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In this paper we consider semi-infinite flat waveguides with different
boundary conditions on the planes and on the edges that bound the wave-
guide. The possibility of localizing shear waves in the vicinity of the junction
of neighbouring parts of a semi-infinite flat waveguide is established.
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Introduction. The study of purely shear waves in a flat layer began with
Love’s work in 1911 [1]. Subsequently many problems were solved for elastic wave-
guides with various boundary conditions and in a dynamic formulation (problems
with initial conditions). A survey of these papers is given in the monograph [2]
and in [3]. In [4] localized shear waves are considered in the vicinity of the edge
of a semi-infinite waveguide. The paper [5] is devoted to the case when the plane
boundary of the semi-infinite part of the waveguide passes into a periodically varying
boundary. In [6] resonance oscillations in a plane finite composite waveguide were
investigated. In [7] the propagation of shear waves in elastic waveguide with the
periodically changed boundary conditions is investigated. The problem of localized
shear waves in the vicinity of the junction of the two parts of the waveguide with a
symmetric arrangement of the boundary conditions relative to the median plane of
the layer was considered in [8].

Statement of the Problem. Let the flat waveguide consist of two parts. In
a rectangular Cartesian coordinate system, the first part of the waveguide with the
index (1) occupies the region −a≤ x < 0, 0≤ y < h, −∞ < z < ∞, the second part
with the index (2) occupies the region 0 < x < ∞, 0 ≤ y < h, −∞ < z < ∞ (Fig. 1).
Consider the pure shear elastic vibrations (anti-flat deformation):

ui = 0, vi = 0, wi = wi(x,y, t), i = 1,2. (1)
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Fig. 1. The flat waveguide.

Wave propagation equations for the waveguide parts are of the form [2, 9]:

c2
i ∆wi =

∂ 2wi

∂ t2 , c2
i =

µi

ρi
, i = 1,2, (2)

where ∆ is the two-dimensional Laplace operator; µi is the shear modulus; ρi is the
density of the waveguide material; ci is the velocity of the bulk shear wave. It is
assumed that the waveguide surface y = 0 is free

(
σ
(1)
yz = 0

)
for x < 0 and fixed for

x > 0, and the surface y = h is free for x > 0 and fixed for x < 0, i.e.
∂w1

∂y

∣∣∣
y=0

= 0, w2

∣∣∣
y=0

= 0, (3)

w1

∣∣∣
y=h

= 0,
∂w2

∂y

∣∣∣
y=h

= 0. (4)

At the junction of the two parts of the waveguide (at the point of articulation)
the conditions for continuity of displacements and shear stresses σxz should be
satisfied:

w1

∣∣∣
x=0

= w2

∣∣∣
x=0

, µ1
∂w1

∂x

∣∣∣
x=0

= µ2
∂w2

∂x

∣∣∣
x=0

. (5)

The ending edge of the waveguide is free [10, 11]:
∂w1

∂x

∣∣∣
x=−a

= 0, (6)

and when x→+∞, the condition of the damping of oscillations must be satisfied:
lim

x→+∞
w2 = 0. (7)

Obtaining of the Corresponding System of Equations. The solutions of
Eq. (2) for the waveguide parts that satisfy the boundary conditions (3), (4) are
represented as follows:

w1 = eiwt
∞

∑
n=0

fn(x)cosλny, λn =
π +2πn

2h
, (8)

w2 = eiwt
∞

∑
m=0

gm(x)cosλmy, λm =
π +2πm

2h
. (9)

The substitution (8), (9) into the Eq. (2) leads to a sequence of
ordinary differential equations for the functions fn(x), gm(x). General solutions of
these equations are obtained in the form:
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f (x) = An sinλn pnx+Bn cosλn pnx, (10)

gm(x) =Cme−λmqmx +Dme−λmqmx, (11)

where An, Bn, Cm, Dm are arbitrary constants and

pn =

√
w2

λ 2
n c2

1
−1, gm =

√
1− w2

λ 2
mc2

2
. (12)

Given the condition (6), the solution (10) will be rewritten as follows:

fn(x) = Fn cos[λn pn(a+ x)], (13)

where Fn are new arbitrary constants. Taking into account the damping condition (7),
the solutions (11) will take the following form:

gm(x) =Cme−λmqmx, (14)

and from (5), (13), (14) it follows
∞

∑
n=0

Fn cosλn pnacosλny =
∞

∑
m=0

Cm sinλmy,

−µ1

∞

∑
n=0

Fnλn pn sinλn pnacosλny =−µ2

∞

∑
m=0

Cmλmqm sinλmy.
(15)

Taking into account the expansion in the Fourier series

sinλmy =
∞

∑
n=0

bmn cosλny, (16)

from (15) we obtain the following system of infinite equations:
∞

∑
m=0

bmnCm = Fn cosλn pna,

∞

∑
m=0

bmnλmqmCm = Fn
µ1

µ2
λn pn sinλn pna.

(17)

Excluding the unknowns Fn from the system (17), we arrive at an infinite system
equations with unknowns Cm:

∞

∑
m=0

bmn

(
tanPnξ − µ2

µ1
· Qm

Pn

)
Cm = 0, n = 0,1,2, . . . , (18)

where
Pn =

√
η2− (1+2n)2, Qm =

√
(1+2m)2−κ2η2,

η =
2hω

πc1
, κ =

c1

c2
, ξ =

aπ

2h
,

(19)

bmn =


2

(1+m+n)π
, if m+n is an even number;

2
(m−n)π

, if m+n is an odd number.
(20)

The Solution of the Problem. Corresponding truncated systems will be
considered. Then, in the m-th order approximation (m = 0,1,2, . . .) from the condi-
tion that the solution of the truncated system is non-trivial, we obtain a characteristic
equation for determining the dependence of η on ξ :
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= 0. (21)

From (19), (20) and (21) it follows that on the zero approximation (m = 0),
the characteristic equation is an analogue of the characteristic equation of the Love
wave [1]:

tanξ

√
η2−1− µ2

√
1−κ2η2

µ1
√

η2−1
= 0. (22)

This equation has real solutions only when κ < 1, i.e. when c1 < c2. These
solutions set the frequency for the appropriate mode of oscillations. The frequency ω

determined from (22) satisfies the inequality πc1/2h < ω < πc2/2h and depends on
h and a. Moreover, for each value of ξ (the ratio a to h) there are several modes. The
critical values, at which the birth of new modes begins are determined from Eq. (22)
when its right-hand side is zero. As the parameter ξ increases, the frequencies of
all modes decrease monotonically, tending asymptotically to πc1/2h . Figs. 2 and 3
show the behavior of oscillation frequency modes at the zero approximation.

η 

χ 
Fig. 2. Frequency graph according to Eq. (22)

when κ = 0.75, µ2/µ1 = 0.2.

In the m-th order approximation, the frequency ω determined from (21)
satisfies the inequality π(1 + 2m)c1/2h < ω < πc2/2h and depends on the
quantities h and a.

For example, in the first order approximation( m=1) the frequency ω satisfies
the inequality 3πc1/2h < ω < πc2/2h. Fig. 4 shows the behavior of oscillation
frequency modes at the first approximation (m= 1), when κ = 0.25 and µ2/µ1 = 0.5.
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Fig. 3. Frequency graph according to Eq. (22)
when κ = 0.75, µ2/µ1 = 5.

The comparison with the previous figures shows that new frequency modes
have appeared here, which asymptotically tend towards 3πc1/2h monotonously
descending, and the previous modes have been “cut off” by this asymptote.

 

η 

χ 

Fig. 4. Frequency graph according to the first approximation.

Conclusion. The possibility of localizing shear oscillations in the vicinity of
the junction of different parts of the waveguide has been established. With an increase
in the approximation order, the number of oscillation frequency modes also increases,
and all the previous approximation modes are “cut off” by the new asymptote.
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BA�ADRYAL A�A�GAKAN KISAANVERJ HAR� ALIQATAROWM

SAHQI TATANOWMNERI TE�AYNACMAN MASIN

Ays hodva�owm ditarkvowm en har� kisaanverj aliqatarner` dranq

sahmana�ako� har�ow�yownnerowm  dranc ezrerowm tarber sahmanayin

paymanneri depqowm: Hastatvel � aliqatarneri har an maseri ancman

(kcman) �rjakayqowm sahqi aliqneri te�aynacman hnaravorow�yown�:

М. В. БЕЛУБЕКЯН, С. Л. СААКЯН

О ЛОКАЛИЗАЦИИ СДВИГОВЫХ КОЛЕБАНИЙ В СОСТАВНОМ
ПЛОСКОМ ПОЛУБЕСКОНЕЧНОМ УПРУГОМ ВОЛНОВОДЕ

В настоящей статье рассматриваются плоские полубесконечные
волноводы при разных граничных условиях на плоскостях и на краях,
ограничивающих волновод. Устанавливается возможность локализации
сдвиговых колебаний в окрестности стыка разных частей полубесконечного
плоского волновода.


