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In this paper, we showed that it is possible to use gradient descent method
to get minimal error values of loss functions close to their Bayesian estimators.
We calculated Bayesian estimators mathematically for different loss functions
and tested them using gradient descent algorithm. This algorithm, working on
Normal and Poisson distributions showed that it is possible to find minimal
error values without having Bayesian estimators. Using Python, we tested the
theory on loss functions with known Bayesian estimators as well as another loss
functions, getting results proving the theory.
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Introduction. Nowadays Machine Learning is one of the most interesting fields
of research in Computer Science. Being a sub-field of artificial intelligence, machine
learning is generally used to learn on data inputs, identify certain patterns and make
predictions or decisions by itself. A field, that’s built on a foundation of mathematics
and applied statistics performs tasks, that seemed impossible for a computer a few
decades ago. Even though, machine learning is a field of computer science, it greatly
differs from traditional programming approaches. In a usual programming approach,
the code consists of rules and directions that computer follows consequently without
ability to work otherwise or learn. Machine learning algorithms, allow computers to
learn on the data inputs and make predictions based on them. Basic Machine learning
tasks require optimizing the value of the prediction over one of the features in data
that we want to predict. Optimization, on a feature can be interpreted as a problem of
minimizing the value of the loss function defined on the predicted and actual values of
feature. Unfortunately, there does not exist, a universally defined loss function which
can be used with all models. Moreover, not all loss functions have defined minimum
values or algorithms to find them. In this work, we will find minimal values of loss
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function and show that descent method can be used to find minimal values of loss
functions.

In machine learning there are three widely used basic loss functions. Those
loss functions are the following: “Quadratic Loss”, “Zero-One Loss” and “Absolute
Loss” functions. We will discuss each of them separately, including their advantages
and weaknesses in the next sections. One property that is common for all the above
mentioned loss functions is that their minimal values can be computed using Bayesian
estimators. We will show, how the minimum values for these functions can be found
using Bayesian Estimation theory.

Bayesian inference derives the posterior density as a consequence of two
antecedents: a prior density function p(θ) and a “likelihood function” f (x1,x2, . . . ,xn|θ)
derived from a statistical model for the observed data. Using Bayes theorem we can
define the relationship between posterior density and likelihood functions (see [1]):

p(θ |x1,x2, . . . ,xn) =
f (x1,x2, . . . ,xn|θ)
p(x1,x2, . . . ,xn)

p(θ), (1)

where p(θ |x1,x2, . . . ,xn) is posterior density function and p(x1,x2, . . . ,xn) is the
marginal density of data.

A random experiment is used to generate measurements x1,x2, ...,xn from
f (x1,x2, . . . ,xn|θ), where the parameter θ has a density function p(θ). Our aim is to
estimate θ from x1,x2, ...,xn. After, we denote the estimator by θ̂ = θ̂(x1,x2, ...,xn).
By definition any measurable function of sample x1,x2, . . . ,xn is called an estimator.

Loss Function and Risk. Our aim is to estimate θ̂ , which has the minimal loss
from the actual value θ . The difference or loss, between our estimator and unknown
parameter θ is presented with a loss function L(θ , θ̂).

However, in this form this function is not suitable, as both arguments are
random variables. In order to work with difference of random variables, we can take
the expected value and try to minimize it. One of the ways that we can take to define
the expected value function is to average over θ . In the other case we will define the
value of expected loss function over the x1,x2, . . . ,xn (see [2] and [3]).

E(L(θ , θ̂)|x1,x2, . . . ,xn) =
∫

L(θ , θ̂)p(θ |x1,x2, . . . ,xn)dθ . (2)

On the other hand we can average given θ over x1,x2, . . . ,xn. In this case we
get an expected function defined in the following way

E(L(θ , θ̂)|θ) =
∫

L(θ , θ̂) f (x1,x2, . . . ,xn|θ)dx1 . . .dxn.

In the Bayesian problem setup we will use (2) and call it the Bayesian Expected
Loss function. But a more important function in the Bayesian setup is the risk function.
Generally, the risk is defined as an average loss function over the f (x1,x2, ...,xn|θ)
(likelihood function) (see [3] or [4]), defined as follows

R(θ , θ̂) =
∫

E(L(θ , θ̂)|θ)p(θ)dθ

=
∫ [∫

L(θ , θ̂) f (x1,x2, . . . ,xn|θ)dx1 . . .dxn

]
p(θ)dθ .
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R(θ , θ̂) is the general function for the risk, for the Bayesian setup the notion
of risk is changed. Bayesian risk is the risk averaged on the prior density. Recall the
definition of Bayesian risk, given by

R(θ , θ̂) =
∫ ∫

L(θ , θ̂)p(x1,x2, . . . ,xn,θ)dx1 . . .dxndθ , where

p(x1,x2, . . . ,xn,θ) = f (x1,x2, . . . ,xn|θ)p(θ).

Now we can apply (1) and get
p(θ |x1,x2, . . . ,xn)p(x1,x2, . . . ,xn) = p(θ) f (x1,x2, . . . ,xn|θ).

When Bayes rule is applied in the formula above, we get a function of posterior
density of θ given by x1,x2, . . . ,xn and joint density function p(x1,x2, . . . ,xn,θ) of
data x1,x2, . . . ,xn and unknown parameter θ .

This formula has a very important interpretation. In this context we say that the
prior density is mapped to the posterior density (see (1))

p(θ)→ p(θ |x1,x2, . . . ,xn).

Thus we can interpret the Bayes Risk estimator in the following way

θ̂(x1,x2, . . . ,xn) = argmin
θ̂

∫
L(θ , θ̂)p(θ |x1,x2, . . . ,xn)dθ , (3)

where argmin are the points of the function domain at which the values are minimized.
Loss Functions.
Quadratic Loss Function. Quadratic loss function, is defined as follows

L(θ , θ̂) = [θ − θ̂ ]2. (4)
Quadratic Loss function is one of the most common loss functions used with

regression problems in Machine Learning. However, this function comes with a
serious disadvantage. Quadratic Loss function is very sensitive to outliers (because
we use power 2). As a result, if there are outliers in the training dataset, we can get
great errors. , In order to minimize the value of quadratic loss function, we substitute
(4) in (3). We get∫

L(θ , θ̂)p(θ |x1,x2, . . . ,xn)dθ =
∫
[θ − θ̂ ]2 p(θ |x1,x2, . . . ,xn)dθ .

After getting the formula for Bayes risk in case of Quadratic Loss function, we
can find it’s first derivative. That is

∂

∂ θ̂

∫
[θ − θ̂ ]2 p(θ |x1,x2, . . . ,xn)dθ = −2

∫
[θ − θ̂ ]p(θ |x1,x2 . . . ,xn)dθ .

And using that, we calculate

−2
∫
[θ − θ̂ ]p(θ |x1,x2, . . . ,xn)dθ = 0, and so

θ̂(x1,x2, . . . ,xn) =
∫

θ p(θ |x1,x2, . . . ,xn)dθ .

Since the second derivative is equal 2, we come to the following result.

T h e o r e m 1. [2]. For the Quadratic loss function the Bayes estimator is
equal to the mean of the posterior density function.
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Zero-One Loss Function. Zero-One loss function is defined for ε > 0 as
follows

L(θ , θ̂) =

{
0, if |θ − θ̂ | ≤ ε,

1, if |θ − θ̂ |> ε.

We can calculate
E(L(θ , θ̂)) = P(|θ − θ̂ |> ε)

= 1−P(|θ − θ̂ | ≤ ε) = 1−
θ̂+ε∫

θ̂−ε

p(θ |x1,x2, ...,xn)dθ . (5)

We can see that the value of the above computed Expectation function can be
minimized if the value of integral is maximized

θ̂(x1,x2, . . . ,xn) = argmax
θ

θ̂+ε∫
θ̂−ε

p(θ |x1,x2, . . . ,xn)dθ .

T h e o r e m 2. For the Zero-One loss function the Bayes estimator is equal to
the mode of the posterior density function.

Absolute Error Loss Function. Absolute error loss function is defined as
L(θ , θ̂) = |θ̂ −θ |.

Using the definition of expected value, we get

E(|θ̂ −θ |) =
∫
|θ̂ −θ |p(θ |x1,x2, . . . ,xn)dθ

=

θ̂∫
−∞

(θ̂ −θ)p(θ |x1,x2, . . . ,xn)dθ +

θ̂∫
−∞

(θ − θ̂)p(θ |x1,x2, . . . ,xn)dθ .

By calculating the first derivative in θ̂ and equating to 0, we will get
θ̂∫
−∞

p(θ |x1,x2, . . . ,xn)dθ =

∞∫
θ̂

p(θ |x1,x2, . . . ,xn)dθ ,

and after this we can see that

2
θ̂∫
−∞

p(θ |x1,x2, . . . ,xn) =

∞∫
−∞

p(θ |x1,x2, . . . ,xn) = 1.

That is
θ̂∫
−∞

p(θ |x1,x2, . . . ,xn) =
1
2
.

The last equation implies that θ̂ is a median of the posterior density.

T h e o r e m 3. For the Absolute loss function the Bayes estimator is equal to a
median of the posterior density function.
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Simulating Problem using Python. In order to test the theory and make
calculations for new cases we need to set up our problem and environment. For the
simulation purposes we try to estimate mean for Normal and Poisson distributions
using different loss functions. Beforehand, the theory has to be checked using a loss
function with known Bayes estimator. Given that the results are good, other loss
functions can be used. Python will be used as a programming language, alongside
“Numpy” and “Scipy” packages used to generate data and calculating derivatives of
the loss functions. To simulate the theory, for each estimated θ̂ the random data
y1,y2, . . . ,yn, of length n from Normal or Poisson Distribution will be generated.

Simulating for Quadratic Loss Function. In order to work with data, loss
function will be defined as follows

L(θ , θ̂) =
n

∑
k=1

(xk− yk)
2,

where y1,y2, . . . ,yn is data generated using estimated θ̂ .

Fig.1. Quadratic Loss function report, where the left graphic illustrates the values of estima-
tors before converging and the right graphic illustrates the decrease of loss for the estimator.

For the Quadratic loss function Bayes estimator is equal to the mean of the
posterior density function (see Theorem 1). We will use “Scipy” package in order
to compute the posterior density function. For the data x1,x2, . . . ,xn the mean of the
posterior density function is equal to 0.0499. Which means, that the gradient descend
algorithm should get minimal error value around 0.0499. In order to check that, we
will construct a gradient descend algorithm with the Quadratic Loss function.

In order to find the estimator minimizing loss function, derivative at each point
will be taken [4]. Derivative will give the direction to either increase or decrease
estimator θ̂ . Mathematically the gradient descent will have the following form

θ̂i := θ̂i−1−α
∂L(θ̂)

∂θ
,

where α is the learning rate, xk is the data sample, and yn is data generated using the
estimator.

These algorithm is repeated until difference between θ̂i and θ̂i−1 is so small,
that the values are basically the same (see [5]). Finally, the algorithm converges with
the minimum error 0.01. This minimal error is close to the Bayesian estimate.

Using the Quadratic loss function, the algorithm will be tested on data from
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Poisson distribution as well. In the case of Poisson distribution the minimal error is
equal to 0.02, which is close to the Bayesian estimate as well.

Absolute Loss Function. We will run the same simulation for the absolute loss
function, which is defined as follows

L(θ , θ̂) =
n

∑
k=1
|xk− yk|.

Fig. 2. Absolute Loss function report, where the left graphic illustrates the values of
estimators before converging and the right graphic illustrates the decrease of the loss

for the estimator.

For the absolute loss function the Bayesian estimate is the median of the
distribution function, which in our case is equal to 10−8 for the Normal Distribution.
Using this loss function the error in the gradient descent is equal to 175 ·10−8. For
the Poisson distribution the minimal error is equal 0.18. As a result, we show that it is
possible to get comparable loss values to Bayesian estimates, using gradient descend.

Log-Cosh Loss Function. As we have shown, the gradient descent can be
estimated, approaching the actual Bayesian estimates. As a result, we can use the
gradient descend on the loss function, which does not have a defined Bayesian estimate.
For this case we will choose the loss function of logarithm of the hyperbolic cosine
called Log-Cosh and defined as follows

Fig. 3. Log-Cosh Loss function report, where the left graphic illustrates the values of the
estimators before converging and the right graphic illustrates the decrease of loss for the

estimator.

L(θ , θ̂) =
n

∑
k=1

log(cosh(xk− yk)). (6)
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For this loss function we run the gradient descent and get a minimum error
equal to 232 ·10−7.
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KORSTI FOWNKCIANER EV ANKMAN ME�OD

Hodva�owm cowyc enq tvel, or hnaravor � �gtagor�el asti�anakan

ijman algori�m korsti fownkcianeri nvazagowyn sxalneri ar�eqner

stanalow hamar, oronq mot en irenc bayesyan gnahatakannerin: Tvyal

algori�mi gor�arkowm�, or� a�xatowm � “Normal”  “Poisson′′ ba�xowm-
neri vra, cowyc tvec, or hnaravor � gtnel nvazagowyn sxalneri ar�eqner`

�ownenalov bayesyan gnahatakanner: Kira�elov Python-�` �or�arkel enq
haytni bayesyan gnahatakannerov korsti fownkcianer�, in�pes na ayl

korsti fownkcianer, in�i ardyownqowm stacel enq tesow�yownn apacowco�

ardyownqner:

В. К. ОГАНЯН, О. З. ЗОГРАБЯН

ФУНКЦИИ ПОТЕРЬ И МЕТОД СПУСКА

В статье мы показали, что можно использовать алгоритм градиентно-
го спуска для получения минимальных значений ошибок функций потерь,
близких к их байесовским оценкам. Этот алгоритм, работающий на основе
нормального и пуассоновского распределений, показал, что можно найти
минимальные значения ошибок без байесовских оценок. Используя Python,
мы протестировали теорию функций потерь с известными байесовскими
оценками, а также другие функции потерь и получили результаты,
подтверждающие теорию.
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