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We investigate the relations between the proof lines of non-minimal
tautologies and its minimal tautologies for the Frege systems, the sequent systems
with cut rule and the systems of natural deductions of classical and nonclassical
logics. We show that for these systems there are sequences of tautologies ψn,
every one of which has unique minimal tautologies ϕn such that for each n the
minimal proof lines of ϕn are an order more than the minimal proof lines of ψn.
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Introduction. The minimal tautologies play a main role in the proof complexity
area. Namely, the well-known propositional formulas (Pigeon Hole Principle, Clique
Colouring pair, Topsy-Turvy Matrix, Hool’s theorem, Ramsey theorem and some
others), the proof complexities of which are investigated in many papers, are minimal
tautologies. There is a traditional assumption that a non-minimal tautology shouldn’t
be less complicated than its minimal tautology, that means it must be some monotonic-
ity of proofs. This idea was first revised by Anikeev in [1]. He introduced the notion of
a monotonous proof system and gave examples of monotonous and non-monotonous
systems, but both of them are not complete systems. In [2–5], the notion of strongly
monotonous systems for propositional proof systems is additionally introduced and
the properties of monotonous and strongly monotonous for many propositional proof
systems of classical and nonclassical logics are investigated. Some of the investigated
systems (resolution systems, cut-free sequent systems) are monotonous systems, in
each of which the proof lines of non-minimal tautologies are not less than the proof
lines of their minimal tautologies. Some others are not monotonous (systems based
on the splitting method, elimination systems), the proof lines of some formulas can
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be less than the proof lines of some of their minimal tautologies. It was proved that
many known systems are not strongly monotonous, but the question of monotonicity
for some strong propositional systems still remains open. In [6] it is proved that the
Frege systems of classical logic are not monotonous. In this paper we generalize
this result for some other systems of classical logic (the sequent systems with cut
rule and the systems of natural deductions), as well as for analogous systems of
intuitionistic and Johansson’s logics. It is shown that for each mentioned systems there
are the sequences of tautologies ψn (respectively sequents→ ψn), each of which has
unique minimal tautologies ϕn (respectively sequents→ ϕn) such that for every n the
minimal proof lines of ϕn (→ ϕn) are an order more than the minimal proof lines of
ψn (→ ψn).

Preliminaries. We will use the current concepts of propositional formula,
subformula, elementary subformula, sequent, tautology in different logics, Frege
proof systems, sequent systems, systems of natural deductions, proof and proof
complexity [2–9]. Let us recall some of them.

Taking into account that in nonclassical logics none of logical connectives
can be presented through the others, we assume that the language for the presented
propositional formulas contains logical connectives ¬, &, ∨, ⊃ and may be
constant ⊥ (false) as well. Further we use also A' B for the presentation of formula
(A⊃ B)&(A⊃ B).

The Complexity Properties of Formulas Proofs and Proofs Systems. We
denote by |ϕ| the size of the formula ϕ , defined as the number of all logical signs
entries in it. It is obvious that the full size of the formula, which is understood to be
the number of all symbols, is bounded by some linear function in |ϕ|.

D e f i n i t i o n 1. A tautology of some logic is called minimal, if the replace-
ment result of all occurrences of each its non-elementary subformulas by some new
variable is not a tautology of the same logic.

D e f i n i t i o n 2. A minimal tautology ϕ of some logic is minimal of some
formula, ψ if ϕ is ψ , or ϕ is the replacement result of all occurrences of some
non-elementary subformulas of ψ by some new variable.

We denote by M(ψ) the set of all minimal tautologies of the tautology ψ .
In the theory of proof complexity one main characteristics of the proof

is t-complexity (length), defined as the number of proof steps. We denote by
tφ (ϕ) the minimal possible value of t-complexity for all proofs of the tautology
ϕ in the system φ .

D e f i n i t i o n 3. The proof system φ is called t-monotonous, if for every
tautology ψ there is a minimal tautology ϕ , such that ϕ ∈M(ψ) and tφ (ψ) = tφ (ϕ).

D e f i n i t i o n 4. The proof system φ is called t-strongly monotonous, if for
every tautology ψ there is no minimal tautology ϕ , such that ϕ ∈ M(ψ) and
tφ (ϕ)> tφ (ψ).
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Definitions of Investigated Systems. Here we give the descriptions of the Frege
systems, the sequent systems with cut rule and the systems of natural deductions for
classical (CL), intuitionistic (IL) and Johansson’s (JL) logics.

D e f i n i t i o n 5. A Frege system FC for CL uses a denumerable set of
propositional variables, a finite, complete set of propositional connectives; FC has

a finite set of inference rules defined by a figure of the form
A1,A2, . . . ,An

B
(the rules

of inference with zero hypotheses are the axioms schemes); FC must be sound and

complete, i.e. for each rule of inference
A1,A2, . . . ,An

B
every truth-value assignment,

satisfying A1,A2, . . . ,An also satisfies B, and FC must prove every tautology.

D e f i n i t i o n 6. Two proof systems are called t-linearly equivalent, if any
proof in one system can be modified to a proof of the same tautology in another system,
so that the t-complexity of the proof is increased not more than linearly.

In [8], it is proved that all Frege systems of CL are t-linearly equivalent.
For the definition of Frege systems for nonclassical logic, we must give some

additional notions [9–13].

D e f i n i t i o n 7. The inference rule
A1,A2, . . . ,An

B
is called derivable in the

system φ , if the formula (A1 ⊃ (A2 . . .(An ⊃ B) . . .)) is provable in φ .

D e f i n i t i o n 8. The inference rule
A1,A2, . . . ,An

B
is called admissible in the

system φ , if the formula B is provable in φ from premises A1,A2, . . . ,An.

Note that for the systems of CL the derivability property of some rule implies
the admissibility properties and vice versa, but for the nonclassical logics we have
another situation : in [13] it is proved that there are some inference rules for the
systems of IL (JL), which are admissible, but not derivable and it is proved in [11]
( [12]) that the verification of the rule admissibility for the systems of IL (JL) can be
done with the linear t- complexity in some specific system for IL (JL).

To give the definitions of Frege systems for IL (JL), we must fix the following
main proof systems for classical, intuitionistic and Johansson’s logics respectively by
Cm, Im and Jm [9].

For each propositional formulas A,B,C the axiom schemas of the classical
system Cm are:

1) A⊃ (B⊃ A)
2) (A⊃ B)⊃ ((A⊃ (B⊃C))⊃ (A⊃C))

3) A⊃ (B⊃ A∧B))
4) A∧B⊃ A;A∧B⊃ B
5) A⊃ A∨B;B⊃ A∨B
6) (A⊃C)⊃ ((B⊃C)⊃ (A∨B⊃C))

7) (A⊃ B)⊃ ((A⊃ ¬B)⊃ ¬A)
8) ¬¬A⊃ A
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Inference rule is modus ponens
A,A⊃ B

B
(m.p.).

In the system Im instead of axiom schema ¬¬A ⊃ A is taken ¬A ⊃ (A ⊃ B),
which is omited in the system Jm, where each formula ¬A is replaced by A ⊃ ⊥.
Therefore, the axiom Schema 7 can be represented by the axiom Schema 2 and it must
be omitted from Jm as well.

It is known that the deduction theorem holds in all three systems.
For each formula F we denote by J-image the formula, which is obtained from

F by replacing each of its ¬A-type subformulas with formula A⊃⊥. Note, that the
size of J-image of formula F can not be more than 2|F |.

It is known that if some formula F is provable in Cm, then the formula ¬¬F
is provable in Im, and if some formula F is provable in Im, then its J-image is provable
in Jm.

D e f i n i t i o n 9. The Frege system FI (FJ) for IL (JL) is finite set of schematic
axioms derivable in IL (JL) and schematic inference rules admissible in IL (JL)
provided FI (FJ) contains up to a linear translation by lines to main system Im (Jm).

Note that in [11, 12] the analogous definition is given with the last phrase
“contains up to a polynomial translation by size to main system Im (Jm)” explaining
the background for such definition, but it is the background for our Definition 9
as well.

As consequence we obtain

P r o p o s i t i o n 1. Any two Frege systems over ¬,&,∨,⊃ for IL are
t-linearly equivalent [11]. Any two Frege systems over &,∨,⊃,⊥ for JL are t-linearly
equivalent [12].

Since the systems Cm, Im and Jm are Frege systems for CL, IL and JL respec-
tively and it is proved in [9, 14] that the coresponding sequent systems with cut rule,
the corresponding systems of natural deductions and mentioned main systems are
t-linearly equivalent, from Proposition 1 it follows that

P r o p o s i t i o n 2.
• The Frege systems, the sequent systems with cut rule and the systems of

natural deductions of CL are t-linearly equivalent.
• The Frege systems, the sequent systems with cut rule and the systems of

natural deductions over ¬,&,∨,⊃ of IL are t-linearly equivalent.
• The Frege systems, the sequent systems with cut rule and the systems of

natural deductions over &,∨,⊃,⊥ of JL are t-linearly equivalent.

Important Formulas. In some papers on propositional proof complexity for 2-
valued classical logic the following tautologies (Topsy-Turvy Matrix) play
a key role

T T Mn,m = ∨
(σ1,σ2,...,σn)∈En

m
∧

j=1

n
∨

i=1
pσ j

i j
(n≥ 1,1≤ m≤ 2n−1,E = 0,1).
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For all fixed n≥ 1 and m in the above indicated intervals every formula of this
kind expresses the following true statement: given a 0,1-matrix of order n×m we can
“topsy-turvy” some strings (writing 0 instead of 1 and 1 instead of 0) such that each
column will contain at least one 1.

Let An = T T Mn,2n−1. In [15], it is proved that in each Frege system of classical

logic it holds the relation t(An) = Ω

(
|An|

3
2

log3
2(|An|)

)
.

Note that the formula ¬¬An is provable in IL, its J-image is provable in JL and
it is obvious that the minimal numbers of their proof lines in corresponding systems
Im and Jm can not have less order than the proof lines of An in Cm.

Main Results. Here we prove that the mentioned systems of CL, IL and JL
are non t-monotonous, consequently non t-strongly monotonous, but first we should
give the following auxiliary statements relatively to the proof systems Cm, Im and Jm.

L e m m a 1. Let P(A) be a tautology in Cm (Im, Jm), A be some of its
subformulas of size n, and the variable q is not presented in P(A). There is a
modification of the subformula A to A′(q), and there are not more than
2n tautologies Ti(q), which can be proved in Cm (Im, Jm) in a constant number
of steps, so that no minimal tautology of Cm (Im, Jm), can be obtained from the
tautology P′(A′,q) = (q⊃ P(A′(q)))&T1(q)& . . .&Ti(q)& . . . by replacing with new
variables neither any of the formulas A′(q),T 1(q), . . . ,Ti(q), . . . , nor their
non-elementary subformulas.

P ro o f. Let’s describe the modification of each subformula U of A, while we
will add with the conjunctions the formulas Ti(q).

1. If U is a variable, then its modification coinsides with itself, that is U ′ =U .
No new formula will be added.

2. If U = (U1 ⊃U2), and q is true in (1), then U is equivalent to (U1 ⊃ (q⊃
U2)). The modification of U will be U ′ = (U ′1 ⊃ (q ⊃U ′2)), where U ′1 and U ′2 are
modifications of U1 and U2, respectively. We will add with conjunctions the formulas
((¬q) ⊃ (U ′1 ⊃ (q ⊃U ′2))) and ((¬q) ⊃ (q ⊃U ′2)) for the systems Cm, Im and its
J-image for Jm. If we replace (U ′1⊃ (q⊃U ′2)) in P′, then ((¬q)⊃ (U ′1 ⊃ (q⊃U ′2)))
will not remain a tautology. If we replace (q⊃U ′2), then ((¬q)⊃ (q⊃U ′2)) will not
remain a tautology of corresponding system.

3. If U = (¬U1), then we should modify U1 to U ′1. The modified representation
of U will be U ′ = (¬U ′1). In case U ′1 isn’t a contradiction, we add with conjunctions
the formula (U ′1 ⊃ (¬(¬U ′1))) for the systems Cm, Im and its J-image for Jm, and
otherwise the formula ((¬(¬U ′1))⊃U ′1) for Cm, (¬(¬((¬(¬U ′1))⊃U ′1))) for Im and
its J-image for Jm. If we replace (¬U ′1) or (¬(¬U ′1)) in P′, then the added formulas
won’t remain a tautology of the corresponding system.

4. If U = (U1&U2), and q is true (1), then U is equivalent to (U1&(q&U2)).
The modification of U will be U ′ = (U ′1&(q&U ′2)), where U ′1 and U ′2 are the modifica-
tions of U1 and U2, respectively. Then we will add with the conjunctions the formulas
((U ′1&(q&U ′2)) ⊃ q) and ((q&U ′2) ⊃ q) for the systems Cm, Im and its J-image for
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Jm. If we replace (U ′1&(q&U ′2)) and (or) (q&U ′2) in P′, then at least one of the added
formulas will not remain a tautology of the corresponding system.

5. If U = (U1∨U2), and q is true(1), then U is equivalent to (U1∨((¬q)∨U2)).
The modification of U will be U ′ = (U ′1∨ ((¬q)∨U ′2)), where U ′1 and U ′2 are modifica-
tions of U1 and U2, correspondingly. We will add with conjunctions the following two
formulas ((¬q)⊃ (U ′1∨ ((¬q)∨U ′2))) and ((¬q)⊃ ((¬q)∨U ′2)) for the systems Cm,
Im and its J-image for Jm. If we replace (U ′1∨ ((¬q)∨U ′2)) and (or) ((¬q)∨U ′2) in P′,
then at least one of the added formulas will not remain a tautology of corresponding
system.

Finally, we will add q⊃ to P(A′(q)), because we assumed q is true in (1) when
modifying ⊃,&,∨.

Further, if the variable q is not represented in a formula A, then we call its
modification A′(q) for the systems Cm, Im and Jm by the method described in
Lemma 1. q-discharged presentation of A.

L e m m a 2. Let A be a formula of size n for one of the systems Cm, Im or Jm
and let A′(q) be corresponding q-discharged representation. Then there exists a proof
of q ` A′(q)⊃ A in O(n) steps.

P ro o f. For any formulas C and D each of the following formulas
(q⊃ ((C ⊃ (q⊃ D))⊃ (C ⊃ D))), (q⊃ ((C ⊃ D)⊃ (C ⊃ (q⊃ D)))),
(q⊃ ((C&(q&D))⊃ (C&D))), (q⊃ ((C&D)⊃ (C&(q&D)))),
(q⊃ ((C∨ (¬q∨D))⊃ (C∨D))), (q⊃ ((C∨D)⊃ (C∨ (¬q∨D))))

is provable in Cm and Im in a constant number of steps. Therefore from premise q the
following formulas

((C ⊃ (q⊃ D))⊃ (C ⊃ D)) and ((C ⊃ D)⊃ (C ⊃ (q⊃ D)))

((C&(q&D))⊃ (C&D)) and ((C&D)⊃ (C&(q&D)))

((C∨ (¬q∨D))⊃ (C∨D)) and ((C∨D)⊃ (C∨ (¬q∨D)))

are provable in Cm and Im in a constant number of steps as well.
We have, that for any formulas F , F ′, E and E ′ the following formulas
(F ' F ′)⊃ ((E ' E ′)⊃ ((F ⊃ E)⊃ (F ′ ⊃ E ′))),
(F ' F ′)⊃ ((E ' E ′)⊃ ((F&E)' (F ′&E ′))),
(F ' F ′)⊃ ((E ' E ′)⊃ (F ∨E)' (F ′∨E ′)),
(F ' F ′)⊃ ((¬F)' (¬F ′))

also are provable in Cm and Im in a constant number of steps. Thus, constructing A
step by step connecting to two equivalent formulas, not the old ones, but equivalent
formulas (see Replacement Theorem 6 from [9]), we can prove in Cm and Im from
premise q the formula A′(q)⊃ A with O(n) steps. Analogous result for the system Jm
we can obtain by repeating all the steps for the J-images of mentioned formulas.

L e m m a 3.
a) If the tautology E is a minimal for the tautology C in the system Im (Jm), then

tautology ¬¬E (((E ⊃⊥)⊃⊥)) is a minimal for tautology ¬¬C(((C ⊃⊥)⊃⊥));
b) for any tautology A of the system Im (Jm) the minimal steps of proof for the
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formula ¬¬A(((A⊃⊥)⊃⊥)) in the system Im (Jm) can be more, than the minimal
steps of proof for the formula A only with some constant.

P ro o f. Is obvious.

T h e o r e m 1. The systems Cm, Im and Jm are not t-monotonous and,
consequently, are not t-strongly monotonous.

P ro o f. Consider the formula P=A∨(p⊃ p), where p,q, t,r are not presented
in A and |A|= n . Obviously, t∨ (p⊃ p) is minimal for P. If A is a minimal tautology,
then A∨ r is also minimal fo P. We can construct P′ applying Lemma 12 to P:

P′n(A
′,q) = (q⊃ ((p⊃ p)∨A′(q)))&T1(q)& . . .&Ti(q)& . . .

It’s obvious that P′n(A
′,q) can be proved in O(n) steps and its unique minimal

is the following:

Bn(q,r,A′) = (q⊃ (r∨A′(q)))&T1(q)& . . .&Ti(q)& . . .

Suppose it can be proved in Cm in f (n) steps. Then the following three
tautologies Bn(q,¬r,A′), Bn(¬q,r,A′), Bn(¬q,¬r,A′) can be proved in at most f (n)
steps as well.

Now we can prove that any minimal tautology A is proved in Cm with
O( f (n)+ |A|) steps.

Let the formula Bn(q,r,A′) is proved already. Then in O(n) steps by &-elimination
rule we can prove the formula (q⊃ (r∨A′(q))). Now we add two premises q,¬r and
continue the Proof:

q,¬r ` (q⊃ (r∨A′(q)))
` q
` r∨A′(q)
` ¬r
` ¬r ⊃ ((r∨A′(q))⊃ A′(q)) tautology(*)
` ((r∨A′(q))⊃ A′(q))
` A′(q)

. . . . . . . . . . . . . . . . . .
` A′(q)⊃ A by Lemma 2
` A

q ` ¬r ⊃ A
By analogy, after proving the formulas Bn(q,¬r,A′), Bn(¬q,r,A′), Bn(¬q,¬r,A′),

we obtain: q,¬¬r ` (q⊃ (¬r∨A′(q))) . . .q ` ¬¬r ⊃ A consequently, using the proof
of tautology (¬r ⊃ A)⊃ ((¬¬r ⊃ A)⊃ A) (**), we obtain q ` A.

Further by analogy¬q,¬r ` (¬q⊃ (r∨A′(¬q))) . . .¬q`¬r⊃A and¬q,¬¬r `
(¬q ⊃ (¬r∨A′(¬q))) . . .¬q ` ¬¬r ⊃ A . . ., ¬q ` A and finally, using the proof of
tautology (q⊃ A)⊃ ((¬q⊃ A)⊃ A) (***) we prove A.

Thus, we got a proof of any minimal tautology of size n with O( f (n)+ n)
steps. On the other hand, as it was noted in “’Important Formulas’, there exists a
sequence of minimal tautologies An, such that in each Frege system of classical logic
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t(An) =Ω

(
|An|

3
2

log3
2(|An|)

)
and consequently, f (n) =Ω

(
n

3
2

log3
2(n)

)
. So, for the system

Cm we constructed the tautologies P′n(A
′,q), which are proved in O(n) steps, while its

unique minimal tautologies Bn(q,r,A′) in Ω

(
n

3
2

log3
2(n)

)
steps.

Note that we use the classical tautology (*) and results of the substitutions in
it, which are tautology in Im and its J-images are tautologies in Jm, but the classical
tautologies (**) and (***) are not provable in Im. Therefore, to prove the theorem for
the system Im and Jm, we need to use the tautologies (¬r⊃ A)⊃ ((¬¬r⊃ A)⊃¬¬A),
(q⊃ A)⊃ ((¬q⊃ A)⊃ ¬¬A) for Im and its J-images for Jm, which give us the proof
of tautology ¬¬A for any minimal tautology A for Im and J-image of A for Jm, as well
as Lemma 3.

T h e o r e m 2.
a) The Frege systems, the sequent systems with cut rule and the systems of

natural deductions of CL are not t-monotonous, and consequently, are not t-strongly
monotonous.

b) The Frege systems, the sequent systems with cut rule and the systems of
natural deductions over ¬,&,∨,⊃ of IL are not t-monotonous and, consequently, are
not t-strongly monotonous.

c) The Frege systems, the sequent systems with cut rule and the systems of
natural deductions over &,∨,⊃,⊥ of JL are not t-monotonous and, consequently, are
not t-strongly monotonous.

P ro o f. Follows from Theorem 1 and Proposition 2. Note, that for the sequent
systems with cut rule and the systems of natural deductions for any minimal tautology
A it is proved the corespondent sequents.
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ASOWY�AYIN HA
VI DASAKAN EV O� DASAKAN ORO
 ARTA
MAN

HAMAKARGERI O� MONOTONOW�YAN VERABERYAL

Sowyn a�xatanqowm hetazotvel en o� minimal nowynabanow�yownneri

 nranc minimalneri nvazagowyn arta�man qayleri haraberow�yown�

dasakan  o� dasakan tramabanow�yownneri Fregei hamakargerowm,

hatowy�i kanonov sekvencial hamakargerowm  bnakan arta�owmneri
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hamakargerowm: Apacowcva� �, or ditarkva� hamakargeric yowraqan�yow-

rowm goyow�yown owni aynpisi ψn o� minimal nowynabanow�yownneri hajorda-

kanow�yown, oroncic yowraqan�yowr� owni miak aynpisi minimal ϕn nowynaba-

now�yown, ori arta�owmneri nvazagowyn qayleri qanak� �st kargi aveli

me� � ψn bana� eri arta�owmneri nvazagowyn qayleri qanakic:

А. А. ЧУБАРЯН, А. А. АМБАРЦУМЯН

O СВОЙСТВЕ НЕМОНОТОННОСТИ НЕКОТОРЫХ КЛАССИЧЕСКИХ И
НЕКЛАССИЧЕСКИХ ПРОПОЗИЦИОНАЛЬНЫХ СИСТЕМ ВЫВОДОВ

В настоящей работе для систем Фреге, секвенциальных систем с
правилом сечения и систем натуральных выводов классической и неклас-
сических логик исследовано соотношение количества шагов выводов неми-
нимальных тавтологий и их минимальных тавтологий. Доказано, что для
каждой из рассмотренных систем существуют такие последовательности
неминимальных тавтологий ψn, каждая из которых имеет единственную
минимальную ϕn и для каждого n наименьшее количество шагов выводов
фомул ϕn по порядку больше наименьшего количества шагов выводов
фомул ψn.


