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ON THE (p;. W;)
GENERALIZED COMPLETELY MONOTONE FUNCTIONS
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We consider sequences {p;}y (po =1, p; > 1), {Ocj}: (g =0,
aj=1-(1/p;)), {W;j(x)}5 € W, where

W ={{W;(x)}; /Wo(x) = 1, W;(x) >0, Wj(x) <0, W;(x) € C*[0,d]},
C>[0,a] is the class of functions of infinitely differentiable. For such sequences
we introduce systems of operators {Afw f }:, {Afm f }:; and functions
{Uan(x)}g s {®u(x,7)}g . For a certain class of functions a generalization of
Taylor—Maclaurin type formulae was obtained. We also introduce the concept

of (p;, W;) generalized completely monotone functions and establish a theorem
on their representation.

MSC2010: 30HOS.
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Introduction. First of all we note that in author’s works [1H5] and jointly
with prof. M.M. Dzhrbashyan works [6-8]] there were obtained generalized formulas
of Taylor-Maclaurin type. In these papers there were introduced the concepts of
P), (Pj), (P,Aj),{pj, W;) generalized absolutely monotone functions. The papers
study their problems of representation.

The papers [?,3]] introduced the following systems of operators {A}f}
{A:f}: and functions {U,(x)}y , {®n(t,x)}; :

A1) = [] D1 (0). Dyf(x) = DV {f”} A= i20.n> 1,
j=0 Wj(x) (1)
1 _ -y, A;sz(x)
Anf(x):D {Wn(X)}, I’lZO,
where  D/Pg(x) = %D‘O‘q)(x), DYp(x) = F(la) / (x — )% o)
0

(p=1,1-a=1/p).
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x /(én*1_gn)p"%l_l(gn_t)pinilwn(én)dén,0§l<x,
0, I x<t<l, n>2.

We assume p; > 1 (pp =1), aj =1—-1/p; (g =0), Wj(x) e W
(see the annotation).

In the works [3, 4] it was obtained a certain class of functions that is a
generalization of the Taylor—Maclaurin type formula. The papers also introduce
the concept of (p;, W;) generallized absolutely monotone functions and study their

problems of representations. We note that for W;(x) =1, j =0, 1,..., these systems
A m n
X" 1
of operators {A’ A and functions ¢ —— A=Y — | were
perators {43,715 {4/} {NHM}O < ,»_lej)

introduced in [1]].

In [1]] it was introduced the concept of (p;) generalized absolutely monotone
functions and studied their representation problems.

For p; = 1(j > 0), {W;j(x)§ € W} these operators were introduced in [9].

Forp;=1(j>0), W;(x) = XYJ'_YJ'*‘_I these operators were introduced in [|10].

In the present paper we introduce the systems of operators {A;n f }: , {A:‘m f }(o; ,
and functions {U,,(x)}q , {®n(x,1)}g -

In this paper we obtain a generalization of the Taylor—Maclaurin type formula,
then we introduce the concept of (p;, W;) generalized completely monotone func-
tions and study their representation problems. We note that for W; =1, p; > 1,
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j=0,1,..., the concept of (p;) generalized completely monotone functions was
introduced in [5]].

Preliminaries Information. Let f(x) € L(0,/) (0 <[ < 4), o € (0,+400).
The function

D7 (5) = D7) = s [ =0 o)
0

is called the Riemann-Liouville integral of order & of function f(x) with a lower
integration limit x = 0, and the function

is called the Riemann-Liouville integral of order o of function f(x) with an upper
integration limit x = [.
Let o € [0,1),l —ax=1/p (p > 1), f(x) € L(0,]). Then the function

d
DVPf(x) = d—D_O‘ f(x) is called the Riemann-Liouville derivative of order 1/p of
x

d
f(x) with the initial point x = 0, and the function Dll/ Prx) = d—Dl_a f(x) is called
x
the Riemann-Liouville derivative of order 1/p of f(x) with the upper limit x = [.
It is known that in all Lebesque points of f(x) 1im0D’O‘ f(x) = f(x) (and
a—+

hence almost everywhere) and, therefore, [D~% f(x)],_, = f(x) and D' f(x) = f'(x).
The operators D°f(x) = f(x), D'f(x) = f'(x), DVPf,....D"/Pf=DVPpr=1/Pf,
n>?2 (Dll/ Pr ... ,D?/ Pr= Dll/ P D;l*l/ P f) are called Riemann-Liouville operators
of successive differentiation of order n/p of function f(x). For more information on

Riemann-Liouville operators see Chapt. IX, [11].
n

- z

The Mittag—Leffler type function E,(z, i) = ) —————~
Pl = B ap )

entire function of order p with an arbitrary value of parameter u (see Chapt. VI,

§1, [L1]).
For any p > 0, o > 0 the following formula holds

,p >0, is an

1

F(OC)/(Z—é)‘”‘lEp(/lél/”; pEHaE =2 E, (AP p ), ()
0

where A is a complex parameter and the integration is taken along the intercept
connecting the points 0 and z (see Chapt. III, (1.16), [11]]).

Formula of Taylor—-Maclaurin Type. Let the sequences {p;}; (po = 1),
{aj}y (o = 0), {W,(x)}: satisfy the conditions p; > l,a; = 1 — 1/p;,

(Wi(0))}o € W,j = 0,1,..., where W = {{Wj(x)}g"/wo(x) =1, Wi(x) > 0,
Wi(x) <0, Wj(x) € C[0,d] }
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We introduce the following systems of operators and functions: {A;‘m f(x) }: )

{45, f() g {Uan(®) g, {Palx, 1)} :
n—1
A f () = [1Dasf @) (12 1), Do if () = Di/ ™ { e }
=0

W;(x)
(Asof =1 Ap f=f(x), j=>1), )

A f (x) = D% {AW{S) } , n>0, x€(0,d],

F(pl_l)/(a— ENYPITw(E))déEy,
1 X

1 a a
Upn(x) = ——— [ Wi(&)d&r [ (& —ENYPTWa(&)dE x -+ x
Hr<p,-‘>x/ ! ©

j=1

Uso(X) =1, Ugi(x) =

y /(én_én_l)l/an—l(a_gn)l/P,,—IWn(gn)dém x € (0,a], n>2.
én—l
0, 0<r<xy,
0, 0<r<x _ /
q)O(x’t)_{ 1, x<t<a, Piler) = F(ll)/(l—gl)”l‘_lwl(gl)dé"
Py )

0, 0<r<x,

S [ W [@-g)n T Waedg < x

o, (.0 = 1T ")

t

S

t
x [ Gt - E)R T WG G v <t <a 22,
L S

(7)
We note that similar operators and functions were introduced in [?,3,/4] for
Wix)=1,p;>1, j=0,1,...,in [1].
Lemma 1. Let ¢(x) € L(0,a). Then the problem of Cauchy type
—a [AL y(x)
a ,
Koo =00, D, Sl
has a unique solution Y (x), which can be expressed in the form

:07j:0717"'7n7 (8)

X=a

Y(x) = (—1)"*! / &, (x,1)9(1)dr. ©)

We do not give the proof of Lemma 1 for not loading of work.

Lemma 2 Let pj>1 (pp=1, aj=1-1/p; (o =1), j>1,
{W;(x)}5 € W. Then for any n > 1 the following relations holds:

LAY {Uan(x)} =A% 1 {Uan(x)} =0, k> n+1, x € (0,d]; (10)
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2. A} {Uan(x)} = (—=1)", (11)

3. A {Uan(x)}| =0,0<k<n—1. (12)

X=a

Using the definition of operators and functions, we get the proof of Lemma
with an easy calculation.
Lemma 3. Foranyn > 0 in a sum of the form

x) =Y Gla(x), (13)
k=0
the coefficients {Cy}{}, may be determined for the formulas
Ce= (-1 A, {P(0)} | _,, 0<k<n. (14)

Proof. Assuming 0 < j < n, we apply the operator A[’;J to the
function P, (x). Then using (10)—(12), we obtain

n n
AL R0} =Y. CA, j{Uax(x)} = CiA; {Uaj(0) } + Y, GA; {Uas(x)}-
k=0 k=j+1
(15)
From (I3) we get
A*j{P ., —~1)/Cj, ie. Cj=(— )fA*J{P )} -
We denote by Cn+1{ 0,a),(p;, W;)} the set of functions f(x) satisfying
the following conditions:
1) the functions A* axf(x), k=0,1,....n, are continuous on [0, al;
2) the functions A;kf(x) = 0, l,...,n,n+ 1, are continuous on (0, a) and
belongs to L(0, a).
It is easy to see that each function U,,(x), n = 0,1,..., and each polinom
n
= Z CrU, k(x) belongs to the class C,11{(0,a),(pj, Wj)}.

k=0
Theorem 1. If f(x) € C,11{(0,a),(pj, W;)}, then for any n > 1

F) =Y (1) A, 1 f (@)U (x) + Ra(), (16)
where

Rn = n+1/q) Xt an-‘rlf( ) (17)

Proof. Weput

Pulx, f) = i( 1)A5 . f (@)Uq x(x) and f(x) = Pa(x, ) +Ru(x).

k=0

It is easy to see that

A;k {Ru(x)} }x:a =0, k=0,1,...,n,and A7, | {R(x)} = Ay, 1 f (%)
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We notice that the function R,(x) satisfies the conditions of Lemma 1,
consequently

R,(x) = "+1/d>xt saf)dt, e

n

Z _1 kA* Ullk n+1/q> Xl an+1f() [

(pj, W) Generalized Completely Monotone Functions. We denote by
C{(0,a),(p;, W;)} the set of functions f(x) € C,4+1{(0,a),(p;, W;)} for any n > 0.
We say that f(x) is (pj, W;) generalized completely monotone, if

L. f(x) € {Coo(O,a), <pj7 Wj>}; (18)
2. (=1)"A;,f(x) >0, n>0, x€(0,a].

We denote by {Ci(0,a),(p;j, W;)} the class of (p;, W;) generalized
completely monotone functions. We note that in [5] in the case of W;(x) = 1,
pj >1(pj=1), j>1, it was introduced the concept (p;) generalized completely
monotone functions and studied their problems of representation. Note that in the
case of p; = 1,W;(x) =xV Ty =0<y <p<...,j=1,2,..., in[12] it was
introduced the concept of regular monotone functions and studied their problems of

representation.
Theorem 2. Let f(x) € CL{(0,a),(pj, W)} and

n . _ A'n
ILHDIOHWJ(?)C)O) <a 19x0> o0, (19)

i) a a—Xxop

W;
a L |
where Vxy € (0,a), xo < Oxp <a <1<15‘<>, ln—zp— Then
X0 1PJ
Jj=

oo

fx) =Y (~ 1A i f(@)Uai(x))dx. (20)

k=0
Proof. Notice that from , we have

fx) =Y (1) A 1 f (@)Ua, k(x) +Ra (),

k=0
where
a
Ru(x) = (—1)"! / Oy (1, 1) Ay £ (1)t
First of all we note that (—1)*A* wf(x) =0, k>0, since

I\/
I\/

(1) f () = (—1)D; {

Notice that

}
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Ru(9x0) :/q: (Ox0,0) { (1) 1A%, £(1) bt =
19x0, ntl s
cp o) o) =D)AL f (1)} i <
@, (Ox0,1) | | Bl g Q1)
Sﬂgg&u{w}/q)n(xoyt){(_l) A f(1)}dr <
Yxo
(I)n(19XQ,I) f n41 4%
< —_— — =
_19J£0n<atx<a{ D, (xo,1) }/Cbn(xo,t){( D" A (1)} de
X0
@n(l%co,t) q)n(ﬁX(),t)
- —m 70 R(xo) < S0 .
19)¥(l;l§atxga{ D, (Xo,l) } (XO) _19;(1;121)(Sa{ D, (Xo,l) f(xo)
It is easy to see that
1 t t
@u(030,0) = 5 ——— [ Wil&)de [ (&~ 8P WG x - x
[1r(e; ") 6% £,
j=1
t
[ G ) 8 ), <
ér;—l ) ; ; (22)
< ninWj(ﬁXO)/d&/(éz—él)l/p‘_ldézx"'><
HF(PII)FI ox &
j=1
t
< [ =)o (o= ) U
gnfl
It is obvious that
1 t t
W /dél/(éz—él)l/pl_ldéz X e X
Hr(pfl)ﬁxo &i
j=1 (23)
/ (t — xp)
_ 1/pp-1-1 Vpn=lge X 770/ >
< [ G g e g = T nz2
5)171
From (22)) and (23)) we get
. (1 = Do) ™
(bn(ﬁxo, t) S };I]W](ﬁxo)m, n Z 1, 19‘)(:0 §t§a (24)
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Further
(I)n(X(),l‘) > nijIIWj(Z){dglé/(éz_él)l/Pl1d§2 X oo X

j=1
: . (25)

< [ GG P =g e ldé—HW Fe)

‘gn—l
Vxg<t<a, n>1.

From (24) and (23) we get
A
®, (Oxo,t T Wi(o t—9 "
max Dn (9x0,1) < max H ;(90) Y0 (26)
Yxp<t<a ‘-13,1 ()Co,l‘) 19xo§t§aj:1 W,'(l) r—Xxp
From (21)) and (26) we obtain
A
19_ _ 19 n
) < H *o) (a xo) flxo) — 0, a1 —s 00,  (27)
a—x

consequently hm Rn(ﬁxo) = 0. Since x > ¥xg, R,(x) < R,(%xo),
n—soo
we have lim R,(x) =0, Vx € [dxo, a.
n—->oo

S}

So f(x) =) (~1)A;; f(@)Uas(x), x€ (0, al. O

k=0
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A N UINUU3UL

(pj, W;) LURULMUEBIUD LPNYPL UNALASAL HNFLUSPULELD UWUPL

Ubpw - wphiwnpubpnd ppdwd {p;}5 (oo = 1, p; > 1), {o;},
(=0, a;=1—(1/p;)), {W;(x)}5 € W hwonpnwlwlnpymbibtph htup, nppbin

W= {{Wj(x)}ooo/Wo(x) =1, W;(x) >0, Wj(x) <0, Wj(x) eC”[0,a]},

wunguigynud £ {AG £} {AZ,/t, owtipupnpltiph b {Uan(x)}g s {®a(x.0)}g
Sniyghwdiph hwdwupgtin: Whwgpuipnd npnpwjh nuuh $nibyghwdbtiph
hwdwp wipugyty L @by np-Uwynptbh yphyh pinhwipugywd pwbwal, dipgyt &
(pj»  Wj) pinhwipugywd (hndht dnbnpnd $mblghuyh  qunuhwpp
nuumibwuhpyby £ tpwbg ttipuyugdwd hwupgbpn:

B. A. CAAK{H

OB OBOBILIEHHOI BIIOJIHE MOHOTOHHOI ®YHKIUN (p;, W;)

B nacrosimieit pabore ¢ mocienosarenbHocTsMu {p;}y (po =1, p;j > 1),
{as}g (@0 =0, a;=1-(1/py)), {(Wi(x)}5 €W, re

W= {{W;(x)}, /Wo(x) =1, W;(x) >0, Wj(x) <0, W;(x) € C7[0,a] },

OyJIyT acCOIMUPOBATHCI CUCTEMBI OIIEPATOPOB {A;n f }:; , {A;n f } o CcucreMamu
byuxmuii {Uyn(x)}y, {Pn(x,1)}g. B pabore s dbyukimii onpesesenHoro
KJIacca moJjiydeHa obobinennast hopmyisa tuma Teitmopa—MakiopeHa, BBeIeHO
noHsATHE 0000IIEHHO}T BIIOJIHE MOHOTOHHOIT dyHKImu (pj, W) n ncciemayorcs
BOIIPOCHI UX IIPEJICTABICHUSI.



