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ON THE LOCALIZATION OF SHEAR VIBRATIONS IN A COMPOSITE
ELASTIC SEMI-INFINITE FLAT WAVEGUIDE
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In this paper we consider semi-infinite flat waveguides with different
boundary conditions on the planes and on the edges that bound the wave-
guide. The possibility of localizing shear waves in the vicinity of the junction
of neighbouring parts of a semi-infinite flat waveguide is established.
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Introduction. The study of purely shear waves in a flat layer began with
Love’s work in 1911 [1f]. Subsequently many problems were solved for elastic wave-
guides with various boundary conditions and in a dynamic formulation (problems
with initial conditions). A survey of these papers is given in the monograph [2]
and in [3]]. In [4] localized shear waves are considered in the vicinity of the edge
of a semi-infinite waveguide. The paper [5] is devoted to the case when the plane
boundary of the semi-infinite part of the waveguide passes into a periodically varying
boundary. In [6]] resonance oscillations in a plane finite composite waveguide were
investigated. In [7] the propagation of shear waves in elastic waveguide with the
periodically changed boundary conditions is investigated. The problem of localized
shear waves in the vicinity of the junction of the two parts of the waveguide with a
symmetric arrangement of the boundary conditions relative to the median plane of
the layer was considered in [8].

Statement of the Problem. Let the flat waveguide consist of two parts. In
a rectangular Cartesian coordinate system, the first part of the waveguide with the
index (1) occupies the region —a < x <0, 0 <y < h, —oo < z < oo, the second part
with the index (2) occupies the region 0 < x < oo, 0 <y < h, —oo < 7 < oo (Fig. 1).
Consider the pure shear elastic vibrations (anti-flat deformation):
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Fig. 1. The flat waveguide.

Wave propagation equations for the waveguide parts are of the form [2,[9]:
’w; Wi
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where A is the two-dimensional Laplace operator; u; is the shear modulus; p; is the
density of the waveguide material; c; is the velocity of the bulk shear wave. It is

assumed that the waveguide surface y = 0 is free (o}é ) = O) for x < 0 and fixed for

x > 0, and the surface y = A is free for x > 0 and fixed for x < 0, i.e.
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At the junction of the two parts of the waveguide (at the point of articulation)
the conditions for continuity of displacements and shear stresses oy, should be
satisfied:
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The ending edge of the waveguide is free [|[LOL|11]:
d
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and when x — +oo, the condition of the damping of oscillations must be satisfied:
lim wy, =0. @)
X—>+oo

Obtaining of the Corresponding System of Equations. The solutions of
Eq. (2) for the waveguide parts that satisfy the boundary conditions (3), () are
represented as follows:

e T+27nn
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P TT+21wm
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The substitution (§), (9 into the Eq. (2) leads to a sequence of
ordinary differential equations for the functions f,(x), gm(x). General solutions of
these equations are obtained in the form:
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f(x) =A,sinA,ppx + By cos A, ppx, (10)
gm(x) =Cpe X 4 D, @™ Pmdm¥ (11)
where A,, B,, C,,, D,, are arbitrary constants and
2 2
pa = 7;50%—1, n= 1—;;;6% (12)
Given the condition (@), the solution (T0) will be rewritten as follows:
Jn(x) = Fycos[Aypu(a+x)], (13)

where F,, are new arbitrary constants. Taking into account the damping condition (7),
the solutions (IT)) will take the following form:

gn(x) = Ce™ ™, (14)
and from (3)), (13), (I4) it follows

Y FicosAypnacosdyy =Y Cusini,y,
- n=0 m=0 - (15)
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Taking into account the expansion in the Fourier series

sinA,,y = Z byun cOs Ay, (16)
n=0
from (T5) we obtain the following system of infinite equations:

Z bmnCm = F,cos A‘npna7

0 (17)
Z bmnlmCImCm = Fn&lnpn Sin)*npna'

m=0 H2

Excluding the unknowns F, from the system (I7), we arrive at an infinite system
equations with unknowns C,,:

Y. b <tanP,, B Q’")Cm:o, n=01,2,.... (18)
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where

=N Qm— V( 1—|—2m)2—1<2n2,
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m, if m+n is an even number;
bun = P (20)

ﬁ’ if m+n is an odd number.
m-—n

The Solution of the Problem. Corresponding truncated systems will be
considered. Then, in the m-th order approximation (m = 0,1,2,...) from the condi-
tion that the solution of the truncated system is non-trivial, we obtain a characteristic
equation for determining the dependence of 1 on &:



ON THE LOCALIZATION OF SHEAR VIBRATIONS IN A COMPOSITE ELASTIC. .. 47
boo (tanPoé - = QO) bio <tanP0§ 2 Ql>
wm P w P
bmo | tan ByE — M Qm)

Hi P
boi <tanP1 —'LLZ'QO) by <tanP1 K Ql)
mi P u

=0. (21
b tanPlé—“z-Qm)
0 0 w P
W o Hy
bom | tan P, —=.= bin | tanP,,
0( 5Hlm>l< éﬂle>
bmm <taan§ - & : Qm>
i Bn

From , and it follows that on the zero approximation (m = 0),
the characteristic equation is an analogue of the characteristic equation of the Love
wave [[1]]:

tan€+/n? i 1—K2T] =0.
Vn2—

This equation has real solutions only when k¥ < 1, i.e. when ¢; < ¢;. These
solutions set the frequency for the appropriate mode of oscillations. The frequency @
determined from satisfies the inequality ¢ /2h < ® < ¢y /2h and depends on
h and a. Moreover, for each value of £ (the ratio a to &) there are several modes. The
critical values, at which the birth of new modes begins are determined from Eq. (22))
when its right-hand side is zero. As the parameter £ increases, the frequencies of

all modes decrease monotonically, tending asymptotically to mc;/2h . Figs. 2 and 3
show the behavior of oscillation frequency modes at the zero approximation.

AL SN

(22)

5 10 15 X
Fig. 2. Frequency graph according to Eq. (22))
when k = 0.75, [.Lz/[.tl =0.2

In the m-th order approximation, the frequency @ determined from (2I)
satisfies the inequality 7(1 + 2m)c;/2h < @ < mcy/2h and depends on the
quantities 4 and a.

For example, in the first order approximation( m=1) the frequency @ satisfies
the inequality 37mc;/2h < ® < mcy/2h. Fig. 4 shows the behavior of oscillation
frequency modes at the first approximation (m = 1), when k = 0.25 and /1 = 0.5
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Fig. 3. Frequency graph according to Eq. (22))
when x =0.75, up/u; =5.

The comparison with the previous figures shows that new frequency modes
have appeared here, which asymptotically tend towards 37c;/2h monotonously
descending, and the previous modes have been “cut off” by this asymptote.
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Fig. 4. Frequency graph according to the first approximation.

Conclusion. The possibility of localizing shear oscillations in the vicinity of
the junction of different parts of the waveguide has been established. With an increase
in the approximation order, the number of oscillation frequency modes also increases,
and all the previous approximation modes are “cut off”” by the new asymptote.
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ATNUN UL UATR4UWHUTL GhUTULIENQ NUC ¢ WLPhLUSULNFT
UUNLP SUSULAFULENP SENUSLUSUTL UUUDL

Wu hnpjwdnud nhypuplpynud G hwpe jhuwwbytpe wjhpupupbtp’ npubip
uwhdwbwthwynn huppnpymbbtpnd b ngpubg Ggpipnmd pupptp vwhdwbwht

wuydwbitph nhypnd: Swuypuipyby £ whpugpupbbph hwpbwd dwutiph wbgdwh
(Yguwt) ppowluypnid uwhph wihptbtph Yhnuybugdwd hwpwynpnipynibp:
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O JIOKAJIM3ALIMYN CABUTI'OBBIX KOJIEBAHNI B COCTABHOM
I[TJIOCKOM ITOJIYVBECKOHEYHOM VIIPYT'OM BOJIHOBOJE

B macrosmeil crarbe pacCMaTPHUBAIOTCH IJIOCKHE IT0JIyOECKOHEYHBIE
BOJIHOBOJBI IIPM PAa3HBIX I'DAHUYHBIX YCJIOBHUAX Ha IJIOCKOCTAX W Ha Kpasx,
OI'PAHMYUBAIONINX BOJTHOBOJ. YCTAHABIUBAETCI BO3MOYXKHOCTDL JIOKAJIU3AIUN
CIBUTOBBIX KOJIE0AHMIT B OKPECTHOCTH CTHIKA PA3HBIX YaCTel 101y0eCKOHEeTHOTO
IIJIOCKOT'O BOJIHOBO/IA.



