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Mathematics

ON RANDOM WEIGHTED SUM OF POSITIVE
SEMI-DEFINITE MATRICES

T. V. GALSTYAN *, A.G. MINASYAN **

YerevaNN Research Lab, YSU, Armenia

Let Ay,...,A, be fixed positive semi-definite matrices, i.e. A; € S;,L(R)
Vie{l,...,n} and uy,...,u, are i.i.d. with u; ~N(1,1). Then, the object of
our interest is the following probability

n
+
P<gu,‘A,‘ S Sp (R)) .
=
In this paper we examine this quantity for pairwise commutative matrices.
Under some generic assumption about the matrices we prove that the weighted
sum is also positive semi-definite with an overwhelming probability. This
probability tends to 1 exponentially fast by the growth of number of matrices n
and is a linear function with respect to the matrix dimension p.
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Introduction. The problem arising from a quite unexpected setup of famous
bootstrap technique first introduced by [1]. Bootstrap technique is a fundamental
method in statistics and it is used in many estimation problems, when the data-sets are
not large enough. It also has an advantage in the construction of confidence intervals,
i.e. estimating the variance of the estimator, while other, more classical, methods
don’t. More on bootstrap technique, its variants and applications can be found in [2, 3].

In the most generic setup, consider the following optimization

Problem 1. Maximize £(0) =Y, ¢;(Y;,0) subject to 6 € ©O.

This is a typical setup for maximum likelihood estimation problem. Assuming
the observations are coming from the exponential family [4, 5] and hence making
the model from Generalized Linear Models (GLMs), it can be easily shown that the
resulting likelihood function is concave (see, e.g., [0]), which, in turn, implies the
unique solution of Problem 1. Moreover, in the context of optimization Problem 1 it
can be shown that for Vi € {1,...,n} the function ¢;(Y;,0) is concave in 0, yielding
concavity of the finite sum of concave functions £(8).
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The bootstrap counterpart of Problem 1 can be stated as the following

Problem 2. Maximize \
£(0) =Y (Y, 0)w; (1)
i=1
)

subject to 6 € ©, where w; are known as bootstrap multipliers and in general need to
satisfy the following properties:
E'w, =1, Varw,=1, E exp(w}) < eo. (2)

It has been confirmed that for the proper choice of bootstrap weights wf- (e.g.

from the exponential distribution with parameter 1: w’ Sy Exp(1)) the Problem 2
remains concave (see, e.g., [0]). In other words, the optimization methods used
for solving Problem 1 yield the maximum point of (1) as well. As showed in [6]
(page 13) the logarithms of probability density functions are of the following form
0i(Y;,0) :=Y;-0 —g(0). Let a matrix H,, be defined as follows

Hy(0) =Y wig(6), 3)
i=1

hence,
£(6) = (Z Y,-w;*-> 0 —Hy(0).
i=1

It is evident that for the choice w? g N(1,1) the matrix H,, is not necessarily
positive semi-definite. However, the positive semi-definiteness of H,, guarantees that
the algorithm will not be stuck in a local maximum. Moreover, the efficiency of
numerical methods increases when H,, is positive semi-definite.

In this paper we study the conditions, under which the Problem 2 remains
concave. The concavity of optimization Problem 2 is essential in proving the bootstrap
validity. However, the problem as it was proposed in abstract is interesting by itself
and is believed to be very hard for general matrices A; and arbitrary random weights
u; satisfying (2).

Main Result. The main result concerns to the description of the conditions
on non-negative definite symmetric matrices so that the probability mentioned in the
abstract would be high. That means, if the weights {;}?_, are i.i.d. from N(I,1),
then with high probability, converging to 1 exponentially with respect to n, the matrix

n
A déf Z u;A; € SZ(R),
i.e. it is non-negative definite. =

The main theoretical finding of this paper is summarized in the following

Theorem. LetAy,...A, €S} (R) such that for any i, j € [n] it holds A;Aj =

AjAi and u ~ N(1,1). Assume uy,...,u, are the i.i.d. copies of u. Then, assuming
thatall zj (j=1,...,p) defined in (5) satisfy |zj| < \/n for matrices A;, then
n _n
pe 2
PlYAuweS;R)|>1-C-—— 4
i:Zl 1444 p( )> - 27_[” ( )

for an absolute universal constant C.



98 T. V. GALSTYAN, A.G. MINASYAN

Proof. Let us first formulate a simple lemma without proof. We omit the
proof from the paper and refer the reader to [7], Theorem 5.1, for details.

Lemma. Ifmatrices A and B commute, i.e. AB = BA, and both A and B are
diagonalizable, then they are diagonalizable in the same basis.

Since it is assumed that matrices Ay,...,A, are commuting, hence can be
diagonalized in the same basis, then it is sufficient to consider the case of diagonal
matrices only.

Let A; = diag (li(l), 7L-(2), ... ,)Li(p)> forall i=1,...,n. Then we have that the

1

n
condition ZA,'M,‘ €S, (R) is equivalent to

Aff o).

First, we notice that for all j =1,..., p it holds

Zu, ~N (;x Y (/1,.“))2) .

Then,

(Zul 20> =P(Z >7z)),

where Zy ~ N(0,1) and

e (5)

It is easy to see that in general |zj| € [1,4/n]. At this point we use the
assumption that |z;| < y/n. Then, using the fact that

1 :
Fz,(x) = e 2 dt =

we get

for some universal constant C.
Hence, we obtain the final lower bound, by using the union bound for all

j=1,..,p

(l;AuleS ) ((i] {guili(j)20}> zl—c\’;%,

as desired. OJ

[SIE
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By the proposition below we illustrate that the assumptions made in Theorem
are indeed realistic and we provide an example of such class of matrices.

Proposition. Let matrices Ay,...,A, be such that that for each j=
1,...,p the eigenvalues A/ (Ay),...,A/(A,) are assumed to be i.i.d. from U[0,1].
Then, for such matrices Ay,...,A, the quantity z defined in (5) is indeed of order
\/n. Moreover, the simulation studies show, that if the eigenvalues are sampled from
U[0, 1], then the proportionality constant is approximately 0.8.

Remark 1. It is worth noticing that the condition |z;| < \/n means that the
corresponding eigenvalues of matrices Ay, ..., A, of the same order are not separated
much.

Notice that in Theorem the matrices satisfy certain conditions, however we
illustrate an example when the probability presented in (4) is constant.

Remark 2. It is evident that the assumption |z| < \/n will not always be
fulfilled, however as noticed in Proposition there exist classes of matrices, for which
this assumption holds. Below we show a particular choice of matrices A such that the
probability in (4) is not converging to 1. Let

Ay =diag(1,0,...,0) and Ay =---=A,=0,y,,
then the probability from (4) boils down to P(N(1,1) > 0) ~ 0.85, which is a constant
probability.
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S. Jd. QULUS3UL, W. 9. UhLUUSUWL

HPUHUL UhUUINCNS3UL UUS P3LENE MUSUNULUL GehauerNd GNFUUCH
JEMURABM3UL

Yhgnip Aq,..., A dhpuud gpujul Yjhuwnpngjuy dunpphgbbp Gb, wy-
uhlipl’ A; € ST(R) Vi {1,...,n} W uy,...,u,-p wiun qupwhwlub dtdnipe-
Jmbbtp G0 W nubk@ dhubing b pwppunudp’ w; ~ N(1,1): Ulip htipuppppnipyniitiph
wnwnpluib £ htiyplyuwy hwjwbwlwbnyeynibp.

n
]P(Z uiA; € S;(R)) :
i=1

Wu hnnJwodnmd dtbp htipugmpmud Gop Yybpnbpju; hwmjuwbwubnipmbp qnyqg-
wn-qnyq phnuthnfutith dwpphgtiph hwdwp: Uwgpphgbtiph Jbpuptipyug dh
pwlh pnhwtnp Gopwunpmipynbbtph ptinh mbtbwnt nhypmd Jtbp wuyugni-
gnud tiip, np Yytpnbpjuy Yohnittinny gnidwpp punp dtd hwmjuwbwubinipyudp bnyb-
whu npuub jhuwnpnojuwy £ Wu hwjwbwuwbnyeynibp dwipphgbtiph # puwbwlhg
Juhijwd tpuynitibgju] wpugnipjuip dagupnid £ 1-h b upuwd sk dunpphg-
otph p swhnnulwbnienibhg:

T. B. TAJICTSH, A. I MUHACAHH

O CJIVYANHON B3BEIIEHHON CYMME TTOJIO?KUTEJIBHO
I[TOJIYOIIPEJEJIEHHBIX MATPUI]

IIycrs Ay,...,A, — GUKCHPOBAHHBIE MTOJIOKHUTEIHHO OJIYOIpPEeIeTeHHbIE
marpunsl, T.e. A; € ST(R) Vi€ {1,...,n}, muy,...,u, — HE3ABUCHMbIC OJTHHAKOBO
orpeJiesieHHble caydaiinbie Beananbl, T.e. u; ~ N(1,1). Hac 6ymer unrepeco-
BaTb CJIEYIONIas BEPOSITHOCTD:

IP’( uiA; € S;(R)>.
i=1

B nammoit cTaThe MbI HCC/IEAYEM BBIIIEYIOMSIHYTYIO BEPOSITHOCTD J1JjIsI TIOTIAPHO
KOMMYTHUPYIOIMAX MAaTpull. lIpm mocTaTovIHO OOIMUX yCIOBUSX MBI JOKA3AJIH,
YTO B3BEIICHHAS CyMMA JAHHBIX MATPHUIL C OU€Hb DOJILINON BEPOSATHOCTHIO TOYXKE
OyIeT MOJTOXKUTEHHO MOJTYOIIPEIeIeHHON. JTa BEPOATHOCTD IKCIIOHEHIINAIBHO
cTpeMuTcs K 1 B 3aBUCHMOCTH OT KOJUYECTBA MATPUIl 7 U HE 3aBUCHUT OT
pPa3MepHOCTU MAaTPHIL, p.



