Physical and Mathematical Sciences

2021, **55**(1), p. 12–19

Mathematics

ON THE UNCONDITIONAL CONVERGENCE OF FABER–SCHAUDER SERIES IN L^1

T. M. GRIGORYAN*, A. A. MARANJYAN**

Chair of Higher Mathematics, Department of Physics, YSU, Armenia

In this paper we proved that the Faber–Schauder functions form an unconditional representation system for L^1 .

https://doi.org/10.46991/PYSU:A/2021.55.1.012

MSC2010: Primary: 42A16; Secondary: 42C20.

Keywords: Faber–Schauder system, unconditional representation, convergence, L^1 space.

Introduction. A basis of a Banach space X, is a countable set $B = \{x_n \in X : n \in \mathbb{N}\}$ such that each $x \in X$ can be uniquely represented by series $\sum_{n=1}^{\infty} A_n(x) x_n$ converging to x in the norm of X. If $\sum_{n=1}^{\infty} A_n(x) x_n$ converges after any rearrangement of the terms, then the series is an unconditional representation of x, and the basis is called unconditional basis.

Let *E* be a measurable set with positive measure, and let S be a metric space of measurable functions f(x), $x \in E$.

Definition. A system $\{g_n(x)\}$, $g_n(x) \in S$, n = 1, 2, ..., is called system of unconditional representation for the space S, if for every $f \in S$ there is a series $\sum_{n=0}^{\infty} b_n g_n(x)$, which converges unconditionally to f in the metric of the space S, that is for any rearrangement $\{\pi(n)\}$ of the natural numbers the series $\sum_{n=0}^{\infty} b_{\pi(n)} g_{\pi(n)}(x)$ converges to f in the metric of S.

The basisness of the Faber–Schauder system in C[0,1] (see [1]) provides variety of representation theorems. An example of such result is Talalyan's theorem [2] (see also [3]) namely, for each measurable function on [0,1] there exists a Faber–Schauder series with coefficients converging to zero that converges to the function almost everywhere. This is an analogue of (Luzin's [4]) Menchoff's [5] theorem for

_

^{*} E-mail: t.grigoryan@ysu.am

^{**} E-mail: arto.maranjyan@gmail.com

the trigonometric system. Note that these expansions do not converge unconditionally, and it is known that there is no unconditional basis for L[0,1] or C[0,1] (see [6]). Nevertheless, in [7] it is proved that for every $\varepsilon \in (0,1)$ there exists a measurable set $E \subset [0,1]$ with measure $|E| > 1 - \varepsilon$ such that for every function $f(x) \subset [0,1]$ there is a series with respect to Faber–Schauder system, which unconditionally converges to f(x) on E.

It should be noted that this is a sharp result, since the set E in the statement cannot be replaced by [0,1]. Here |E| is a Lebesgue measure of E. There are also a lot of results connected with Faber–Schauder system [8-12].

Since there is no unconditional basis in L^1 , Faber–Schauder system is not an unconditional basis in L^1 . In this paper we will prove that the Faber–Schauder system is an unconditional representation system for L[0,1]. Moreover, the following theorem is true.

Theorem. For any natural number m_0 and for each $f \in L[0,1)$ there exists a Faber–Schauder series $\sum_{n=m_0}^{\infty} b_n \varphi_n(x)$, with coefficients converging to zero, which converges unconditionally to f in the norm of L[0,1).

It is easy to see that this theorem is not true for the other classical (trigonometric, Walsh, Haar, Franklin ...) systems.

The functions of the Faber–Schauder system, $\Phi = \{\varphi_n : n = 0, 1, ...\}$, are the continuous, piecewise–linear functions on [0,1], given by $\varphi_0(x) = 1$, $\varphi_1(x) = x$, and for $n = 2^k + i$, k = 0, 1, ...; $i = 1, ..., 2^k$, we have

$$\varphi_n(x) := \varphi_k^{(i)}(x) = \begin{cases} 0, & \text{if } x \notin \left(\frac{i-1}{2^k}, \frac{i}{2^k}\right), \\ 1, & \text{if } x = x_n = x_k^{(i)} = \frac{2i-1}{2^{k+1}}, \end{cases}$$

and is linear and continuous on the intervals $\left[\frac{i-1}{2^k}, \frac{2i-1}{2^{k+1}}\right]$, $\left[\frac{2i-1}{2^{k+1}}, \frac{i}{2^k}\right]$. The corresponding linear functionals are given by

$$A_0(f) = f(0), A_1(f) = f(1) - f(0),$$

and for n > 1

$$A_n(f) = A_{k,i}(f) = f\left(\frac{2i-1}{2^{k+1}}\right) - \frac{1}{2}\left[f\left(\frac{i-1}{2^k}\right) + f\left(\frac{i}{2^k}\right)\right].$$

Recall that the Faber–Schauder system is a basis for the space C[0,1] (see [1]). Moreover, for each function $f(x) \in C[0,1]$ the series

$$\sum_{n=0}^{\infty} A_n(f) \varphi_n(x),$$

converges uniformly to f on [0,1]. For a set E we denote its characteristic function by $\chi_E(x)$.

$$\chi_E(x) := \begin{cases} 1, & x \in E, \\ 0, & x \notin E. \end{cases}$$

We denote the support of the function $\varphi_n(x) = \varphi_k^{(i)}(x)$ by $\Delta_n = \Delta_k^{(i)}$. We will consider functions of the form $f = \sum_{v=1}^{2^p} \gamma_v \chi_{\lfloor \frac{v-1}{2^p}, \frac{v}{2^p} \rfloor}$ dyadic step-functions of rank p.

As we know there are functions in C[0,1] that cannot be represented by Faber–Schauder series converging unconditionally in C[0,1].

The proof of the Theorem is based on a proper approximation of the characteristic functions of dyadic intervals by Faber–Schauder polynomials of high rank.

Auxiliary Lemmas.

Lemma 1. Let $\Delta = \left[\frac{i-1}{2^p}, \frac{i}{2^p}\right)$, $\gamma \neq 0$, $\varepsilon \in (0,1)$, and N_0 be a natural number. There exists a Faber–Schauder polynomial

$$Q(x) = \sum_{n=N_0}^{N} A_n \varphi_n(x)$$

such that

$$\begin{aligned} |A_n| &\leq |\gamma|, \forall n \in [N_0, N], \\ &\int_0^1 \left| Q(x) - \gamma \chi_{\Delta(x)} \right| dx < \varepsilon, \\ &\sum_{n=N_0}^N |A_n| \varphi_n(x) = 0, \ if \ x \in [0, 1] \backslash \Delta, \\ &\int_0^1 \left| \sum_{n=N_0}^N |A_n| \varphi_n(x) \right| dx < 2|\gamma| |\Delta|. \end{aligned}$$

Proof. Assume, without loss of generality, that $N_0 > 2^p + i$. Then some of the dyadic points x_n , with $n < N_0$, lie in Δ . Denote those points by $x_{n_1}, x_{n_2}, \dots, x_{n_\ell}$, one choose $q \in \mathbb{N}$ such that $q > \log_2(|\gamma|(\ell+1)/\varepsilon) + 1$, and let

$$E = \Delta \setminus \left[\bigcup_{i=1}^{\ell} \left(x_{n_j} - \frac{1}{2^q}, x_{n_j} + \frac{1}{2^q} \right) \cup \left(\frac{i-1}{2^p}, \frac{i-1}{2^p} + \frac{1}{2^q} \right) \cup \left(\frac{i}{2^p} - \frac{1}{2^q}, \frac{i}{2^p} \right) \right].$$

Define the continuous function g by

$$g(x) = \begin{cases} \gamma, & \text{if } x \in E, \\ 0, & \text{if } x \in ([0,1] \setminus \Delta) \cup \{x_{n_j}; 1 \le j \le \ell\}, \end{cases}$$

supposing that g is linear on each of the intervals $\left[x_{n_j} - \frac{1}{2^q}, x_{n_j}\right], \left[x_{n_j}, x_{n_j} + \frac{1}{2^q}\right]$ for $1 \le j \le \ell$, $\left[\frac{i-1}{2^p}, \frac{i-1}{2^p} + \frac{1}{2^q}\right]$ and $\left[\frac{i}{2^p} - \frac{1}{2^q}, \frac{i}{2^p}\right]$.

Indeed we have
$$2^q > N_0$$
, $\max(g(x)) = |\gamma|$ and $|E| > |\Delta| - \frac{\varepsilon}{2|\gamma|}$.

The Faber–Schauder expansion $g(x) = \sum A_n \varphi_n(x)$ is the required polynomial, $A_n = 0$, if $n < N_0$, or $n > 2^q$. If $N_0 \le n \le 2^q$ and $\Delta_n \subseteq \Delta$, then we have either $A_n = \frac{\gamma}{2}$ or γ . Therefore,

$$g(x) = \sum_{n=N_0}^{N} A_n \varphi_n(x) := Q(x), \ N = 2^q,$$

and

$$|A_n| \le |\gamma|, A_n \gamma \ge 0, \forall n \in [N_0, N].$$

It is not hard to see that

$$\int_{0}^{1} |Q(x) - \gamma \chi_{\Delta(x)}| dx = \int_{\Delta} |Q(x) - \gamma| dx < 2 \int_{\Delta \setminus E} |\gamma| dx \le \varepsilon,$$

$$\int_{\Delta} \left(\sum_{n=N_{0}}^{N} |A_{n}| \varphi_{n}(x) \right) dx < 2|\gamma| |\Delta|$$

and

$$\sum_{n=N_0}^N |A_n| \varphi_n(x) = 0, \text{ if } x \in [0,1] \setminus \Delta.$$

Lemma 2. Let $\varepsilon \in (0,1)$ and N_0 is a natural number, then for each real step function of the form $f = \sum_{v=1}^{2^p} \gamma_v \chi_{\Delta_v}$ where $\gamma_v \neq 0$ and $\Delta_v = \left[\frac{v-1}{2^p}, \frac{v}{2^p}\right)$: $1 \leq v \leq 2^p$ is the dyadic partition of [0,1] of rank p, there is a Faber–Schauder polynomial

$$Q(x) = \sum_{n=N_0}^{N} A_n \varphi_n(x)$$

such that

$$|A_n| \le \varepsilon, \ \forall n \in [N_0, N],$$

$$\int_0^1 |Q(x) - f(x)| \, dx < \varepsilon,$$

and, for each $B \subset \{N_0, \ldots, N\}$,

$$\int_{0}^{1} \left| \sum_{n \in B} A_n \varphi_n(x) \right| dx \le \int_{0}^{1} \left(\sum_{n=N_0}^{N} |A_n| \varphi_n(x) \right) dx \le 2 \int_{0}^{1} |f(x)| dx.$$

Proof. We take μ_0 natural number such that

$$\frac{\max\limits_{1\leq \nu\leq 2^p}(\gamma_\nu)}{\mu_0}\leq \varepsilon.$$

We can represent the f function in the form

$$f = \sum_{\nu=1}^{2^p} \gamma_{\nu} \chi_{\Delta_{\nu}} = \sum_{k=1}^{\mu_0 2^p} \beta_k \chi_{\widetilde{\Delta}_k},$$

where $\widetilde{\Delta}_k = \Delta_{\nu}$, $\beta_k = \frac{\gamma_{\nu}}{\mu_0}$ for $k \in [(\nu-1)\mu_0+1,\nu\mu_0]$ and $\nu=1,2,\dots,2^p$. Successively applying Lemma 1, we get a sequence of Faber-Schauder polynomials $\left\{Q_k(x)\right\}_{k=1}^{\mu_0 2^p}$:

$$Q_k(x) = \sum_{n=N_{k-1}}^{N_k-1} A_n \varphi_n(x), \ N_{k+1} > N_k$$

for all $1 \le k \le \mu_0 2^p$, satisfying the following conditions:

$$\begin{aligned} |A_n| &\leq |\beta_n| \leq \varepsilon, \ \forall n \in [N_{k-1}, N_k - 1], \\ &\int_0^1 \left| Q_k(x) - \beta_k \chi_{\widetilde{\Delta}_k}(x) \right| dx < \frac{\varepsilon}{\mu_0 2^p}, \\ &\sum_{n=N_{k-1}}^{N_k - 1} |A_n| \varphi_n(x) = 0, \ \text{if} \ x \in [0, 1] \backslash \widetilde{\Delta}_k, \\ &\int_0^1 \left(\sum_{n=N_{k-1}}^{N_k - 1} |A_n| \varphi_n(x) \right) dx < 2|\beta_k| |\widetilde{\Delta}_k|. \end{aligned}$$

Setting

$$Q(x) = \sum_{k=1}^{\mu_0 2^p} Q_k(x) = \sum_{k=1}^{\mu_0 2^p} \sum_{n=N_{k-1}}^{N_k - 1} A_n \varphi_n(x) = \sum_{n=N_0}^{N} A_n \varphi_n(x),$$

one has

$$|A_{n}| \leq \varepsilon, \ \forall n \in [N_{0}, N],$$

$$\int_{0}^{1} |Q(x) - f(x)| dx \leq \sum_{k=1}^{\mu_{0} 2^{p}} \int_{0}^{1} |Q_{k}(x) - \beta_{k} \chi_{\widetilde{\Delta}_{k}}(x)| dx < \varepsilon,$$

$$\int_{0}^{1} \left(\sum_{n=N_{0}}^{N} |A_{n}| \varphi_{n}(x) \right) dx = \sum_{k=1}^{\mu_{0} 2^{p}} \int_{\widetilde{\Delta}_{k}} \left(\sum_{n=N_{k-1}}^{N_{k}-1} |A_{n}| \varphi_{n}(x) \right) dx$$

$$\leq \sum_{k=1}^{\mu_{0} 2^{p}} 2|\beta_{k}| |\widetilde{\Delta}_{k}| = 2 \sum_{k=1}^{2^{p}} \left(\sum_{k=(N-1)^{p}}^{N\mu_{0}} |\beta_{k}| |\widetilde{\Delta}_{k}| \right) = 2 \sum_{k=1}^{2^{p}} |\gamma_{k}| |\Delta_{k}| = 2 \int_{0}^{1} |f(x)| dx.$$

Proof of the Theorem.

Proof. Let m_0 be a natural number and $f(x) \in L[0,1]$. It is easy to see that there exist f_1 dyadic step-function such that

$$||f - f_1|| = \int_0^1 |f(x) - f_1(x)| dx < 2^{-2}.$$

By virtue of Lemma 2, there is a Faber–Schauder polynomial

$$Q_1(x) = \sum_{n=m_0}^{m_1-1} A_n \varphi_n(x)$$

such that

$$|A_n| < 2^{-2}, \ \forall n \in [m_0, m_1),$$

 $||Q_1 - f_1|| \le 2^{-2},$

and for each $B_1 \subset \{m_0, ..., m_1 - 1\}$,

$$\left\| \sum_{n \in B_1} A_n \varphi_n(x) \right\| \le 2 \|f_1\|.$$

Let the dyadic step-function f_2 satisfy

$$||(f-Q_1)-f_2||<2^{-4},$$

and again apply Lemma 2. We get a Faber-Schauder polynomial

$$Q_2(x) = \sum_{n=m_1}^{m_2-1} A_n \varphi_n(x)$$

such that

$$|A_n| < 2^{-4}, \ \forall n \in [m_1, m_2),$$

 $||Q_2 - f_2|| \le 2^{-4},$

and, for each $B_2 \subset \{m_1, ..., m_2 - 1\}$,

$$\left\| \sum_{n \in B_2} A_n \varphi_n(x) \right\| \le 2 \|f_2\|.$$

Then

$$||f - (Q_1 + Q_2)|| \le 2^{-3}$$

and, since

$$||f_2|| \leq \frac{3}{2^3},$$

we obtain

$$\left\| \sum_{n \in B_2} A_n \varphi_n(x) \right\| \le \frac{3}{2^2}.$$

Continuing this process, one determines a sequence $\{Q_j(x)\}_{j=1}^{\infty}$ of Faber–Schauder polynomials,

$$Q_j(x) = \sum_{n=m_{j-1}}^{m_j-1} A_n \varphi_n(x)$$

such that

$$|A_n| < 2^{-2j}, \ \forall n \in [m_{j-1}, m_j),$$

$$\left\| f(x) - \sum_{j=1}^{n} Q_j(x) \right\| \le 2^{-(n+1)},$$

and, for each $B_n \subset \{m_{n-1}, \ldots, m_n - 1\}$,

$$\left\| \sum_{n \in B_n} A_n \varphi_n(x) \right\| < \frac{3}{2^n}.$$

As $n \to \infty$, $j \to \infty$ thus A_n converges to 0.

Further, from this it follows that the series

$$\sum_{n=m_0}^{\infty} A_n \varphi_n = \sum_{j=1}^{\infty} \sum_{n=m_{j-1}}^{m_j-1} A_n \varphi_n$$

converges unconditionally to f(x) in the norm L[0,1].

Indeed, if π is a permutation of \mathbb{N} , then we choose N_n so that $\{\pi(k) : m_0 \le k < N_n\} \supset \{i : m_0 \le i < m_n\}$. Thus, for arbitrary $M > N_n$ we obtain

$$\begin{split} & \left\| f(x) - \sum_{k=m_0}^M A_{\pi(k)} \, \varphi_{\pi(k)}(x) \right\| \leq \\ \leq & \left\| f(x) - \sum_{j=1}^n Q_j(x) \right\| + \sum_{j=n+1}^\infty \frac{3}{2^j} < \frac{1}{2^{n+1}} + \frac{3}{2^n} = \frac{7}{2^n}. \end{split}$$

Letting $M \to \infty$, $n \to \infty$, thus we get that for every permutation $\pi(k)$ the series $\sum_{k=m_0}^M A_{\pi(k)} \varphi_{\pi(k)}(x)$ converges to f(x) in L^1 .

Received 04.03.2021 Reviewed 09.04.2021 Accepted 16.04.2021

REFERENCES

- 1. Schauder J. Zur Theorie Stetiger Abbildungen in Funktionalräumen. *Math. Z* **26** (1927), 47–65.
 - https://doi.org/10.1007/BF01475440
- 2. Talalyan A.A. The Representation of Measurable Functions by Series. *Uspekhi Mat. Nauk* **15**: 5(95) (1960), 77–141; *Russian Math. Surveys* **15**: 5 (1960), 75–136.

- 3. Goffman C. Remark on a Problem of Lusin. *Acta Math.* **111** (1964), 63–72. https://doi.org/10.1007/BF02391008
- 4. Luzin N.N. Integral and Trigonometric Series. M.-L., GITTL, (1951) (in Russian).
- 5. Menchoff D. Sur la Repreésentation des Fonctions Mesurables par des Séries Trigonométriques. *Rec. Math. (Mat. Sbornik) N.S.* **9(51)** : 3 (1941), 667–692.
- 6. Karlin S. Bases in Banach Spaces. Duke Math. J. 15 (1948), 971–985.
- 7. Grigorian T.M. On the Unconditional Convergence of Series with Respect to the Faber–Schauder System. *Anal. Math.* **39** (2013), 179–188. https://doi.org/10.1007/s10476-013-0302-0
- 8. Grigoryan M.G., Sargsyan A.A. The Fourier–Faber–Schauder Series Unconditionally Divergent in Measure. *Sib. Math. J.* **59** (2018), 835–842. https://doi.org/10.1134/S0037446618050087
- Grigoryan M.G., Sargsyan A.A. Non-linear Approximation of Continuous Functions by the Faber–Schauder System. *Mat. Sb.* 199: 5 (2008), 3–26; https://doi.org/10.4213/sm3841 *Sb. Math.* 199: 5 (2008), 629–653.
 - https://doi.org/10.1070/SM2008v199n05ABEH003936
- 10. Krotov V.G. Representation of Measurable Functions by Series in the Faber–Schauder System, and Universal Series. *J. Contemp. Math. Analysis* **41** : 1 (1977), 215–229; *Math. USSR-Izv.* **11** : 1 (1977), 205–218.
- 11. Grigoryan G.M., Krotov V.G. Quasiunconditional Basis Property of the Faber–Schauder System. *Ukr. Math. J.* **71** (2019), 237–247. https://doi.org/10.1007/s11253-019-01641-8
- 12. Sargsyan A.A. On Faber–Schauder Coefficients of Continuous Functions and Divergence of Greedy Algorithm. *Russ Math.* **63** (2019), 57–62. https://doi.org/10.3103/S1066369X19050062

S. Մ. ԳՐԻԳՈՐՅԱՆ, Ա. Ա. ՄԱՐԱՆՋՅԱՆ

שעפרי-כעחריה כערפּפרי היא שעפטעלעעלל אורפערי פחריה האור בורפרי היא שעפטעלעעלל אור אורפרי בערפרי היא L^1 -הויט

Այս աշխափանքում ապացուցված է, որ Ֆաբեր–Շաուդերի ֆունկցիաները կազմում են ոչ պայմանական ներկայացման համակարգ L^1 –ի համար։

Т. М. ГРИГОРЯН, А. А. МАРАНДЖЯН

О БЕЗУСЛОВНОЙ СХОДИМОСТИ РЯДОВ ФАБЕРА–ШАУДЕРА В L^1

В работе доказано, что функции Фабера—Шаудера являются системой безусловных представлений для L^1 .