathematical Sciences*, **2** (2011), 3–10.
- 3. Sahakyan B.A. On the Representation of $\langle \rho_j, W_j \rangle$ Absolute Monotone Functions. I. *Proceedings of the YSU. Physical and Mathematical Sciences*, **1** (2014), 26–34.
- 4. Sahakyan B.A. On the Representation of $\langle \rho_j, W_j \rangle$ Absolute Monotone Functions. II. *Proceedings of the YSU. Physical and Mathematical Sciences*, **2** (2014), 30–38.
- 5. Sahakyan B.A. On the Generalized Formula of Taylor–Maclaurin Type On the Generalized Completely Monotone Functions. *Proceedings of the YSU. Physical and Mathematical Sciences*, **53**: 3 (2018), 172–179.
- 6. Dzhrbashyan M.M., Sahakyan B.A. Classes of Formulas and Expansions of Taylor–Maclaurin Type Associated with Differential Operators of Fractional Order. *Izv. AN SSSR. Matematica*, **39**: 1 (1975), 69–122 (in Russian).
- 7. Dzhrbashyan M.M., Sahakyan B.A. General Classes of Formulae of Taylor–Maclaurin Type. *Izv. AN Arm. SSR. Ser. Matematica*, **XII**: 1 (1977), 66–82 (in Russian).

- 8. Dzhrbashyan M.M., Sahakyan B.A. On Expansions in the Series of Generalized Absolutely Monotone Functions. *Analysis Matematica*, 7: 2 (1981), 85–106 (in Russian).
- 9. Karlin S., Studden W. *Tchebycheff Systems with Applications in Analysis and Statics*. Chap. 9. N.Y. (1966), 381–436.
- 10. Badalyan H.V. Generalization of Taylors Series and Some Questions of the Theory of Abalytic and Quasi-Analytic functions. *Izv. AN Arm. SSR. Physmat. Estet. Nauki*, no. 3 (1954), 3–33 (in Russian).
- 11. Dzhrbashyan M.M. Integral Transforms and Representations of Functions in the Complex Domain. M., Nauka (1966) (in Russian).
- 12. Badalyan H.V. Completely Regular Monotone Functions. *Izv. AN Arm. SSR. Ser. Physmat. Nauki*, **XV**: 3 (1962), 3–16 (in Russian).

Ք. Հ. ՍԱՀԱԿՅԱՐ

 $\langle
ho_j, W_j
angle$ ԸՆԴՀԱՆՐԱՑՎԱԾ ԼԻՈՎԻՆ ՄՈՆՈՏՈՆ ՖՈԻՆԿՑԻԱՆԵՐԻ ՄԱՍԻՆ

ասոցացվում է $\left\{A_{a,n}^*f\right\}_0^\infty$, $\left\{\tilde{A}_{a,n}^*f\right\}_0^\infty$ օպերափորների և $\left\{U_{a,n}(x)\right\}_0^\infty$, $\left\{\Phi_n(x,t)\right\}_0^\infty$ ֆունկցիաների համակարգեր։ Աշխափանքում որոշակի դասի ֆունկցիաների համար սփացվել է Թեյլոր–Մակլորենի փիպի ընդհանրացված բանաձև, մփցվել է $\langle \rho_j, W_j \rangle$ ընդհանրացված լիովին մոնոփոն ֆունկցիայի գաղափարը և ուսումնասիրվել է նրանց ներկայացման հարցերը։

Б. А. СААКЯН

ОБ ОБОБЩЕННОЙ ВПОЛНЕ МОНОТОННОЙ ФУНКЦИИ $\langle
ho_j, W_j
angle$

В настоящей работе с последовательностями $\{\rho_j\}_0^\infty$ $(\rho_0=1,\ \rho_j\geq 1),$ $\{\alpha_j\}_0^\infty$ $(\alpha_0=0,\ \alpha_j=1-(1/\rho_j)),\ \{W_j(x)\}_0^\infty\in W,\ \text{где}$

$$W = \left\{ \left\{ W_j(x) \right\}_0^{\infty} / W_0(x) \equiv 1, \ W_j(x) > 0, \ W_j'(x) \le 0, \ W_j(x) \in C^{\infty}[0, a] \right\},$$

будут ассоциироваться системы операторов $\left\{A_{a,n}^*f\right\}_0^\infty$, $\left\{\tilde{A}_{a,n}^*f\right\}_0^\infty$ с системами функций $\left\{U_{a,n}(x)\right\}_0^\infty$, $\left\{\Phi_n(x,t)\right\}_0^\infty$. В работе для функций определенного класса получена обобщенная формула типа Тейлора—Маклорена, введено понятие обобщенной вполне монотонной функции $\langle \rho_j, W_j \rangle$ и исследуются вопросы их представления.