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Introduction. A basis of a Banach space X, is a countable set B = {x, €

X : n € N} such that each x € X can be uniquely represented by series Y A,(x)x,
n=1

converging to x in the norm of X. If Z An(x)x, converges after any rearrangement

of the terms, then the series is an uncondltlonal representation of x, and the basis is
called unconditional basis.

Let E be a measurable set with positive measure, and let S be a metric space of
measurable functions f(x), x € E.

Definition. A system {g,(x)}, g.(x) € S,n=1,2,..., is called system of
unconditional representation for the space S, if for every f € S there is a series

Y bngu(x), which converges unconditionally to f in the metric of the space S, that
n=0

is for any rearrangement {m(n)} of the natural numbers the series Z br(n)8x(n) (X)
n=0
converges to f in the metric of S.

The basisness of the Faber—Schauder system in C[0, 1] (see [1]) provides variety
of representation theorems. An example of such result is Talalyan’s theorem [2]
(see also [3]) namely, for each measurable function on [0, 1] there exists a Faber—

Schauder series with coefficients converging to zero that converges to the function
almost everywhere. This is an analogue of (Luzin’s [4]) Menchoft’s [5] theorem for
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the trigonometric system. Note that these expansions do not converge unconditionally,
and it is known that there is no unconditional basis for L[0, 1] or C[0,1] (see [0]).
Nevertheless, in [7] it is proved that for every € € (0, 1) there exists a measurable set
E C [0, 1] with measure |E| > 1 — € such that for every function f(x) C [0, 1] there is
a series with respect to Faber—Schauder system, which unconditionally converges to
f(x)onE.

It should be noted that this is a sharp result, since the set £ in the statement
cannot be replaced by [0, 1]. Here |E| is a Lebesgue measure of E. There are also a lot
of results connected with Faber—Schauder system [8—12].

Since there is no unconditional basis in L!, Faber—Schauder system is not an
unconditional basis in L!. In this paper we will prove that the Faber—Schauder system
is an unconditional representation system for L[0, 1]. Moreover, the following theorem
is true.

Theorem. For any natural number my and for each f € L[0,1) there exists

oo

a Faber-Schauder series Y. b,@,(x), with coefficients converging to zero, which
n=my

converges unconditionally to f in the norm of L[0, 1).

It is easy to see that this theorem is not true for the other classical (trigonometric,
Walsh, Haar, Franklin ...) systems.

The functions of the Faber—Schauder system, ® = {¢,: n =0,1,...}, are
the continuous, piecewise-linear functions on [0, 1], given by ¢y(x) = 1, ¢;(x) = x,
andforn:2k+i,k:O,1,...; = 1,...,2", we have

i—1 i
i 07 ifxg([{?k)v
9ulx) = 9 () = _ i (i)2 2i— 1
1, lfx:xn:xk :W,

i—1 2i—1} [21'—1 i}

and is linear and continuous on the intervals [ 2K ok EERET:

The corresponding linear functionals are given by

Ao(f) = f(0), Ar(f) = f(1) = f(0),

and forn > 1

Anlf) = Aci(f) :f<22ik:-]1) _% {f (?) +f (21")} '

Recall that the Faber-Schauder system is a basis for the space C|0, 1] (see [1]).
Moreover, for each function f(x) € C[0, 1] the series

imm%@,

converges uniformly to f on [0, 1]. For a set E we denote its characteristic function

by xe(x).
1, x€E,
re() = {0, x¢E.
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We denote the support of the function ¢,(x) = (plgi) (x) by A, = A,(:). We will
2»

consider functions of the form f = Z WAL > dyadic step-functions of rank p.

—1
20 2P
As we know there are functlons in C[0, 1] that cannot be represented by Faber—
Schauder series converging unconditionally in C|0, 1].
The proof of the Theorem is based on a proper approximation of the characte-
ristic functions of dyadic intervals by Faber—Schauder polynomials of high rank.
Auxiliary Lemmas.

1
Lemma 1. Let A = [lzp zlp Yy#0, € € (0,1), and Ny be a natural
number. There exists a Faber—-Schauder polynomial
N
= Z A, @n(x)
Vl:NO

such that
’An’ < |}/|,Vn € [N()?N]v

1

/!Q(x) — VX |dx <€,

0

‘An‘(pn(x) =0, ifxe [O, 1]\A7

<01=

S

n

|A,| @ (x) | dx < 2]7]|A].

It

n 0

1
0
Proof. Assume, without loss of generality, that Ny > 27 +i. Then some of

the dyadic points x,,, with n < N, lie in A. Denote those points by X, ,Xp,, .. ., Xy, ONe
choose g € N such that ¢ > log, (|y|(¢{+1)/€) + 1, and let

¢ 1 DY (izti=1 1N (i 1 i
Ul =gt 5 )52 ")) 52|
=

Define the continuous function g by

Y, ifxekE,
8(x) = . .
0, ifxe ([0,1\A)U{xy;51 < j <4},

E = A\

1 1
supposing that g is linear on each of the intervals Xn; — 53 Xn; | » [xnj,xnj + 2] for

24’
. i—1i—1 1 i 1 i
Indeed we have 29 > Ny, max(g(x)) =|y| and |E| > |A| —

£
217
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The Faber—Schauder expansion g(x) = Y. A, @,(x) is the required polynomial,
Ay =0,if 1 < No, or n> 24, If N < n < 24 and A, C A, then we have either 4, =
or y. Therefore,

N
= Z Ap@a(x) := Q(x), N =21,
n:N()
and
|An| < |7l, Any >0, Vn € [Ny, N|.

It is not hard to see that

1
100 - rtywldr= [ 1000 ~vldx<2 [ Irdr<e.
0 A

A\E
N

[ X dou@ | dx<2pyial

A n=Ny

and

Z |An| @ (x) =0, if x € [0,1]\A.

n=N,
]

Lemma 2. Let € € (0,1) and Ny is a natural number, then for each real step

2r 1
function of the form f = Z XA, wWhere Y, # 0 and Ay = [ZP 22) 1<v<2P

is the dyadic partition of [O 1] of rank p, there is a Faber-Schauder polynomial

= Z Ap@a(x)
n=Ny
such that
|An| <eg Vne [NQ,N],
1

106~ fx)ldx <,

0
and, for each B C {Ny,...,N},

1 1 N 1_
[ Avouw|ax < | ( y |An|<pn<x>> ax<2 [ |f(dx
0 0

neB 0 n=Ny
Proof. We take Ly natural number such that

max (%)

1<v<2or

Ho
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We can represent the f function in the form
Ho2”

or
f=Y waa =Y B,
v=1

k=1
wherezk:Av, Br = ZV forke[(v—1)up+1,vyp) and v =1,2,...,27.
0

Successively applying Lemma 1, we get a sequence of Faber—Schauder

Ho2”
polynomials {Qk(x)}k U
N—1
Ok(x) = Z AnQn(x), Ney1 > Ni
n=Ni_i

for all 1 <k < py2?, satisfying the following conditions:
An| < |Bal < € Vn €[N, Ne—1],

1

] o)~ Bogg, ] ax < 5.

0

Ne—1 _
Y. [A@u(x) =0, if x € [0, 1]\Ay,

n=~Nj_|
L/ N1 _

/ < )3 |An|<pn<x>>dx<2|ﬁk|mk|.

0 \n=Ni

Setting
Ho2P Ho2P Ni—1 N
O(x) = Z Ox(x) = Z Z An@u(x) = Z Ann(x),
k=1 k=1 n=Ny_ n=Ny
one has

|An| < €, Vn € [Ny, N],

1

s 1
/ IQ(X)—f(X)IdX<§ O/ 0u(x) ~ B, (9] dx < e

0

LN 102? Ne—1
/(Z |An|<pn<x>> dx = Z/( ) |An|<pn<x>> dx
n=Ny kZIZk

0 n=~Ni_|
102? B 20 Vil B 20 1
< Y 2ABlA =2 ¥ ( Y rﬁkmu) =23 [nliav] =2 [ If(x)lax
k=1 v=1 \k=(v—-1)up+1 v=1 0

O]
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Proof of the Theorem.

Proof. Let my be a natural number and f(x) € L[0, 1].
It is easy to see that there exist f] dyadic step-function such that

1
7= fill= [ 1) =il dv <272
0

By virtue of Lemma 2, there is a Faber—Schauder polynomial

M|71

01 (x) = Z Apn(x)

n=my
such that
|A,| < 272 Vne [mo,m1),
101 — fi] <272,
and for each B; C {mo,...,m; — 1},
Y Ane.(x)|| <2)IA1ll.
neBy

Let the dyadic step-function f, satisfy
I(f =21 - rfl <27,
and again apply Lemma 2. We get a Faber—Schauder polynomial

my—1

0> (x) = Z Apn(x)
n=m
such that
’An’ < 274, Vn € [ml,mz),
10— fol <274,
and, for each B, C {my,...,mp — 1},
Y Anpa(0)|| <2]I£2]l-
neBy
Then
If=(Q1+0) <27
and, since
3
120 < 2.
we obtain
3
neBy
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Continuing this process, one determines a sequence {Q;(x)}7.; of
Faber—Schauder polynomials,
mjfl
Qj(x) = Z An@n(x)
n=m;—i
such that .
|A,| < 2_21, Vn € [mj,l,mj),
n
H Z —(n+1)
and, for each B, C {my_1,...,m, — 1},
3
Z An(pn(x) < ?
neB,
As n — oo, j — oo thus A, converges to 0.
Further, from this it follows that the series
oo oo mj—l
Z An(Pn = Z Z An(Pn
n=my Jj=ln=mj_;

converges unconditionally to f(x) in the norm L[0, 1].
Indeed, if 7 is a permutation of N, then we choose N, so that {7 (k): my < k <
N, } D {i: mo <i<my,}. Thus, for arbitrary M > N, we obtain

M
= Y Ay Py (|| <
k=myg
d 3 7
Z + Z 2] 2n+1 2n = ?
j=1 j=n+1

Letting M — oo, n — oo, thus we get that for every permutation 7(k) the series

Z A, @ (x) converges to f(x Yin L. O
k=my
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S. U. &rpaNra3vy, W W Udruuesuy

SULEL-CUNFIELP CUNLENP N2 MUBUUWLULWUL QNFA-UUDPSNFE3NAFLL
L'-nru

Wu wphnwpubipnd wyugnigwd k, np Swptip—-Gwnintiph $nityghwtibpp

Juqumy kb ng wuwydwiwui thpluwjugiwd hudwlupg L'-h hwdwp:

T. M. TPUT'OPAH, A. A. MAPAH/IZKAH

O BE3VYCJIOBHOU CXOINUMOCTHU PSJI0B ®ABEPA-IIIAVIIEPA B L!

B pabore mokazano, uro dpyukmun Padepa—Illaymnepa sBisrorcs cucremoit
6e3yCIIOBHBIX mpeacTaBiennit mst L.
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