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Given a proper edge coloring & of a graph G, we define the palette Sg(v, @)
of a vertex v € V(G) as the set of all colors appearing on edges incident with
v. The palette index $(G) of G is the minimum number of distinct palettes
occurring in a proper edge coloring of G. A graph G is called nearly bipartite if
there exists v € V(G) so that G — v is a bipartite graph. In this paper, we give
an upper bound on the palette index of a nearly bipartite graph G by using the
decomposition of G into cycles. We also provide an upper bound on the palette
index of Cartesian products of graphs. In particular, we show that for any graphs
G and H, §(GOH) < $(G)s(H).
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Introduction. Throughout this paper, a graph G always means a finite undi-
rected graph without loops, parallel edges and do not contain isolated vertices.
Let V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively.
The degree of a vertex v in G is denoted by dg(v), and the maximum degree of vertices
in G by A(G). The terms and concepts that we do not define can be found in [!].

An edge coloring of a graph G is an assignment of colors to the edges of G:
it is proper if adjacent edges receive distinct colors. The minimum number of colors
required in a proper edge coloring of a graph G is called the chromatic index of G and
denoted by x'(G). By Vizing’s theorem [2], the chromatic index of G equals either
A(G) or A(G) + 1. A graph with ¥'(G) = A(G) is called Class 1, while a graph with
X' (G) = A(G) + 1 is called Class 2. There are many other chromatic parameters such
as acyclic, list, strong, vertex-distinguishing chromatic indices of graphs. This paper
is devoted to a relatively new chromatic parameter which is called palette index of a
graph G and denoted by $(G) [3]. It can be defined as follows. Let a be a proper edge
coloring of a graph G. The set of colors of the edges incident to v € V(G) is called the
palette of v and denoted by S (v, ). For every proper edge coloring ¢ of G, define the
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set S(G, ) = {Sg(v,&x) | v € V(G)}, which is the set of distinct palettes with respect
to proper edge coloring . In 2014, Horndk, Kalinowski, Meszka, and WoZniak [3]
have been studied for the first time proper edge colorings with the minimum number
of distinct palettes, that is, for which the cardinality of the set S(G, @) is as small
as possible. So, the palette index §(G) of G is the minimum number of distinct
palettes occurring in a proper edge coloring of G. In [3], the authors introduced this
parameter and determined the palette index of complete graphs. Moreover, they also
showed that the palette index of a d-regular graph is 1 if and only if the graph is
Class 1. Vizing’s edge coloring theorem [2] implies that if G is d-regular and Class 2,
then 3 < §(G) < d+1, the case §(G) = 2 is not possible, as proved in [3]. Vizing’s
edge coloring theorem also yields an upper bound on the palette index of a graph G
with maximum degree A and without isolated vertices, namely §(G) < 2A+1 2 but
in [4], Casselgren and Petrosyan provided an improvement of the upper bound for
the bipartite graphs and derived the following upper bound on the palette index of
Eulerian bipartite graphs:

A(G)
(6)< ), ( ; >
deD(G) 2
where by D(G) it is denoted the set of all degrees in G.

In [5], Bonvicini and Mazzuoccolo investigated the palette index of 4-regular
graphs and proved that if G is 4-regular and of Class 2, then §(G) € {3,4,5}, and that
all these values are in fact attained. As we know from [6] the computing the chromatic
index of a given graph is an NP-complete problem, that is why determining a given
graph’s palette index become NP-complete, even for cubic graphs. Also this means
that even determining if a given graph has palette index 1 is an NP-complete problem.
Nevertheless, for some classes of graphs it is possible to determine the exact value of
the palette index of these graphs. For example, in [3], it was proved that the palette
index of a cubic Class 2 graph is either 3 or 4 according to whether the graph has a
perfect matching or not.

In this paper, we give an upper bound on the palette index of a nearly bipartite
graph G by using the decomposition of G into cycles. We also provide an upper bound
on the palette index of Cartesian products of graphs in terms of the palette indices of
their factors.

Main Result. In this section we introduce some terminology and notation.
A 2-factor of a graph G, where loops are allowed, is a 2-regular spanning subgraph of
G. A graph G is even if the degree of every vertex of G is even.

Next, we need some additional definitions.

Definition 1. (Edge Subdivision). Let G be a graph. The edge subdivision
operation for an edge e = uv € E(G) is the deletion of uv from G and the addition
of two new edges ey = uw and e; = wv along with the new vertex w. This operation
generates a new graph H, where V(H) =V(G)U{w}, E(H)= (E(G)\{e})U
{e1, e2}.
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Definition 2. (Nearly Bipartite). A graph G is called nearly bipartite if
there exists v € V(G) so that G — v is a bipartite graph.

Definition 3. (Cartesian Product of Graphs). Let G and H be two graphs.
The Cartesian product GLIH of graphs G and H is a graph such that
e the vertex set of GOH is the Cartesian product V(G) x V(H);
e two vertices (u, uy) and (v, v1) are adjacent in GUH if and only if either;
— u=v and uy is adjacent to vy in H, or
— uy = vy and u is adjacent to v in G.

We also need a classical result from the factor theory, proof of which can be
found in [7].

Theorem 1. (Petersen’s Theorem). Let G be a 2r-regular multigraph
(where loops are allowed). Then G has a decomposition into edge-disjoint 2-factors.

For a graph G, denote by D(G) the set of all degrees in G, by D,44(G) the set
of all odd degrees in G, and by D,,.,(G) the set of even degrees in G, respectively.

Theorem 2. If G is an even nearly bipartite graph, then

AG)
5(G)§1+A(ZG)+ Y <§>

deD(G) \ 2
Moreover, this upper bound is sharp for any odd length cycle.

Proof. Inthe proof of this theorem we follow the idea from [4] (Theorem 2.2).

We first construct a new multigraph G* as follows: for each vertex u € V(G) of degree

A(G A(G
2k, we add (2) —k loops at u (1 <k< (2)> Clearly, G* is a A(G)-regular

multigraph. Then, by Theorem 1, G* can be represented as a union of edge-disjoint
2-factors Fi,F3,...,Fac . By removing all loops from 2-factors Fi,F3,...,Fac of
2 2

G*, we obtain that the resulting graph G is a union of edge-disjoint even subgraphs

AG . .
Fl, .. .,F@. Note that for each i(l <i< (2)) F! is a collection of cycles.

2
Because G is nearly bipartite, 3v € V(G) so that G — v is a bipartite graph, therefore

for any cycle C from F/ if v ¢ V(C), then the length of that cycle is even. Clearly,

A(G)
2

dg(v) < A(G), hence v belongs to at most

A(G)

subdivision operation on — edges incident with v and belonging to the distinct

odd cycles. By using the edge

cycles, we will construct a new graph G that can be represented as a union of edge-
disjoint even subgraphs F{', . . ., Fy . Foreachi (1 <i< p), F/ is a collection of
2

even cycles in G, so we can properly color the edges of F! alternately with colors
2i— 1 and 2i. As a result, the obtained coloring ¢ is a proper edge coloring of G with
colors 1,...,A(G).

Now, if u € V(G) and ds(u) = 2k, then there are k even subgraphs F F}", ..., F'

i iz,..., ik

such that dp» (u) = dpr(u) = ... = dpr(u) = 2, and thus Sé(u,a) ={2i; — 1,2,
i ) iq
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2iy — 1,2iy,...,2i; — 1,2i }. This means that for vertices u € V(G) with dg(u) = 2k,
A(G)

we have at most ( 12c ) distinct palettes in the coloring o and thus §(G) <

A(G)
ZdeD(G) ( 421 ) Let us now consider the graph G. If e € E(G) and e is not one
2
. . . A(G)
of the subdivided edges (the number of subdivided edges is at most 5 ), then we

can keep the color applied by o and add at most

A(G)

ones, creating at most 5 + 1 new palettes in G.

new colors to the remaining

A(G)
2

Hence,
~  AG
$(G) <5(G) + (2) +1.

Now, if G contains a vertex of degree 2, then it means that D(G) = D(G) and

the proof of the theorem is complete. But if there are no vertices of degree 2, then
(‘”) AG) | A(G)

D(G) = DO) U} ad §6) < L § ) + 552 + 2
2

In the resulting inequality, we take into account extra palettes that can be

removed, because the graph G does not contain any vertices of degree 2. O

From a given nearly bipartite graph G we can construct an even supergraph G/,
which can be represented as a union of edge-disjoint 2-factors. Let us first construct
a new graph G’ as defined in [4] by taking two vertex-disjoint copies G| and G,
of G and for every odd degree vertex of G joining it by an edge with its copy in
G,. Since G is a nearly bipartite graph, Jv € V(G;) such that G| — v is bipartite
graph, therefore G’ — v — V' is bipartite too, where v/ € V(G,) is a copy of v € V(Gj).
Clearly, d(v) < A(G') and dg(V') < A(G’). Using the same method as in the proof

A(G)

of the previous theorem, we obtain that vertices v and v/ belong to at most 2 {?W

odd cycles. We will construct a graph G as in the proof of Theorem 2. Namely, we

A(G)

make use the edge subdivision operation on at most 2 {TW edges incident to v or

V' that belong to the distinct cycles. By applying the preceding proposition to G, we
immediately obtain the following.

Corollary 1. For any nearly bipartite graph G, we have
AG) A(G
5(G) < (A(G)—|—2)2[ 2 W + {(2)—‘ +1.

Proof. Consider the graph G defined above, and a proper edge coloring o
of G as described in the proof of Theorem 2. For each palette Sg(u,a) in G, where
u € Dyyq(G), there are at most (dg(u) + 1) possible palettes in the restriction of o to
G. Now by switching back from G to the graph G, which is the copy of G we will
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A(G)

create at most {?1 + 1 new palettes. O

So we can obtain a general upper bound for nearly bipartite graphs.

Corollary 2. For any nearly bipartite graph G, we have

5(G) < (A(G)+2)2 ] & [A(ZGW +1.

Next, we consider the palette index of Cartesian products of graphs. Before we
move on, we recall that the Cartesian product graph GCJH decomposes into |V (G)|
copies of H and |V (H)| copies of G. By the definition of Cartesian products of graphs,
GUH has two types of edges: those whose vertices have the same first coordinate, and
those whose vertices have the same second coordinate. The edges joining vertices with
a given value of the first coordinate form a copy of H, so the edges of the first type
form nH (|V(G)| = n). Similarly, the edges of the second type form mG (|V (H)| = m),
and the union is GL1H. Below we will use some concepts that were defined in [8].

Definition 4. Given two graphs G and H, and a vertexy € V(H), the set
G’ ={(x,y) € V(GOH)|x € V(G)} is called a G-fiber in the Cartesian product of G
and H. For x € V(G), the H-fiber is defined as *"H = {(x,y) € V(GOH) | y e V(H)}.

G-fibers and H-fibers can be considered as induced subgraphs when appropriate.
In [8], authors define the projection to G, which is the map pg : V(GOH) — V(G)
defined by pg(x,y) = x. Also we will need the projection to H; py : V(GOH) — V(H)
defined by py(x,y) =y.

(1.2, 3,4 5)

The Cartesian product of the graphs G and H.

Theorem 3. For any graphs G and H,
S(GOH) < $(G)$(H).
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Proof. Let G and H be graphs with V(G) = {vi,...,v,} and
V(H) = {ui,...,un }. We show the existence of a coloring y with §(G)s(H) palettes.
Let o and B be proper edge colorings with the minimum number of palettes of
the graphs G and H using color sets C; = {ay,a2,...,a, } and C, = {b1,b,...,b, },
respectively.

We first color the edges of the G-fibers. Clearly, for any u € V(H), the fiber
G" is isomorphic to G, hence G* can be properly colored by colors from color set
Ci: Y(vu),(V,u) € V(G*) if (vyu)(v',u) € E(GOH), then we define a proper edge
coloring y of GLIH as follows:

Y((Vv u)(vlvu)) = OC(pG(V, u)p(;(vl,u)) = OC(VV/) =a,
where a € Cj.
Next, we color the edges of the H-fibers. Clearly, for any v € V(G), the fiber
VH is isomorphic to H, hence YH can be properly colored by colors from color set
Cy: Y(v,u),(v,u') € V(*H) if (v,u)(v,u') € E(GUH), then we define a proper edge
coloring y of GUH as follows:

V() (v,)) = B(pu(v.u)pu (viu')) = B(ud) = b,
where b € C;,.
It is not difficult to see that y is a proper edge coloring of GUH.
Moreover, V(v;,u;) € V(GOH),

S((thj)v’}/) = S(V,’,OC) US(”]?ﬁ)7
where v; € V(G),uj € V(H).
Next, we show that the number of palettes induced by y are equal to $(G)S(H).
Without loss of generality we may assume that

S(G,a) ={S(vi,,a),S(vi,,a),... S(vi,,x) } and
S(HaB) = {S(ujnﬁ)?S(ujzaﬁ)v S(ujs/,ﬁ)},

where s = §(G) and s’ = §(H). Consider the set of vertices M = {(u;,,v;,)| 1 <k <
5,1 <1<s'}. Clearly, M| = §(G)s(H) and the palettes of the vertices in this set are
pairwise distinct in case of the coloring . From the definition of the Cartesian product
and from the coloring that we have constructed it follows that new palettes apart of
the palettes of the vertices from M can not appear. Chose two vertices from one of the
fibers of the graph G, whose palettes are the same. From the definition of Cartesian
product and the coloring that we have constructed it follows that the palettes of those
vertices will coincide with the palettes of corresponding vertices in every remaining
fiber. This means that it is enough to look at only one of the vertices with the same
palettes. So as a result, we get that for any graphs G, H, there exists the proper edge
coloring y: E(GUH) — {ai,ax,...,as,,b1,ba, ..., by, } such that the number of palettes
is equal to §(G)$(H). O

Figure shows the proper edge coloring y of the graph GLJH described in the
proof of Theorem 3.

Clearly, 3 < §(GOH) < 4.
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Corollary 3. If G and H are regular and Class 1 graphs, then

$(GOH) = 1.

Proof. Asitwas shown in [3], the palette index of a regular graph is 1 if and

only if the graph is of Class 1; hence §(G) = 1 and $§(H) = 1. This implies that the
palette index of the graph GUH is equal to 1, by Theorem 3. U
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Iu. U. UULUS3UL

trunNk UMSNFLL GLUDPh MULPSMUBSPh PULYGLUP UWURL

Spywd L gpudh a-6hpyp Ynnuyhht hpymd, Sg(v, @)-ny Gpwbwlymd Lo
v € V(G) ququphl Yhg Ynntiph pninp gnyitiph pwquiniegnitp, npnbp hwypbynid
Ll Yynnbiph Yypw hwpwyhg v-h htp: G-h 6hog Ynnuyhtt bipldwb nghwypnd hpwphg
puppbp  wuwihppuwitph  0Juqugnytt pwbwlt wijwimd & G gpudh
wuwihppuyh hontipu b Gpwiwymd §(G)-nY: G gpudp Juijudtip hwdwpju
tpyynndwbh, tpbt gnynipymbt mbh v € V(G) wjbwhuhl, np G —v gpudp bpy-
Unnuwbh £ Wu hnnpjudnud dtbp qpwihu Gip hwdwpjw Gpyynndwbh G gnudh
wuwihppuh - hontipuh  Jtpht qwhwgpujui - ogyugnpdting - G gpudh
otpquyjugnuip wupq ghytiph dhwuynpiwb ypbupny: Ukbp twl wqpwihu Gbp
wuwihyppuyh  htntpuh Jtphtt qhwhuwpuiui tpyne gpudbtiph nhljupgyub
wmpunpuih hwdwp: Uwubuynpuybu, gnyg Gbhp quuaghu, np judwyujubt G
W H gpwdibph hwdwp qbnh mbh S(GOH) < $(G)$(H):

X. C. CMBATAH

JABA PE3VJIIBTATA Ob MHJIEKCE ITAJIUTPBI I'PA®OB

[Ipu nmpaBuabHO O-pebepHOit packpacke rpada G Mbl OIIpeIesIsieM AJIT-
py Sg(v, &) Bepumtbl v € V(G) Kak MHOXKECTBO BCEX I[BETOB, MOSIBJISIIOIIUXCS] HA
pebpax, cMeRHbIX ¢ v. Nnaeke mamutpst §(G) rpada G sBiseTcss MUHIMAIBHBIM
YUCJIOM Pa3/IMYHBIX HAJIATP, BCTPEYAIOIINXCS IIPU BCEX ITPABUJIBHBIX PEOEPHBIX
packpackax G. I'pad G maspiBaeTCsd MOYTH JIBYJOJHHBIM, €CJIH CYIIECTBYET
v € V(G), Tak uro G — v sBJsieTcsi JBYA0JbHBIM rpadom. B aroit crarbe Mbl
JIaeM BEPXHIOI TPAHUILY HHIEKCA HaJUTPhl HOYTH JBY/A0JbHOIO rpada G,
UCIIO/TB3Ysl pasjoxkenne G Ha IMUKJIbL. MBI TakKe J1aeM OIEHKY BEepPXHEl TpaHUIIbI
JUIS MHJIEKCA HAJIMTPBI JIEKAPTOBOIo Ipoussejienus rpados. B uacrHocTH,
MBI [IOKa3bIBaeM, ITo JIst Jo0bix rpados G u H, §(GOH) < §(G)s(H).



