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An n-poised node set X in the plane is called GC, set, if the fundamental
polynomial of each node is a product of linear factors. A line is called k-node
line, if it passes through exactly k-nodes of X. At most n+ 1 nodes can be
collinear in X and an (n+ 1)-node line is called maximal line. The well-known
conjecture of M. Gasca and J.I. Maeztu states that every GC, set has a maximal
line. Until now the conjecture has been proved only for the cases n < 5. In
this paper we prove some results concerning n-node lines, assuming that the
Gasca—Maeztu conjecture is true.
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Introduction. A set of nodes X is said to be an n-poised, if the interpolation
problem with bivariate polynomials of total degree < n is unisolvent.

The sets, called GC,, sets and introduced by Chang and Yao [ 1], are the simplest
n-poised sets. For a GC, set, as in the univariate case, the fundamental polynomial
of each node is a product of linear factors. A line is called k-node line, if it passes
through exactly k-nodes of X. At most n + 1 nodes can be collinear in a GC,, set and
(n+ 1)-node line is called maximal line. The well-known conjecture of M. Gasca and
J. I. Maeztu states that every GC, set has a maximal line. Untill now the conjecture
has been verified for the cases n < 5. In this paper we consider n-node lines in
GC, sets, by assuming that the Gasca—Maeztu conjecture is true.

We bring short proofs of the properties of n-node lines presented in [2].
It is worth mentioning that the proofs in [2] are based on the classification of GC,
sets of Carnicer, Gasca and Godés, which we do not use. Also we prove new results.
In particular, we establish an interesting connection between the defect of the
node set and an n-node line there. Let us mention that we discuss the case n = 3
not covered in [2].

Let I1, be the space of bivariate polynomials of total degree at most n.
We have that N := dimIl, = (n+2)(n+1)/2.

Let X be a set of N distinct nodes (points): X = {(x1,y1),...,(xn,yn)}-
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Definition 1. A set of nodes X is called n-poised if for any set of values
{c1,¢2,...,cN} there exists a unique polynomial p € I1,, satisfying the conditions
p(xi,yi)=c¢i, i=1,2,...N.

A polynomial p € II, is called an n-fundamental polynomial for a node
A = (xg,yx) € X, where 1 <k <N, if p(x;,yi) = O, i = 1,...,N, where 8 is the
Kronecker symbol. We denote this polynomial by p3 = pj o

Maximal Lines. ’

Definition 2. Given an n-poised set X. We say that a node A € X uses a
line £ € Iy, if py = {q, where g € I1,_;.

The following proposition is well-known.

Proposition 1. Suppose that a polynomial p € 11, vanishes at n+ 1 points
of a line (. Then we have that p = fr, where r € I1,,_.

This implies that at most n+ 1 nodes of an n-poised set X can be collinear.
A line passing through n+ 1 nodes is called a maximal line. Clearly, a maximal line A
is used by all the nodes in X'\ 4.

By using Proposition 1 one can prove the following

Proposition 2. (Prop. 2.1, [3]). Let X be an n-poised set. Then we
have that

1) any two maximal lines of X intersect necessarily at a node of X,

2) any three maximal lines of X cannot be concurrent;

3) X possesses at most n+ 2 maximal lines.

We call anode A € X type k;,, node if exactly k maximal lines of X pass through
A. Thus, according to Proposition 2, there can be only type O, 1,, and 2,, nodes in X.

GC, Sets and the Gasca—Maeztu Conjecture. Now let us consider a special
type of n-poised sets satisfying a geometric characterization (GC) property:

Definition 3. [1]. An n-poised set X is called GC, set if the n-fundamental
polynomial of each node A € X is a product of n linear factors.

Thus, GC,, sets are the sets each node of which uses exactly » lines.
By using Proposition 1 one gets

Proposition 3. (Prop. 2.3, [4]). Let A be a maximal line in a GC,, set X.
Then the set X\ A is a GC,,_; set.

Next we present the Gasca—Maeztu conjecture, briefly called GM conjecture:
Conjecture. [5]. Any GC, set possesses a maximal line.

Till now, this conjecture has been confirmed for n < 5 (see [0, 7]).
The following important result holds:

Theorem 1. (Theorem 4.1, [4]). If the GM conjecture is true for all k < n,
then any GC, set possesses at least three maximal lines.
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One gets from here, in view of Corollary 2 (ii), that each node of X uses at least
one maximal line.
Denote by M(X) the set of maximal lines of the node set X.

Definition 4. [3]. The “defect” of an n-correct set X is the number
def(X) :=n+2—#M(X).

In view of Proposition 2 we have that 0 < def(X) < n+2.

Proposition 4. (Crl. 3.5, [4]). Let A be a maximal line of a GC,, set X.
Then we have that def(X \ 1) = def(X) or def(X)— 1.

This equality means that #M (X \ 1) = #M(X) — 1 or #M(X).
In view of Proposition 3 all #/(X) — 1 maximal lines of X different from A

belong to M (X \ A). Thus there can be at most one newly emerged maximal line of
X\ A.

Definition 5. Given an n-correct set X and a line £, X' is the subset of
nodes of X, which use the line {.

Next let us present a result of Carnicer and Godés.

Theorem 2. (Th. 4.2, [8]). Let X be a GC, set. Assume that the GM
Conjecture holds for all degrees up to n. Then def(X) € {0,1,2,3,n—1}.

Of course, this implies that #M(X) € {3,n— 1,n,n+ 1,n+2}.
Consider the set X° := X\ Uy . m(x)A- This is the set of 0, nodes of X, which,
according to Proposition 3, forms a GCy, set with k = def(X) — 2. Therefore, we get

Corollary 1. Let X be a GC, set. Assume that the GM Conjecture holds
for all degrees up to n. Then we have that

(i) there are no 0, nodes in X if def(X) <1,

(ii) there is exactly one 0y, node in X if def(X) =2;

(iii) there are exactly three noncollinear 0,, nodes in X if def(X) = 3.

Now let us present the following

Theorem 3. (Th. 3.1 and Prop. 3.3, [9]). Assume that GM Conjecture holds
for all degrees up to n. Let X be a GC,, set, n > 4, and ¢ be an n-node line.
Then one of the following two conditions holds:

1. #X! = (;) if and only if there is a maximal line Ay such that AgNLNX = 0.
In this case we have that X' = X\ (£U Ap).
—1
2. #X = <n 5 > if and only if there are two maximal lines A', A", such that

A'NA" "L € X. In this case we have that X' = X\ (CUA'UA").

Moreover, if n = 3, then the above statement holds with one addition:

3. #X' = 0 if and only if there are exactly three maximal lines in X and they
intersect ¢ at three distinct nodes.
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Corollary 2. (Crl. 4.4, [9]). Assume that GM Conjecture holds for all
degrees up to n. Let X be a GC, set with exactly three maximal lines, where n > 4.
Then, there are exactly three n-node lines in X, each of which intersects exactly two of
the three maximal lines at nodes of X and does not contain a 2,, node.

On 3-Node Lines in GC; Sets. Let us start by mentioning that there are no
n-node lines in a defect 0 set X, if n > 3. Indeed, assume conversely that there is a
such line.

Then all the nodes in the line are 2,, nodes and there are 2n different maximal
lines of X passing through those nodes. Thus, in view of Proposition 2, (iii), we have
that2n <n+2and n < 2.

Let us call a 3-node line ¢ to be type (i, j, k), if its three nodes are type of
im, Jm and k,,, respectively.

Fig. 1. A defect two set, n = 3.

Case def(X) = 1. Let us start by considering defect one GC3 set X. In each of
four maximal lines of such set we have three 2,, nodes and one 1,,, node.

It can be checked readily that in X there can be type (2,1,1),, or (1,1,1),,
3-node lines only. Indeed, there is no type 0,, node in a defect one set. Then note
that there cannot be two 2,, nodes in a 3-node line, since there are four different
maximal lines passing through the two 2,, nodes and containing all the nodes of X, i.e.
44+3+2+1=10.

It is easily seen that through each 2,, node of X of defect one it may pass at most
one 3-node line. Indeed, the 3-node line passing through a 2,, node passes necessarily
through the two 1,, nodes in the two maximal lines not passing through the 2, node.

Case def(X) = 2. It can be readily verified the following general constraction
of a GC; set of defect two (see Fig. 1).

There are three 2,, nodes denoted by A,B,C and a 0, node denoted by O.
The other six nodes are 1,, nodes denoted by D,E,F and D’ E’ F’. For these latter
nodes we have the following conditions, where by {45 the line passing through A and
B is denoted. The three lines ¢ppr, g, Lppr are concurrent at O. Also we have that
D/,E € EAB,E/,F € lgc and F/,D € lac.

It is easy to see that the three 3-node lines concurrent at O as well as the three
2-node lines ¢pgr, ppr, Lppy, are the only used lines in X except the three maximal
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lines EAB;EBC;EAC-

In a defect two set X there can be type (0, 1,1),, or (1,1, 1),, 3-node lines only.
Indeed, assume conversely that a 2, node belongs to a 3-node line £y. Then we have
O € {y and no third node in X belongs to ¢;.

Let X be a GC, set. Denote by N(X) the set of n-node lines in X.

Proposition 5. Let X be a GCs set, def(X) = 1 or 2. Then the following
hold:

(i) #N(X) <4 or 5 ifdef(X) = 1 or 2, respectively;

(ii) Two 3-node lines may not intersect at a node of X provided that they both
are type (k,1,1),,, where k =2 or 1 ifdef(X) = 1 or 2, respectively;

(iii) There are no three 3-node lines such that no two of them intersect at a node
of X,

(iv) There are no four 3-node lines concurrent at a node of X.

Proof. Casedef(X) = 1. For (i) note that there are exactly six 2,, nodes in
X and recall that through each of them it may pass at most one 3-node line.

First consider the case when there is a type (1,1, 1),, 3-node line in X. Assume
that the fourth 1,, node belongs to the maximal line A. Then clearly for the three 2,
nodes in A there are no 3-node lines passing through them. At most three such lines
in all are possible for the remaining three 2,, nodes. Thus altogether we have at most
four 3-node lines.

Fig. 2. Four 3-node lines in a defect one set, n = 3.

Now consider the case when there is no type (1,1, 1),, 3-node line in X. Note
that if through each of four 1,, nodes there pass at most two 3-node lines then the
number of 3-node lines in X does not exceed four, i.e., 4 x 2/2 = 4. Thus more than
four 3-node lines in X may be possible only if there is a 1,, node (see the node Q in
Fig. 2), through which there pass three 3-node lines. Note that we are to consider
eight cases concerning the interval of a maximal line to which Q belongs. Indeed,
instead of four maximal lines we can consider only two of them since, by using the
reflection about the axis AD, the consideration for the maximal lines AC and AF as
well as DC and DF are similar. For a 1,, node, say for Q, let us call neighbor nodes
the two 2,, nodes (A and E in Fig. 2) between which it lies. Let us mention that in the
case if Q lies on the right hand side of F, or on on the left hand side of A, then the two
neighbors of Q are the nodes A and F.
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To prove that the number of 3-node lines in X does not exceed four it suffices
to verify that there are no 3-node lines passing through the two neighboring 2,, nodes
of Q. Note that such a line, say through the neighbor £ may pass only through the
two 1,, nodes not belonging to the two maximal lines passing through the node E,
i.e. through the nodes Q; and Q3. Notice that these latter nodes are in the same side
of one of the two maximal lines and in the different sides of the other maximal line
(see Fig. 2). It can be easily verified that the same thing happens in each of the above
mentioned eight cases.

The item (ii) follows from the fact that there are exactly four 1,, nodes in X and
therefore two type (1,1,1),, 3-node lines intersect necessarily at a node of X. For the
same reason type (2,1,1),, and type (1,1,1),, 3-node lines intersect necessarily at a
node of X. For (iii) note that two 3-node lines not intersecting at a node, according to
(ii), pass through all four 1,, nodes of X. Finally, for (iv) note that three 3-node lines
may intersect at a node, if the node is a 1,, node and the lines are all type (2,1,1),,.
Then the three lines pass through three 2,, nodes and the remaining three 2,, nodes in
X belong to the maximal line that contains the 1,, node. Note that in this case there is
no type (1,1,1),, line.

Case def(X) = 2. For (i) recall that there are exactly three type (0,1,1),,
3-node lines intersecting at the 0,, node. Also there may be at most two type (1,1, 1),,
3-node lines, each of which intersects above mentioned three 3-node lines at three
different nodes. Therefore the items (ii)-(iv) also hold. ]

At the end of this section let us bring a general example of a defect two GC3
set with exactly five 3-node lines. This set among three used concurrent 3-node lines
has also two not used 3-node lines. Let us mention that in the corresponding example
in [9] there is only one not used line.

Fig. 3. Five 3-node lines in a defect two set, n = 3.

Let us start the construction with the two non-used 3-node lines ¢; with nodes
D,E,F and ¢, with nodes D' E' F’ (see Fig. 3). Let O ¢ ¢, U/, be the 0,, node of X
and the three lines ¢pp, lgg, Lppr are concurrent at O.

Also we assume that the three lines ¢, frg, £pFr, intersect at three different
nodes denoted by A := {pyg Nlppr, B:= g NLlpg, C:=lpp NLlpg:.

Then we readily get that the set of ten nodes A,B,C,D,E,F,D',E',F’, O is the
desired set.
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On the Intersection of Two n-Node Lines. From now on, considering a GC,
set we assume that GM Conjecture holds for all degrees up to n.

The following proposition is proved in [2], Proposition 8.1. Here we bring a
much shorter proof, where the classification of GC, sets is not used. Let us mention
that the part “Moreover” presents a new result.

Proposition 6. Let X be a GC, set and {1, be n-node lines, where n > 4.
Then we have that
{inNty e X.

Moreover, in the case n = 3 two 3-node lines {1 and ¢, do not intersect at a node in X
only in the following two cases:

(i) def(X) = 1 and each line passes through one 2,, and two 1,, nodes, where
the two 2,, nodes do not belong to the same maximal line.

ii) def(X) = 2 and each line passes through three 1,, nodes, where the six 1,,
nodes are different.

Proof. Assume to the contrary that £; and ¢, are n-node lines not intersecting
at a node in the GC,, set X, where n > 4. Assume also that for the line ¢, there are two
maximal lines A{ and A{" such that the condition (ii) of Theorem 3 holds. Therefore,
we have that

X =20\ (A UAUL). (1)

Next assume that A, is a maximal line satisfying the condition (i) of Theorem 3,
for /5, or one of two maximal lines, satisfying the condition (ii) of Theorem 3.

Now consider a node A in the line A, not belonging to the lines A{, A", ¢; and
#. There is a such node since we have at least 5 < n+ 1 nodes in A,.

Now, A does not use the line ¢, since A € A,.

On the other hand, in view of (1), A uses the line ¢;. Hence p} = ¢1q, where
q € IT,_;. Since A ¢ ¢, and ¢; N ¢, ¢ X we get that ¢ vanishes at n nodes in /5.
Therefore, in view of Proposition 1, we have that g = ¢,r, where r € I1,,_,. Hence we
conclude that p} = £145r, i.e. the node A uses the line ¢, which is a contradiction.

Note that if for one of the lines, say for /1, the condition (i) of Theorem 3,
is satisfied, i.e. there is a maximal line A; such that A; N¢; ¢ X, then the above
consideration is true, where A{, A" (and their union) is replaced by 4;. Note also that
in this case we need to have in A, at least 4 < n+ 1 nodes.

Next let us consider the case n = 3. Assume that ¢; and ¢, are two 3-node lines
not intersecting at a node in a GC3 set X.

Assume first that def(X) = 1, i.e., X has four maximal lines. Hence for any
3-node line either the condition (i) or (ii) of Theorem 3 holds.

Assume that for one of the lines, say for /1, there is a maximal line A; such that
the condition (i) of Theorem 3 is satisfied. Then, as it was mentioned above, the above
arguments hold true for the case n+ 1 =4, i.e. n = 3. Hence in this case for both lines
the condition (ii) of Theorem 3 is satisfied. Therefore, each of the lines passes through
a 2,, node.
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Now assume that def(X) = 2, i.e. X has three maximal lines. Assume that one
of the lines, say /1, is a used line. Then it passes through the 0,, node and intersects
other two used 3-node lines at O. As it was verified earlier it intersects also each of
two possible not used lines (at a 1,, node) . ]

On the Cardinality of the Set N(X). The following proposition, is proved
in [2], Proposition 8.1. Here we bring a much shorter proof, where the classification
of GC, sets is not used.

Proposition 7. Let X be a GC, set, where n > 4. Then we have that
#N(X) < 3.
Let us start with the following

Lemma. Let X be a GC, set, where n > 3. Then we have that four n-node
lines cannot be concurrent at a node in X.

Proof. Let us use induction on n. The case n = 3 is verified in
Proposition 5, (iv).

Now assume that Lemma is true for degrees < n — 1 and let us prove it for
the degree n > 4. Assume conversely that ¢;, i = 1,...,4, are n-node lines passing
through a node O € X. Then it is easily seen that O is a 0,, node. Indeed, if a maximal
line A passes through O, then we have that no two of the four lines intersect at a node
in the GC,,—; set X'\ A, which contradicts Proposition 6 or Proposition 5, (iii), if n > 5
or n = 4, respectively.

Now consider a maximal line A in X.

If A intersects all four lines at nodes of X, then we have that ¢;, i =1,...,4,
are n — 1-node lines in the GC,,_; set X\ A concurrent at O, which contradicts the
induction hypothesis.

If A does not intersect two of the four lines, say the first two, at nodes of X, then
we have that ¢;, i = 1,2, are two maximal lines in the GC,,_; set X\ A and ¢;, i = 3,4,
have at least n — 1 nodes. Then consider the GC,,_3 set X\ (A U¢; U{,), where the
lines ¢;, i = 3,4, do not intersect at a node, which is a contradiction.

Finally consider the case when each maximal line of X does not intersect
only one n-node line. Assume that the maximal line A; does not intersect the line
¢;, i =1,2. Then let us consider the GC,,_» set X\ (4 UA,), where ¢;, i = 1,2, are
two maximal lines. Next we consider the GC,,—3 set X\ (A UA, Ul U{;), where the
lines ¢;, i = 3,4, do not intersect at a node, which is a contradiction. O

Proof of Proposition 7. Letus mention that the case of a GC, of defect
n— 1, follows from Corollary 2. Thus, in view of Theorem 2, assume that de f(X) < 3.
Let us consider first

The Case n > 5. Assume conversely that we have four n-node lines
li,i=1,...,4, in X. According to Lemma , they are not concurrent at a node in X. If
only three of these lines are concurrent at a node, then, in view of
Proposition 6, we have four intersection nodes of these lines. Otherwise, if no three
lines are concurrent at a node, then we have six intersection nodes.



52 G. K. VARDANYAN

Notice that each node of intersection of two n-node lines is an 0,, node. Indeed,
assume conversely that two n-node lines £; and ¢, intersect at a node through which a
maximal line A passes. Consider the GC,,_; set X\ A, n— 1 > 4. Here we have that
the n — 1-node lines ¢ and ¢ do not intersect at a node, which is a contradiction.

Thus we have at least four 0,, nodes in X, contradicting Corollary 1.

The Case n = 4. Conversely assume that we have four 4-node lines
i, i=1,...,4,in a GC4 set X. According to Lemma they are not concurrent at
a node.

First consider the case when three of these lines, say the first three, are
concurrent at O € X. As above, by using Corollary 5, (iii), we easily get that O € X'is a
0,, node. Now, in view of Corollary 1 and the considered case def(X) =n—1=3, we
get def(X) = 2. Thus the node O is the only 0,, node and we have that pj, = A; - - - A4,
where A; is a maximal line. Therefore, all the four maximal lines intersect ¢4 at its
four different nodes. This contradicts Theorem 3.

Now consider the case when there are no three concurrent n-node lines. Then
we have six intersection nodes.

Assume first that def(X) = 2, i.e. there are 4 maximal lines. There is one 0,,
node in X denoted by O € X. Choose a 4 node line, say ¢, not containing the node O.
Now, through each node of /; a maximal line passes. Thus the four maximal lines of
X pass through 4 nodes of £, again contradicting Theorem 3.

Next assume that def(X) = 1, i.e. there are 5 maximal lines in X. There are
ten 2, nodes in X and #X = 15. The 4-node lines have 6 intersection nodes. Hence
we conclude that one of these intersection nodes, say A := £; N #;, is type 2,,. Assume
that the two maximal lines passing through A are A; and A4,. Consider the GC, set
X\ (A1 UA,). Here the lines ¢; and ¢, are maximal lines not intersecting at a node,
which is a contradiction. O

A Relation Between def(X) and an n-Node Line.

Proposition 8. Let X be a GC, set, where n > 4 and {y be an n-node line

with exactly ko nodes of type 0,,. Then we have that
def(X) =ko+1.

Moreover, we have that any n-node line in X contains

(i) not more than one 2, node;

(ii) exactly s or s+ 1 1, nodes, where s = #M(X) —2 > 1.

Furthermore, if an n-node line contains all types Op,1,,,2, nodes,
then def(X) = 2.

Proof. Assume first that ¢y passes through kg > 3 nodes of type 0,, of X.
Then, in view of Corollary 1 we get def(X) > 4 and, according to Theorem 2, we
have def(X) =n— 1. Now, in view of Corollary 2, we get ko = n — 2.

Next, in view of Theorem 2, it remains to consider the cases ky = 0, 1, 2.

Let ¢y be an n-node line in a GC, set X passing through exactly ky nodes of
type 0,,. Recall that there is no n-node line in a GC, set of defect 0. Hence we have
def(X) > 1,ie. #M(X) <n+1.
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Now assume that kp = 0. Let us prove that def(X) = 1, i.e. there are
exactly n+ 1 maximal lines in X. Assume conversely that there are only < n maximal
lines. Then each node of ¢y belongs to exactly one maximal line, which contradicts
Theorem 3.

Finally, assume that ky = 1 or 2. Let us prove that def(X) = ko + 1, i.e. there
are exactly n+ 1 — ko maximal lines in X.

Corollary 1 implies, that if def(X) < ko, then there are at most ko — 1 0,
nodes in a line in X. Thus def(X) > ko + 1. It remains to prove that def(X) < ko+ 1,
ie. #M(X) > n+1—ko.

Assume conversely that there are only < n — kg maximal lines. Then each of
n — ko nodes of type 1,, or 2, of £y belongs to exactly one maximal line, which
contradicts Theorem 3.

Now let us prove the “Moreover” part. The statement (i) follows readily
from Theorem 3. For the item (ii) note, that if ¢, is an n-node line and contains
exactly k nodes of type 0,, nodes, then the number of 1,, or 2,, nodes in ¢ equals
n—k=n—def(X)+1=#M(X)— 1. Therefore (ii) follows from (i).

Finally let us turn to the “Furthermore” part. Let £y be an n-node line in X,
containing all nodes of types 0y, 1,,,2;-

In view of the above considered case def(X) = n— 1 we conclude that
1 <def(X) <3.

Then, since there is a 0, node in X, in view of Corollary 1, we get that
def(X) =2, or 3. Assume conversely that def(X) = 3, i.e. there are exactly n— 1
maximal lines in X. Let us use induction on #.

Assume first that n = 4. Then again we have the case def(X) =3 =n— 1.
Next assume that our assumption is not possible for (n — 1)-node lines in GC,,_; sets.
Now, consider the case n > 5. According to “Moreover” part, there is exactly one
type 2,, node in £y. Next, in view of Theorem 3, all other n — 3 maximal lines of X
intersect £ at different nodes. Thus there are exactly n — 3 > 2 nodes of type 1,, in
£y. Consequently, there are exactly two 0,, nodes in £y, denoted by O; and O;.

Then consider a maximal line denoted by A; passing through an 1,, node
Aj € {y. In the GC,_; set X; := X\ A; the line ¢ is an (n — 1)-node line. It is easily
seen that ¢y here also contains all types 0, 1,,, 2, nodes. Indeed, the 2,, node remains
unchanged. Now, in view of Theorem 3, the 1,, nodes, except A, remain 1,,. Also
at least one of the two 0,, nodes remains 0,,, since there can be at most one newly
emerged maximal line in X;.

By using the induction hypothesis, we get that def(X;) # 3. Hence,
Proposition 4 implies that def(X) = 2. Now consider the newly emerged maximal
line in X, denoted by ¢1, which is an n-node line in X not intersecting A;. By above
arguments ¢; intersects ¢y at a 0,, node, say O;.

By considering the maximal line denoted by A,, passing through another 1,,
node A; € {p, in the same way, we get in the GC,,—; set X := X'\ A, a newly emerged
maximal line ¢,, which is an n-node line in X not intersecting A, at a node and
intersecting ¢, at the second 0,, node O;. In view of Proposition 6, let us denote also
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Op:=01Nk.

If n > 6, then there is a third 1,, node in ¢y. In view of Proposition 7, there is
no space for the corresponding n-node line. This contradiction yields that n = 5.

Next consider the two maximal lines, denoted by Aj and A passing through the
2,, node in £y, which we denote by 7. Consider the GCy4 set X{j = X\ 4. As above, in
view of Proposition 7, we get readily that in X{j we have no newly emerged maximal
line. Thus in the line ¢y in X we have two 0,, nodes and three 1,, nodes. Also
we have that M(X{) = {4}, A1,A2}. In each of these maximal lines we have exactly
one type 1, node not lying in the 5-node lines £y, ¢, ¢>. Denote them by Ag,, A}, A3,
respectively. Now, consider the fundamental polynomial of the node Ay; = AN A; in
X - It contains the factor A, then ¢, and next it contains the line passing through the
three nodes O;,A(,,A]. Thus these nodes are collinear.

In the same way, by considering the fundamental polynomial of the node
Ay2 = AjN Ay, we get that the three nodes 0,Ay, A5 are collinear. Thus we get that
AS, = gOzAT mEOAT .

Next, by considering the GCy set X, = X\ A in the same way as above, we get
that Ay, = £o,a: N Loar, Where Ay, is the only node in A{ not lying in the 5-node lines
o, ¢1,0>. Thus the two nodes Ay, and Agj, coincide, i.e. A := A, = Agy,. Therefore, the
two lines A and A{ coincide, since both they pass through the two nodes A and 7.
This contradiction completes the proof. O
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Q. 4. JUMuL3uL

n-N\ULENE33LENNY. NFIPLELE JBMURBN3UL GG,
AUQUNFESNFLLELNFT

Nwppnipjub Ypw hwbgnmygitiph z-Ynotlpp X puqinipyniap Yngdmd £t GC,
puqunipinid, bpb jnipupwbsnp hwbgnygh $mbnudtiinpu  puqiwbnudp
qdwjhl wpyunphgbtiph wpgunpyug b Mnhnp Yngdmd © k-hwbgnygubh, tph
wyl whgmd £ X-h dhoy & hwiignygitpny: Wikihwpwypp 7+ 1 hwbgnyg X-nud
Junnn GO (hioh hwdwghd U 7+ 1-hwbgnygudh ninhnp Ynggmd £ dwpuhduy
ninhn: U. Quupw b Q.b. Uwhqpenth (wy hwypypbh Jupludd wyinmd L, np
guiugwd GC, puqumpjni mbh dwpuhiwy mnphn: Uhbs wydd Jupludn
wyugnigyty t dhuyt 7 <5 ghiyptph hwdiwp: Gu hnnpduomd dtkbp wyugnigmud
tLbp npn wipnymbpbtp r-hwbgnygubh ninhnbtph Ypuwpbpywy, Ghpwnptny, np
Quupw-Uwtigenih Jupwop chowp E:

I K. BAPJAHAH

O IMPAMBIX C »n-Y3JIAMU B MHO2KECTBAX GC,

n-Koppektnoe MHOXKeCTBO y370B X Ha IMIOCKOCTH HasbiBaeTcss GC-
MHOXKECTBOM, €CJIU (PYHIAMEHTAJIBHBII MHOTOWIEH KAXKJIOI'O Y3JIa SIBJISIETCS
MIpou3BeeHneM JUHEHHBIX MHOXKHUTeeh. Ilpsimasi HasbiBaercs Kk-y3J10BOM
[IPsSIMOiA, ecyin OHA TPOXoAUT poBHO deped k y3i10B X. He 6ostee n+ 1 y3m08 B X
MOT'YT OBITH KOJJIMHEAPHBI, 1 1+ 1-y3/10Bast psiMasi HA3bIBAETCS MAKCUMAJTHLHOMN
npstmoit. MzpectHast runore3a M. 'acka u JIxx. . Mas3ty yTBep:KIaeT, 4TO
KaxK10e MHOKecTBO GC,, mMeeT MaKCUMAaJIbHYIO IpsaMyto. Jlo cux mop rumnoresa
JIOKa3aHa TOJbKO [y ciydaeB n < 5. B jmaHHO#l cTarbe MbI JOKA3bIBaEM
HEKOTOPBIE PE3YJILTATHI, KACAIONINECS N-Y3JIOBBIX IPAMBIX, IIPEIIoJaras, ITo
runoTe3a ['acka—Mas3Ty BepHa.
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