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In this paper we characterize the integrability and the non-existence of limit
cycles of Kolmogorov systems of the form

x′ = x
(

R(x,y)exp
(

A(x,y)
B(x,y)

)
+P(x,y)exp

(
C (x,y)
D(x,y)

))
,

y′ = y
(

R(x,y)exp
(

A(x,y)
B(x,y)

)
+Q(x,y)exp

(
V (x,y)
W (x,y)

))
,

where A(x,y), B(x,y), C (x,y), D(x,y), P(x,y), Q(x,y), R(x,y), V (x,y) and
W (x,y) are homogeneous polynomials of degree a, a, b, b, n, n, m, c, c, respec-
tively. Concrete example exhibiting the applicability of our result is introduced.
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Introduction. We consider planar differential Kolmogorov systems of the form
x′ =

dx
dt

= xF (x,y) ,

y′ =
dy
dt

= yG(x,y) ,

(1)

where F,G : Ω→ R are functions in the variables x and y, Ω is an open subset of
R2, the derivatives are performed with respect to the time variable, x(t) and y(t)
represent the population density of two species at time t, and F (x,y) , G(x,y) are the
capita growth rate of each specie. The open set Ω is called the domain of definition of

system (1), and that X = xF
∂

∂x
+ yG

∂

∂x
is Cn vector field defined on Ω associated to
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differential Kolmogorov systems (1). The system (1) is frequently used to model the
iteration of two species occupying the same ecological niche [1–3].

There are many natural phenomena, which can be modeled by the Kolmogorov
systems such as mathematical ecology and population dynamics [4–6] chemical
reactions, plasma physics [7], hydrodynamics [8], economics, etc. In the classical
Lotka–Volterra–Gause model, F and G are linear and it is well known that there are
no limit cycles. Of course, it can be only one critical point in the interior of the realistic
quadrant (x > 0, y > 0) in this case that can be a center. However, there are no isolated
periodic solutions. We remind that in the phase plane a limit cycle of system (1) is an
isolated periodic orbit in the set of all periodic orbits of system (1). In the qualitative
theory of planar dynamical systems [9–14], one of the most important topics is related
to the second part of the unsolved Hilbert 16th problem [15]. There is a huge literature
about limit cycles, and most of them essentially deal with their detection, the number
and the stability. However, ther are a very few papers concerning explicitly forms of
limit cycles [16–19].

System (1) is integrable on an open set Ω in R2 if there exists a non constant
C1 function H : Ω→ R, called a first integral of the system on Ω , which is constant
on the trajectories of the system (1) contained in Ω, i.e. if

dH (x,y)
dt

=
∂H (x,y)

∂x
xF (x,y)+

∂H (x,y)
∂y

yG(x,y)≡ 0 at the points of Ω.

Moreover, H = h is the general solution of this equation, where h is an arbitrary
constant. For a differential Kolmogorov system (1) or a vector field defined on an
open subset Ω⊂R2, the existence of the first integral completely determines its phase
portrait [20]. Since for such vector fields the notion of integrability is based on the
existence of the first integral, the following question arises: Given the differential
Kolmogorov system (1) on Ω, how to recognize if this differential Kolmogorov
systems has a first integral, and how to compute it when it exists?

In this paper we are interested in studying the integrability and the limit cycles
of 2-dimensional Kolmogorov systems of the form

x′ = x
(

R(x,y)exp
(

A(x,y)
B(x,y)

)
+P(x,y)exp

(
C (x,y)
D(x,y)

))
,

y′ = y
(

R(x,y)exp
(

A(x,y)
B(x,y)

)
+Q(x,y)exp

(
V (x,y)
W (x,y)

))
,

(2)

where A(x,y) , B(x,y) , C (x,y) , D(x,y) , P(x,y) , Q(x,y) , R(x,y) ,V (x,y) , W (x,y)
are homogeneous polynomials of degree a, a, b, b, n, n, m, c, c, respectively.

We define the trigonometric functions

f1 (θ) = P(cosθ ,sinθ)
(
cos2 θ

)
exp

C (cosθ ,sinθ)

D(cosθ ,sinθ)

+Q(cosθ ,sinθ)
(
sin2

θ
)

exp
V (cosθ ,sinθ)

W (cosθ ,sinθ)
,
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f2 (θ) = R(cosθ ,sinθ)exp
A(cosθ ,sinθ)

B(cosθ ,sinθ)
,

f3
(
θ
)
=
(

cosθ sinθ
)(

Q
(

cosθ ,sinθ
)

exp
V
(

cosθ ,sinθ
)

W
(

cosθ ,sinθ
)

−P
(

cosθ ,sinθ
)

exp
C
(

cosθ ,sinθ
)

D
(

cosθ ,sinθ
)).

Main Result. Our main result on the integrability and the limit cycles of the
Kolmogorov system (2) is the following

T h e o r e m. Consider a Kolmogorov system (2), then the following statements
hold.

1) If f3 (θ) 6= 0, B(cosθ ,sinθ)D(cosθ ,sinθ)W (cosθ ,sinθ) 6= 0 for

θ ∈
(

0,
π

2

)
and n 6= m, then system (2) has the first integral

H (x,y) =
(
x2 + y2)n−m

2 exp

(m−n)

arctan
y
x∫

ω0

M (ω)dω



−(n−m)

arctan
y
x∫

ω0

exp

(m−n)
s∫

ω0

M (ω)dω

N (s)ds,

where M (θ) =
f1 (θ)

f3 (θ)
, N (θ) =

f2 (θ)

f3 (θ)
, ω0 is a number from the interval

(
0,

π

2

)
and

the curves, which are formed by the trajectories of the differential system (2), in
Cartesian coordinates are written as

x2 + y2 =



hexp

(n−m)

arctan
y
x∫

ω0

M (ω)dω



+(n−m)exp

(n−m)

arctan
y
x∫

ω0

M (ω)dω


arctan

y
x∫

ω0

exp

(m−n)
s∫

ω0

M (ω)dω

N (s)ds



2
n−m

,

where h ∈ R. Moreover, the system (2) has no limit cycle.
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2) If f3 (θ) 6= 0, B(cosθ ,sinθ)D(cosθ ,sinθ)W (cosθ ,sinθ) 6= 0 for

θ ∈
(

0,
π

2

)
and n = m, then system (2) has the first integral

H (x,y) =
(
x2 + y2)1

2 exp

−
arctan

y
x∫

ω0

(M (ω)+N (ω))dω

 ,

and the curves, which are formed by the trajectories of the differential system (2), in
Cartesian coordinates are written as

(
x2 + y2)1

2 −hexp


arctan

y
x∫

ω0

(M (ω)+N (ω))dω

= 0,

where h ∈ R. Moreover, the system (2) has no limit cycle.

3) If f3 (θ) = 0 for all θ ∈ R, then system (2) has the first integral H =
y
x
,

and the curves, which are formed by the trajectories of the differential system (2), in
Cartesian coordinates are written as y−hx = 0, where h ∈ R. Moreover, the system
(2) has no limit cycle.

P ro o f. In order to prove our results we write the planar differential system
(2) in polar coordinates (r,θ) , defined by x = r cosθ and y = r sinθ . Then system (2)
takes the form 

r′ = f1 (θ)rn+1 + f2 (θ)rm+1,

θ ′ = f3 (θ)rn,
(3)

where the trigonometric functions f1 (θ) , f2 (θ) , f3 (θ) are given in the introduction,

r′ =
dr
dt

and θ ′ =
dθ

dt
.

If f3 (θ) 6= 0, B(cosθ ,sinθ)D(cosθ ,sinθ)W (cosθ ,sinθ) 6= 0 for θ ∈
(

0,
π

2

)
and n 6= m.

Taking the coordinate θ as an independent variable, this differential system (3)
writes

dr
dθ

= M (θ)r+N (θ)r1+m−n, (4)

where M (θ) =
f1 (θ)

f3 (θ)
and N (θ) =

f2 (θ)

f3 (θ)
, which is a Bernoulli equation. By

introducing the standard change of variable ρ = rn−m, we obtain the linear equation

dρ

dθ
= (n−m)(M (θ)ρ +N (θ)) . (5)
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The general solution of linear equation (5) is

ρ (θ) = exp

(n−m)

θ∫
ω0

M (ω)dω


µ +(n−m)

θ∫
ω0

exp

(m−n)
s∫

ω0

M (ω)dω

N (s)ds

 ,

where µ ∈ R, which has the first integral

H (x,y) =
(
x2 + y2)n−m

2 exp

(m−n)

arctan
y
x∫

ω0

M (ω)dω


+(m−n)

arctan y
x∫

ω0

exp

(m−n)
s∫

ω0

M (ω)dω

N (s)ds.

Let Γ be a periodic orbit surrounding an equilibrium located in one of the open
quadrants, and let hΓ = H (Γ) .

The curves H = h with h ∈ R, which are formed by the trajectories of the
differential system (2) , in Cartesian coordinates are written as

x2 + y2 =



hexp

(n−m)

arctan
y
x∫

ω0

M (ω)dω

+

(n−m)exp

(n−m)

arctan
y
x∫

ω0

M (ω)dω


arctan

y
x∫

ω0

exp

(m−n)
s∫

ω0

M (ω)dω

N (s)ds



2
n−m

,

where h ∈ R.
Therefore, the periodic orbit Γ is contained in the curve
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x2 + y2 =



hΓ exp

(n−m)

arctan
y
x∫

ω0

M (ω)dω

+

(n−m)exp

(n−m)

arctan
y
x∫

ω0

M (ω)dω


arctan

y
x∫

ω0

exp

(m−n)
s∫

ω0

M (ω)dω

N (s)ds



2
n−m

.

But this curve cannot contain the periodic orbit Γ and consequently no limit
cycle contained in the realistic quadrant (x > 0,y > 0), because this curve in the
realistic quadrant has at most a unique point on every straight line y = ηx for all
η ∈ ]0,+∞[ .

To be convinced of this fact, one has to compute the abscissa of the points
of intersection of this curve with the straight line y = ηx for all η ∈ ]0,+∞[ . The
abscissa is given by

x =
1√

1+η2



hΓ exp

(n−m)

arctanη∫
ω0

M (ω)dω


+(n−m)exp

(n−m)

arctanη∫
ω0

M (ω)dω


arctanη∫

ω0

exp

(m−n)
s∫

ω0

M (ω)dω

N (s)ds



2
n−m

.

Clearly there is at most one value of x on every half straight OX+, consequently
there is at most one point in the realistic quadrant (x > 0, y > 0). So this curve cannot
contain the periodic orbit.

Hence statement 1) of Theorem is proved. �
Suppose now that

f3 (θ) 6= 0, B(cosθ ,sinθ)D(cosθ ,sinθ)W (cosθ ,sinθ) 6= 0 for θ ∈
(

0,
π

2

)
and n = m.

Taking the coordinate θ as an independent variable, this differential system (3)
writes

dr
dθ

= (M (θ)+N (θ))r. (6)
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The general solution of equation (6) is

r (θ) = µ exp

 θ∫
ω0

(M (ω)+N (ω))dω

 ,

where µ ∈ R, which has the first integral

H (x,y) =
(
x2 + y2)1

2 exp

−
arctan

y
x∫

ω0

(M (ω)+N (ω))dω

 .

Let Γ be a periodic orbit surrounding an equilibrium located in one of the
realistic quadrant (x > 0,y > 0), and let hΓ = H (Γ) .

The curves H = h with h ∈ R, which are formed by the trajectories of the
differential system (2), in Cartesian coordinates are written as

(
x2 + y2)1

2 −hexp


arctan

y
x∫

ω0

(M (ω)+N (ω))dω

= 0,

where h ∈ R.
Therefore the periodic orbit Γ is contained in the curve

(
x2 + y2)1

2 = hΓ exp


arctan

y
x∫

ω0

(M (ω)+N (ω))dω

 .

But this curve cannot contain the periodic orbit Γ, and consequently no limit
cycle contained in the realistic quadrant (x > 0,y > 0), because this curve in the
realistic quadrant has at most one point on every straight line y = ηx for all
η ∈ ]0,+∞[ .

To be convinced of this fact, one has to compute the abscissa of the points
of intersection of this curve with the straight line y = ηx for all η ∈ ]0,+∞[ . The
abscissa is given by

x =
hΓ√

(1+η2)
exp

 arctanη∫
ω0

(M (ω)+N (ω))dω

 .

Clearly at most one value of x on every half straight OX+, consequently at most
one point in the realistic quadrant (x > 0, y > 0). So this curve cannot contain the
periodic orbit.

Hence statement 2) of Theorem 1 is proved. �
Assume now that f3 (θ) = 0 for all θ ∈ R.
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Then from system (3) it follows that θ ′ = 0. So the straight lines through the
origin of coordinates of the differential system (2) are invariant to the flow of this
system. Hence,

y
x

is a first integral of the system, then curves, which are formed by

the trajectories of the differential system (2), in Cartesian coordinates are written
by y−hx = 0, where h ∈ R, since all straight lines through the origin are formed by
trajectories, clearly the system has no periodic orbits, consequently no limit cycle.

This completes the proof of statement 3) of Theorem.

Examples. The following example are given to illustrate our result.

E x a m p l e s . If we take A(x,y) = x2+2xy+y2, B(x,y) = x2+y2,C (x,y) =
3x4 + 2x2y2 + y4, D(x,y) = x4 + 2x2y2 + y4, P(x,y) =

(
x2 + y2

)(
x2 + xy+ y2

)
,

Q(x,y) =
(
x2 + y2

)
(x+ y)2 , R(x,y) = 3x2 − xy + 3y2, V (x,y) = 3x4 + 2x2y2 + y4

and W (x,y) = x4 +2x2y2 + y4, then system (2) takes the form



x′ = x


(
3x2− xy+3y2

)
exp
(

x2 +2xy+ y2

x2 + y2

)
+
(
x2 + y2

)(
x2 + xy+ y2

)
exp
(

3x4 +2x2y2 + y4

x4 +2x2y2 + y4

)
 ,

y′ = y


(
3x2− xy+3y2

)
exp
(

x2 +2xy+ y2

x2 + y2

)
+
(
x2 + y2

)(
x2 +2xy+ y2

)
exp
(

3x4 +2x2y2 + y4

x4 +2x2y2 + y4

)
 ,

(7)

the Kolmogorov system (7) in polar coordinates (r,θ) becomes



r′ =
((

1+
3
4

sin2θ − 1
8

sin4θ

)
exp
(
1+2cos4 θ

))
r5

+

((
3− 1

2
sin2θ

)
exp(1+ sin2θ)

)
r3,

θ ′ =

(
sin2 2θ

4
exp
(
1+2cos4 θ

))
r4,

here f1 (θ) =

(
1+

3
4

sin2θ − 1
8

sin4θ

)
exp
(
1+2cos4 θ

)
,

f2 (θ)=

(
3− 1

2
sin2θ

)
exp(1+ sin2θ) and f3 (θ)=

sin2 2θ

4
exp
(
1+2cos4 θ

)
.

In the realistic quadrant (x > 0, y > 0) it is the case 1) of the Theorem 1, then
the Kolmogorov system (7) has the first integral
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H (x,y) =
(
x2 + y2)exp

−2

arctan
y
x∫

ω0

M (ω)dω



−2

arctan
y
x∫

ω0

exp

−2
s∫

ω0

M (ω)dω

N (s)ds,

where

M (ω) =
4+3sin2ω− 1

2
sin4ω

sin2 2ω
, N (s) =

12−2sin2s
sin2 2s

exp
(
sin2s−2cos4 s

)
and ω0 is a number from the interval

(
0,

π

2

)
.

The curves H = h with h ∈ R, which are formed by the trajectories of the
differential system (7), in Cartesian coordinates are written as

x2 + y2 = hexp

2

arctan
y
x∫

ω0

M (ω)dω



+2exp

2

arctan
y
x∫

ω0

M (ω)dω


arctan

y
x∫

ω0

exp

−2
s∫

ω0

N (ω)dω

N (s)ds,

where h ∈ R. Clearly the system (7) has no periodic orbits, and consequently no limit
cycle contained in the realistic quadrant (x > 0 ,y > 0).

Conclusion. As we know, it is very difficult to detect the existence of first
integrals for a given planar differential Kolmogorov system of ODEs, and is also
difficult to obtain the explicit expression of such a first integral. Applying our general
theory to some concrete classes of differential Kolmogorov systems, we have covered
some known results, and found some new integrable systems. Moreover, we provided
the concrete expressions of their first integrals.

The elementary method used in this paper seems to be fruitful to investigate
more general planar differential Kolmogorov systems of ODEs in order to obtain
explicit expression for a first integral and characterize its trajectories. This is one of
the classical tools in the classification of all trajectories of the dynamical systems.
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A�AJIN INTEGRALI EV SAHMANAYIN 
RJANNERI BACAHAYT TESQ�

KOLMOGOROVI ERK�A� HAMAKARGERI MI DASI HAMAR

Ays hodva�owm menq bnow�agrowm enq het yal tesqi Kolmogorovi ha-

makargeri integreliow�yown�  sahmanayin cikleri goyow�yown�`
x′ = x

(
R(x,y)exp

(
A(x,y)
B(x,y)

)
+P(x,y)exp

(
C (x,y)
D(x,y)

))
,

y′ = y
(

R(x,y)exp
(

A(x,y)
B(x,y)

)
+Q(x,y)exp

(
V (x,y)
W (x,y)

))
,

orte� A(x,y), B(x,y), C (x,y), D(x,y), P(x,y), Q(x,y), R(x,y), V (x,y)  W (x,y)
hamapatasxanabar a, a, b, b, n, n, m, c, c asti�ani hamase� bazman-

damner en: Nerkayacva� � mer ardyownqi kira�eliow�yown� cowcadro� oro-

�aki �rinak:

РАШИД БУКУША

ЯВНАЯ ФОРМА ДЛЯ ПЕРВОГО ИНТЕГРАЛА И ПРЕДЕЛЬНЫХ ЦИКЛОВ
ОДНОГО КЛАССА ПЛАНАРНЫХ СИСТЕМ КОЛМОГОРОВА

В данной статье мы характеризуем интегрируемость и отсутствие
предельных циклов колмогоровских систем следующего вида:

x′ = x
(

R(x,y)exp
(

A(x,y)
B(x,y)

)
+P(x,y)exp

(
C (x,y)
D(x,y)

))
,

y′ = y
(

R(x,y)exp
(

A(x,y)
B(x,y)

)
+Q(x,y)exp

(
V (x,y)
W (x,y)

))
,

где A(x,y), B(x,y), C (x,y), D(x,y), P(x,y), Q(x,y), R(x,y), V (x,y) и W (x,y)
– однородные многочлены степени a, a, b, b, n, n, m, c, c соответственно.
Представлен конкретный пример, демонстрирующий применимость наше-
го результата.
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