ON n-NODE LINES IN $G C_{n}$ SETS
G. K. VARDANYAN *
Chair of Differential Equations, YSU, Armenia

An n-poised node set X in the plane is called $G C_{n}$ set, if the fundamental polynomial of each node is a product of linear factors. A line is called k-node line, if it passes through exactly k-nodes of X. At most $n+1$ nodes can be collinear in X and an $(n+1)$-node line is called maximal line. The well-known conjecture of M. Gasca and J.I. Maeztu states that every $G C_{n}$ set has a maximal line. Until now the conjecture has been proved only for the cases $n \leq 5$. In this paper we prove some results concerning n-node lines, assuming that the Gasca-Maeztu conjecture is true.
https://doi.org/10.46991/PYSU:A/2021.55.1.044
MSC2010: Primary: 41A05, 41A63; Secondary 14H50.
Keywords: polynomial interpolation, Gasca-Maeztu conjecture, n-poised set, $G C_{n}$ set, maximal line, n-node line.

Introduction. A set of nodes X is said to be an n-poised, if the interpolation problem with bivariate polynomials of total degree $\leq n$ is unisolvent.

The sets, called $G C_{n}$ sets and introduced by Chang and Yao [1], are the simplest n-poised sets. For a $G C_{n}$ set, as in the univariate case, the fundamental polynomial of each node is a product of linear factors. A line is called k-node line, if it passes through exactly k-nodes of X. At most $n+1$ nodes can be collinear in a $G C_{n}$ set and $(n+1)$-node line is called maximal line. The well-known conjecture of M. Gasca and J. I. Maeztu states that every $G C_{n}$ set has a maximal line. Untill now the conjecture has been verified for the cases $n \leq 5$. In this paper we consider n-node lines in $G C_{n}$ sets, by assuming that the Gasca-Maeztu conjecture is true.

We bring short proofs of the properties of n-node lines presented in [2]. It is worth mentioning that the proofs in [2] are based on the classification of $G C_{n}$ sets of Carnicer, Gasca and Godés, which we do not use. Also we prove new results. In particular, we establish an interesting connection between the defect of the node set and an n-node line there. Let us mention that we discuss the case $n=3$ not covered in [2].

Let Π_{n} be the space of bivariate polynomials of total degree at most n. We have that $N:=\operatorname{dim} \Pi_{n}=(n+2)(n+1) / 2$.

Let X be a set of N distinct nodes (points): $X=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$.

[^0]Definition 1. A set of nodes X is called n-poised iffor any set of values $\left\{c_{1}, c_{2}, \ldots, c_{N}\right\}$ there exists a unique polynomial $p \in \Pi_{n}$, satisfying the conditions $p\left(x_{i}, y_{i}\right)=c_{i}, \quad i=1,2, \ldots N$.

A polynomial $p \in \Pi_{n}$ is called an n-fundamental polynomial for a node $A=\left(x_{k}, y_{k}\right) \in X$, where $1 \leq k \leq N$, if $p\left(x_{i}, y_{i}\right)=\delta_{i k}, i=1, \ldots, N$, where δ is the Kronecker symbol. We denote this polynomial by $p_{A}^{\star}=p_{A, x}^{\star}$.

Maximal Lines.

Definition 2. Given an n-poised set X. We say that a node $A \in X$ uses a line $\ell \in \Pi_{1}$, if $p_{A}^{\star}=\ell q$, where $q \in \Pi_{n-1}$.

The following proposition is well-known.
Proposition 1. Suppose that a polynomial $p \in \Pi_{n}$ vanishes at $n+1$ points of a line ℓ. Then we have that $p=\ell r$, where $r \in \Pi_{n-1}$.

This implies that at most $n+1$ nodes of an n-poised set X can be collinear. A line passing through $n+1$ nodes is called a maximal line. Clearly, a maximal line λ is used by all the nodes in $X \backslash \lambda$.

By using Proposition 1 one can prove the following
Proposition 2. (Prop. 2.1, [3]). Let X be an n-poised set. Then we have that

1) any two maximal lines of X intersect necessarily at a node of X;
2) any three maximal lines of X cannot be concurrent;
3) X possesses at most $n+2$ maximal lines.

We call a node $A \in X$ type k_{m} node if exactly k maximal lines of X pass through A. Thus, according to Proposition 2, there can be only type $0_{m}, 1_{m}$ and 2_{m} nodes in X.
$G C_{n}$ Sets and the Gasca-Maeztu Conjecture. Now let us consider a special type of n-poised sets satisfying a geometric characterization $(G C)$ property:

Definition 3. [1]. An n-poised set X is called $G C_{n}$ set if the n-fundamental polynomial of each node $A \in X$ is a product of n linear factors.

Thus, $G C_{n}$ sets are the sets each node of which uses exactly n lines.
By using Proposition 1 one gets
Proposition 3. (Prop. 2.3, [4]). Let λ be a maximal line in a $G C_{n}$ set X. Then the set $X \backslash \lambda$ is a $G C_{n-1}$ set.

Next we present the Gasca-Maeztu conjecture, briefly called GM conjecture:
Conjecture. [5]. Any $G C_{n}$ set possesses a maximal line.
Till now, this conjecture has been confirmed for $n \leq 5$ (see [6, 7]).
The following important result holds:
Theorem 1. (Theorem 4.1, [4]). If the GM conjecture is true for all $k \leq n$, then any $G C_{n}$ set possesses at least three maximal lines.

One gets from here, in view of Corollary 2 (ii), that each node of \mathcal{X} uses at least one maximal line.

Denote by $M(X)$ the set of maximal lines of the node set X.
Definition 4. [3]. The "defect" of an n-correct set X is the number $\operatorname{def}(\mathcal{X}):=n+2-\# M(X)$.

In view of Proposition 2 we have that $0 \leq \operatorname{def}(\mathcal{X}) \leq n+2$.
Proposition 4. (Crl. 3.5, [4]). Let λ be a maximal line of a $G C_{n}$ set X. Then we have that $\operatorname{def}(X \backslash \lambda)=\operatorname{def}(X)$ or $\operatorname{def}(X)-1$.

This equality means that $\# M(X \backslash \lambda)=\# M(X)-1$ or $\# M(X)$.
In view of Proposition 3 all $\# M(X)-1$ maximal lines of X different from λ belong to $M(X \backslash \lambda)$. Thus there can be at most one newly emerged maximal line of $x \backslash \lambda$.

Definition 5. Given an n-correct set X and a line ℓ, X^{ℓ} is the subset of nodes of X, which use the line ℓ.

Next let us present a result of Carnicer and Godés.
Theorem 2. (Th. 4.2, [8]). Let X be a $G C_{n}$ set. Assume that the $G M$ Conjecture holds for all degrees up to n. Then $\operatorname{def}(\mathcal{X}) \in\{0,1,2,3, n-1\}$.

Of course, this implies that $\# M(X) \in\{3, n-1, n, n+1, n+2\}$.
Consider the set $X^{0}:=X \backslash \cup_{\lambda \in M(X)} \lambda$. This is the set of 0_{m} nodes of X, which, according to Proposition 3, forms a $G C_{k}$ set with $k=\operatorname{def}(\mathcal{X})-2$. Therefore, we get

Corollary 1. Let X be a $G C_{n}$ set. Assume that the GM Conjecture holds for all degrees up to n. Then we have that
(i) there are no 0_{m} nodes in X if $\operatorname{def}(X) \leq 1$;
(ii) there is exactly one 0_{m} node in X if $\operatorname{def}(X)=2$;
(iii) there are exactly three noncollinear 0_{m} nodes in X if $\operatorname{def}(X)=3$.

Now let us present the following
Theorem 3. (Th. 3.1 and Prop. 3.3, [9]). Assume that GM Conjecture holds for all degrees up to n. Let X be a $G C_{n}$ set, $n \geq 4$, and ℓ be an n-node line.

Then one of the following two conditions holds:

1. $\# X^{\ell}=\binom{n}{2}$ if and only if there is a maximal line λ_{0} such that $\lambda_{0} \cap \ell \cap X=\emptyset$. In this case we have that $X^{\ell}=X \backslash\left(\ell \cup \lambda_{0}\right)$.
2. $\# X^{\ell}=\binom{n-1}{2}$ if and only if there are two maximal lines $\lambda^{\prime}, \lambda^{\prime \prime}$, such that $\lambda^{\prime} \cap \lambda^{\prime \prime} \cap \ell \in X$. In this case we have that $X^{\ell}=X \backslash\left(\ell \cup \lambda^{\prime} \cup \lambda^{\prime \prime}\right)$.

Moreover, if $n=3$, then the above statement holds with one addition:
3. $\# X^{\ell}=0$ if and only if there are exactly three maximal lines in X and they intersect ℓ at three distinct nodes.

Corollary 2. (Crl. 4.4, [9]). Assume that GM Conjecture holds for all degrees up to n. Let X be a $G C_{n}$ set with exactly three maximal lines, where $n \geq 4$. Then, there are exactly three n-node lines in X, each of which intersects exactly two of the three maximal lines at nodes of X and does not contain a 2_{m} node.

On 3-Node Lines in $G C_{3}$ Sets. Let us start by mentioning that there are no n-node lines in a defect 0 set X, if $n \geq 3$. Indeed, assume conversely that there is a such line.

Then all the nodes in the line are 2_{m} nodes and there are $2 n$ different maximal lines of X passing through those nodes. Thus, in view of Proposition 2, (iii), we have that $2 n \leq n+2$ and $n \leq 2$.

Let us call a 3-node line ℓ to be type $(i, j, k)_{m}$, if its three nodes are type of i_{m}, j_{m} and k_{m}, respectively.

Fig. 1. A defect two set, $n=3$.

Case $\operatorname{def}(\mathcal{X})=1$. Let us start by considering defect one $G C_{3}$ set X. In each of four maximal lines of such set we have three 2_{m} nodes and one 1_{m} node.

It can be checked readily that in X there can be type $(2,1,1)_{m}$ or $(1,1,1)_{m}$ 3 -node lines only. Indeed, there is no type 0_{m} node in a defect one set. Then note that there cannot be two 2_{m} nodes in a 3-node line, since there are four different maximal lines passing through the two 2_{m} nodes and containing all the nodes of X, i.e. $4+3+2+1=10$.

It is easily seen that through each 2_{m} node of X of defect one it may pass at most one 3 -node line. Indeed, the 3 -node line passing through a 2_{m} node passes necessarily through the two 1_{m} nodes in the two maximal lines not passing through the 2_{m} node.

Case $\operatorname{def}(X)=2$. It can be readily verified the following general constraction of a $G C_{3}$ set of defect two (see Fig. 1).

There are three 2_{m} nodes denoted by A, B, C and a 0_{m} node denoted by O. The other six nodes are 1_{m} nodes denoted by D, E, F and $D^{\prime}, E^{\prime}, F^{\prime}$. For these latter nodes we have the following conditions, where by $\ell_{A B}$ the line passing through A and B is denoted. The three lines $\ell_{D D^{\prime}}, \ell_{E E^{\prime}}, \ell_{F F^{\prime}}$ are concurrent at O. Also we have that $D^{\prime}, E \in \ell_{A B}, E^{\prime}, F \in \ell_{B C}$ and $F^{\prime}, D \in \ell_{A C}$.

It is easy to see that the three 3-node lines concurrent at O as well as the three 2-node lines $\ell_{D E^{\prime}}, \ell_{E F^{\prime}}, \ell_{F D^{\prime}}$, are the only used lines in X except the three maximal
lines $\ell_{A B}, \ell_{B C}, \ell_{A C}$.
In a defect two set X there can be type $(0,1,1)_{m}$ or $(1,1,1)_{m} 3$-node lines only. Indeed, assume conversely that a 2_{m} node belongs to a 3 -node line ℓ_{0}. Then we have $O \in \ell_{0}$ and no third node in X belongs to ℓ_{0}.

Let X be a $G C_{n}$ set. Denote by $N(X)$ the set of n-node lines in X.
Proposition 5. Let X be a $G C_{3}$ set, $\operatorname{def}(\mathcal{X})=1$ or 2 . Then the following hold:
(i) $\# N(X) \leq 4$ or 5 if $\operatorname{def}(X)=1$ or 2 , respectively;
(ii) Two 3-node lines may not intersect at a node of X provided that they both are type $(k, 1,1)_{m}$, where $k=2$ or 1 if $\operatorname{def}(X)=1$ or 2 , respectively;
(iii) There are no three 3-node lines such that no two of them intersect at a node of X;
(iv) There are no four 3-node lines concurrent at a node of X.

Proof. Case $\operatorname{def}(X)=1$. For (i) note that there are exactly six 2_{m} nodes in X and recall that through each of them it may pass at most one 3-node line.

First consider the case when there is a type $(1,1,1)_{m} 3$-node line in X. Assume that the fourth 1_{m} node belongs to the maximal line λ. Then clearly for the three 2_{m} nodes in λ there are no 3-node lines passing through them. At most three such lines in all are possible for the remaining three 2_{m} nodes. Thus altogether we have at most four 3-node lines.

Fig. 2. Four 3-node lines in a defect one set, $n=3$.

Now consider the case when there is no type $(1,1,1)_{m} 3$-node line in X. Note that if through each of four 1_{m} nodes there pass at most two 3-node lines then the number of 3 -node lines in X does not exceed four, i.e., $4 \times 2 / 2=4$. Thus more than four 3 -node lines in X may be possible only if there is a 1_{m} node (see the node Q in Fig. 2), through which there pass three 3-node lines. Note that we are to consider eight cases concerning the interval of a maximal line to which Q belongs. Indeed, instead of four maximal lines we can consider only two of them since, by using the reflection about the axis $A D$, the consideration for the maximal lines $A C$ and $A F$ as well as $D C$ and $D F$ are similar. For a 1_{m} node, say for Q, let us call neighbor nodes the two 2_{m} nodes (A and E in Fig. 2) between which it lies. Let us mention that in the case if Q lies on the right hand side of F, or on on the left hand side of A, then the two neighbors of Q are the nodes A and F.

To prove that the number of 3-node lines in X does not exceed four it suffices to verify that there are no 3 -node lines passing through the two neighboring 2_{m} nodes of Q. Note that such a line, say through the neighbor E may pass only through the two 1_{m} nodes not belonging to the two maximal lines passing through the node E, i.e. through the nodes Q_{1} and Q_{3}. Notice that these latter nodes are in the same side of one of the two maximal lines and in the different sides of the other maximal line (see Fig. 2). It can be easily verified that the same thing happens in each of the above mentioned eight cases.

The item (ii) follows from the fact that there are exactly four 1_{m} nodes in X and therefore two type $(1,1,1)_{m} 3$-node lines intersect necessarily at a node of \mathcal{X}. For the same reason type $(2,1,1)_{m}$ and type $(1,1,1)_{m} 3$-node lines intersect necessarily at a node of \mathcal{X}. For (iii) note that two 3-node lines not intersecting at a node, according to (ii), pass through all four 1_{m} nodes of X. Finally, for (iv) note that three 3 -node lines may intersect at a node, if the node is a 1_{m} node and the lines are all type $(2,1,1)_{m}$. Then the three lines pass through three 2_{m} nodes and the remaining three 2_{m} nodes in X belong to the maximal line that contains the 1_{m} node. Note that in this case there is no type $(1,1,1)_{m}$ line.

Case $\operatorname{def}(\mathcal{X})=2$. For (i) recall that there are exactly three type $(0,1,1)_{m}$ 3 -node lines intersecting at the 0_{m} node. Also there may be at most two type $(1,1,1)_{m}$ 3-node lines, each of which intersects above mentioned three 3-node lines at three different nodes. Therefore the items (ii)-(iv) also hold.

At the end of this section let us bring a general example of a defect two $G C_{3}$ set with exactly five 3 -node lines. This set among three used concurrent 3-node lines has also two not used 3-node lines. Let us mention that in the corresponding example in [9] there is only one not used line.

Fig. 3. Five 3-node lines in a defect two set, $n=3$.

Let us start the construction with the two non-used 3-node lines ℓ_{1} with nodes D, E, F and ℓ_{2} with nodes $D^{\prime}, E^{\prime}, F^{\prime}$ (see Fig. 3). Let $O \notin \ell_{1} \cup \ell_{2}$ be the 0_{m} node of X and the three lines $\ell_{D D^{\prime}}, \ell_{E E^{\prime}}, \ell_{F F^{\prime}}$ are concurrent at O.

Also we assume that the three lines $\ell_{D^{\prime} E}, \ell_{F E^{\prime}}, \ell_{D F^{\prime}}$, intersect at three different nodes denoted by $A:=\ell_{D^{\prime} E} \cap \ell_{D F^{\prime}}, B:=\ell_{D^{\prime} E} \cap \ell_{F E^{\prime}}, C:=\ell_{D F^{\prime}} \cap \ell_{F E^{\prime}}$.

Then we readily get that the set of ten nodes $A, B, C, D, E, F, D^{\prime}, E^{\prime}, F^{\prime}, O$ is the desired set.

On the Intersection of Two n-Node Lines. From now on, considering a $G C_{n}$ set we assume that GM Conjecture holds for all degrees up to n.

The following proposition is proved in [2], Proposition 8.1. Here we bring a much shorter proof, where the classification of $G C_{n}$ sets is not used. Let us mention that the part "Moreover" presents a new result.

Proposition 6. Let X be a $G C_{n}$ set and ℓ_{1}, ℓ_{2} be n-node lines, where $n \geq 4$. Then we have that

$$
\ell_{1} \cap \ell_{2} \in X
$$

Moreover, in the case $n=3$ two 3 -node lines ℓ_{1} and ℓ_{2} do not intersect at a node in X only in the following two cases:
(i) $\operatorname{def}(X)=1$ and each line passes through one 2_{m} and two 1_{m} nodes, where the two 2_{m} nodes do not belong to the same maximal line.
ii) $\operatorname{def}(X)=2$ and each line passes through three 1_{m} nodes, where the six 1_{m} nodes are different.

Proof. Assume to the contrary that ℓ_{1} and ℓ_{2} are n-node lines not intersecting at a node in the $G C_{n}$ set X, where $n \geq 4$. Assume also that for the line ℓ_{1} there are two maximal lines λ_{1}^{\prime} and $\lambda_{1}^{\prime \prime}$ such that the condition (ii) of Theorem 3 holds. Therefore, we have that

$$
\begin{equation*}
X^{\ell_{1}}=X \backslash\left(\lambda_{1}^{\prime} \cup \lambda_{1}^{\prime \prime} \cup \ell_{1}\right) . \tag{1}
\end{equation*}
$$

Next assume that λ_{2} is a maximal line satisfying the condition (i) of Theorem 3, for ℓ_{2}, or one of two maximal lines, satisfying the condition (ii) of Theorem 3.

Now consider a node A in the line λ_{2} not belonging to the lines $\lambda_{1}^{\prime}, \lambda_{1}^{\prime \prime}, \ell_{1}$ and ℓ_{2}. There is a such node since we have at least $5 \leq n+1$ nodes in λ_{2}.

Now, A does not use the line ℓ_{2}, since $A \in \lambda_{2}$.
On the other hand, in view of (1), A uses the line ℓ_{1}. Hence $p_{A}^{*}=\ell_{1} q$, where $q \in \Pi_{n-1}$. Since $A \notin \ell_{2}$ and $\ell_{1} \cap \ell_{2} \notin X$ we get that q vanishes at n nodes in ℓ_{2}. Therefore, in view of Proposition 1, we have that $q=\ell_{2} r$, where $r \in \Pi_{n-2}$. Hence we conclude that $p_{A}^{*}=\ell_{1} \ell_{2} r$, i.e. the node A uses the line ℓ_{2}, which is a contradiction.

Note that if for one of the lines, say for ℓ_{1}, the condition (i) of Theorem 3, is satisfied, i.e. there is a maximal line λ_{1} such that $\lambda_{1} \cap \ell_{1} \notin X$, then the above consideration is true, where $\lambda_{1}^{\prime}, \lambda_{1}^{\prime \prime}$ (and their union) is replaced by λ_{1}. Note also that in this case we need to have in λ_{2} at least $4 \leq n+1$ nodes.

Next let us consider the case $n=3$. Assume that ℓ_{1} and ℓ_{2} are two 3 -node lines not intersecting at a node in a $G C_{3}$ set \mathcal{X}.

Assume first that $\operatorname{def}(\mathcal{X})=1$, i.e., X has four maximal lines. Hence for any 3-node line either the condition (i) or (ii) of Theorem 3 holds.

Assume that for one of the lines, say for ℓ_{1}, there is a maximal line λ_{1} such that the condition (i) of Theorem 3 is satisfied. Then, as it was mentioned above, the above arguments hold true for the case $n+1=4$, i.e. $n=3$. Hence in this case for both lines the condition (ii) of Theorem 3 is satisfied. Therefore, each of the lines passes through a 2_{m} node.

Now assume that $\operatorname{def}(X)=2$, i.e. X has three maximal lines. Assume that one of the lines, say ℓ_{1}, is a used line. Then it passes through the 0_{m} node and intersects other two used 3-node lines at O. As it was verified earlier it intersects also each of two possible not used lines (at a 1_{m} node).

On the Cardinality of the Set $N(X)$. The following proposition, is proved in [2], Proposition 8.1. Here we bring a much shorter proof, where the classification of $G C_{n}$ sets is not used.

Proposition 7. Let X be a $G C_{n}$ set, where $n \geq 4$. Then we have that

$$
\# N(X) \leq 3
$$

Let us start with the following
Lemma. Let X be a $G C_{n}$ set, where $n \geq 3$. Then we have that four n-node lines cannot be concurrent at a node in X.

Proof. Let us use induction on n. The case $n=3$ is verified in Proposition 5, (iv).

Now assume that Lemma is true for degrees $\leq n-1$ and let us prove it for the degree $n \geq 4$. Assume conversely that $\ell_{i}, i=1, \ldots, 4$, are n-node lines passing through a node $O \in X$. Then it is easily seen that O is a 0_{m} node. Indeed, if a maximal line λ passes through O, then we have that no two of the four lines intersect at a node in the $G C_{n-1}$ set $\mathcal{X} \backslash \lambda$, which contradicts Proposition 6 or Proposition 5, (iii), if $n \geq 5$ or $n=4$, respectively.

Now consider a maximal line λ in X.
If λ intersects all four lines at nodes of \mathcal{X}, then we have that $\ell_{i}, i=1, \ldots, 4$, are $n-1$-node lines in the $G C_{n-1}$ set $X \backslash \lambda$ concurrent at O, which contradicts the induction hypothesis.

If λ does not intersect two of the four lines, say the first two, at nodes of X, then we have that $\ell_{i}, i=1,2$, are two maximal lines in the $G C_{n-1}$ set $X \backslash \lambda$ and $\ell_{i}, i=3,4$, have at least $n-1$ nodes. Then consider the $G C_{n-3}$ set $X \backslash\left(\lambda \cup \ell_{1} \cup \ell_{2}\right)$, where the lines $\ell_{i}, i=3,4$, do not intersect at a node, which is a contradiction.

Finally consider the case when each maximal line of X does not intersect only one n-node line. Assume that the maximal line λ_{i} does not intersect the line $\ell_{i}, i=1,2$. Then let us consider the $G C_{n-2}$ set $X \backslash\left(\lambda_{1} \cup \lambda_{2}\right)$, where $\ell_{i}, i=1,2$, are two maximal lines. Next we consider the $G C_{n-3}$ set $X \backslash\left(\lambda_{1} \cup \lambda_{2} \cup \ell_{1} \cup \ell_{2}\right)$, where the lines $\ell_{i}, i=3,4$, do not intersect at a node, which is a contradiction.

Proof of Proposition 7. Let us mention that the case of a $G C_{n}$ of defect $n-1$, follows from Corollary 2. Thus, in view of Theorem 2, assume that $\operatorname{def}(X) \leq 3$. Let us consider first

The Case $n \geq 5$. Assume conversely that we have four n-node lines $\ell_{i}, i=1, \ldots, 4$, in \mathcal{X}. According to Lemma, they are not concurrent at a node in \mathcal{X}. If only three of these lines are concurrent at a node, then, in view of Proposition 6, we have four intersection nodes of these lines. Otherwise, if no three lines are concurrent at a node, then we have six intersection nodes.

Notice that each node of intersection of two n-node lines is an 0_{m} node. Indeed, assume conversely that two n-node lines ℓ_{1} and ℓ_{2} intersect at a node through which a maximal line λ passes. Consider the $G C_{n-1}$ set $X \backslash \lambda, n-1 \geq 4$. Here we have that the $n-1$-node lines ℓ_{1} and ℓ_{2} do not intersect at a node, which is a contradiction.

Thus we have at least four 0_{m} nodes in X, contradicting Corollary 1.
The Case $n=4$. Conversely assume that we have four 4-node lines $\ell_{i}, i=1, \ldots, 4$, in a $G C_{4}$ set X. According to Lemma they are not concurrent at a node.

First consider the case when three of these lines, say the first three, are concurrent at $O \in \mathcal{X}$. As above, by using Corollary 5, (iii), we easily get that $O \in \mathcal{X}$ is a 0_{m} node. Now, in view of Corollary 1 and the considered case $\operatorname{def}(\mathcal{X})=n-1=3$, we get $\operatorname{def}(\mathcal{X})=2$. Thus the node O is the only 0_{m} node and we have that $p_{O}^{\star}=\lambda_{1} \cdots \lambda_{4}$, where λ_{i} is a maximal line. Therefore, all the four maximal lines intersect ℓ_{4} at its four different nodes. This contradicts Theorem 3.

Now consider the case when there are no three concurrent n-node lines. Then we have six intersection nodes.

Assume first that $\operatorname{def}(X)=2$, i.e. there are 4 maximal lines. There is one 0_{m} node in X denoted by $O \in \mathcal{X}$. Choose a 4 node line, say ℓ_{1}, not containing the node O. Now, through each node of ℓ_{1} a maximal line passes. Thus the four maximal lines of X pass through 4 nodes of ℓ_{1}, again contradicting Theorem 3 .

Next assume that $\operatorname{def}(\mathcal{X})=1$, i.e. there are 5 maximal lines in X. There are ten 2_{m} nodes in X and $\# X=15$. The 4 -node lines have 6 intersection nodes. Hence we conclude that one of these intersection nodes, say $A:=\ell_{1} \cap \ell_{2}$, is type 2_{m}. Assume that the two maximal lines passing through A are λ_{1} and λ_{2}. Consider the $G C_{2}$ set $X \backslash\left(\lambda_{1} \cup \lambda_{2}\right)$. Here the lines ℓ_{1} and ℓ_{2} are maximal lines not intersecting at a node, which is a contradiction.

A Relation Between $\operatorname{def}(\mathcal{X})$ and an n-Node Line.

Proposition 8. Let X be a $G C_{n}$ set, where $n \geq 4$ and ℓ_{0} be an n-node line with exactly k_{0} nodes of type 0_{m}. Then we have that

$$
\operatorname{def}(X)=k_{0}+1
$$

Moreover, we have that any n-node line in X contains
(i) not more than one 2_{m} node;
(ii) exactly s or $s+11_{m}$ nodes, where $s=\# M(X)-2 \geq 1$.

Furthermore, if an n-node line contains all types $0_{m}, 1_{m}, 2_{m}$ nodes, then $\operatorname{def}(X)=2$.

Proof. Assume first that ℓ_{0} passes through $k_{0} \geq 3$ nodes of type 0_{m} of X. Then, in view of Corollary 1 we get $\operatorname{def}(X) \geq 4$ and, according to Theorem 2, we have $\operatorname{def}(\mathcal{X})=n-1$. Now, in view of Corollary 2, we get $k_{0}=n-2$.

Next, in view of Theorem 2, it remains to consider the cases $k_{0}=0,1,2$.
Let ℓ_{0} be an n-node line in a $G C_{n}$ set X passing through exactly k_{0} nodes of type 0_{m}. Recall that there is no n-node line in a $G C_{n}$ set of defect 0 . Hence we have $\operatorname{def}(X) \geq 1$, i.e. $\# M(X) \leq n+1$.

Now assume that $k_{0}=0$. Let us prove that $\operatorname{def}(\mathcal{X})=1$, i.e. there are exactly $n+1$ maximal lines in \mathcal{X}. Assume conversely that there are only $\leq n$ maximal lines. Then each node of ℓ_{0} belongs to exactly one maximal line, which contradicts Theorem 3.

Finally, assume that $k_{0}=1$ or 2 . Let us prove that $\operatorname{def}(\mathcal{X})=k_{0}+1$, i.e. there are exactly $n+1-k_{0}$ maximal lines in X.

Corollary 1 implies, that if $\operatorname{def}(\mathcal{X}) \leq k_{0}$, then there are at most $k_{0}-10_{m}$ nodes in a line in X. Thus $\operatorname{def}(X) \geq k_{0}+1$. It remains to prove that $\operatorname{def}(X) \leq k_{0}+1$, i.e. $\# M(X) \geq n+1-k_{0}$.

Assume conversely that there are only $\leq n-k_{0}$ maximal lines. Then each of $n-k_{0}$ nodes of type 1_{m} or 2_{m} of ℓ_{0} belongs to exactly one maximal line, which contradicts Theorem 3.

Now let us prove the "Moreover" part. The statement (i) follows readily from Theorem 3. For the item (ii) note, that if ℓ_{0} is an n-node line and contains exactly k nodes of type 0_{m} nodes, then the number of 1_{m} or 2_{m} nodes in ℓ equals $n-k=n-\operatorname{def}(X)+1=\# M(X)-1$. Therefore (ii) follows from (i).

Finally let us turn to the "Furthermore" part. Let ℓ_{0} be an n-node line in X, containing all nodes of types $0_{m}, 1_{m}, 2_{m}$.

In view of the above considered case $\operatorname{def}(X)=n-1$ we conclude that $1 \leq \operatorname{def}(X) \leq 3$.

Then, since there is a 0_{m} node in X, in view of Corollary 1 , we get that $\operatorname{def}(\mathcal{X})=2$, or 3 . Assume conversely that $\operatorname{def}(\mathcal{X})=3$, i.e. there are exactly $n-1$ maximal lines in X. Let us use induction on n.

Assume first that $n=4$. Then again we have the case $\operatorname{def}(X)=3=n-1$. Next assume that our assumption is not possible for $(n-1)$-node lines in $G C_{n-1}$ sets. Now, consider the case $n \geq 5$. According to "Moreover" part, there is exactly one type 2_{m} node in ℓ_{0}. Next, in view of Theorem 3 , all other $n-3$ maximal lines of X intersect ℓ_{0} at different nodes. Thus there are exactly $n-3 \geq 2$ nodes of type 1_{m} in ℓ_{0}. Consequently, there are exactly two 0_{m} nodes in ℓ_{0}, denoted by O_{1} and O_{2}.

Then consider a maximal line denoted by λ_{1} passing through an 1_{m} node $A_{1} \in \ell_{0}$. In the $G C_{n-1}$ set $X_{1}:=X \backslash \lambda_{1}$ the line ℓ_{0} is an $(n-1)$-node line. It is easily seen that ℓ_{0} here also contains all types $0_{m}, 1_{m}, 2_{m}$, nodes. Indeed, the 2_{m} node remains unchanged. Now, in view of Theorem 3, the 1_{m} nodes, except A_{1}, remain 1_{m}. Also at least one of the two 0_{m} nodes remains 0_{m}, since there can be at most one newly emerged maximal line in X_{1}.

By using the induction hypothesis, we get that $\operatorname{def}\left(X_{1}\right) \neq 3$. Hence, Proposition 4 implies that $\operatorname{def}(\mathcal{X})=2$. Now consider the newly emerged maximal line in X_{1}, denoted by ℓ_{1}, which is an n-node line in X not intersecting λ_{1}. By above arguments ℓ_{1} intersects ℓ_{0} at a 0_{m} node, say O_{2}.

By considering the maximal line denoted by λ_{2}, passing through another 1_{m} node $A_{2} \in \ell_{0}$, in the same way, we get in the $G C_{n-1}$ set $X_{2}:=X \backslash \lambda_{2}$ a newly emerged maximal line ℓ_{2}, which is an n-node line in X not intersecting λ_{2} at a node and intersecting ℓ_{0} at the second 0_{m} node O_{1}. In view of Proposition 6 , let us denote also
$O_{0}:=\ell_{1} \cap \ell_{2}$.
If $n \geq 6$, then there is a third 1_{m} node in ℓ_{0}. In view of Proposition 7, there is no space for the corresponding n-node line. This contradiction yields that $n=5$.

Next consider the two maximal lines, denoted by λ_{0}^{\prime} and $\lambda_{0}^{\prime \prime}$ passing through the 2_{m} node in ℓ_{0}, which we denote by T. Consider the $G C_{4}$ set $X_{0}^{\prime \prime}=X \backslash \lambda_{0}^{\prime \prime}$. As above, in view of Proposition 7, we get readily that in $X_{0}^{\prime \prime}$ we have no newly emerged maximal line. Thus in the line ℓ_{0} in $X_{0}^{\prime \prime}$ we have two 0_{m} nodes and three 1_{m} nodes. Also we have that $M\left(X_{0}^{\prime \prime}\right)=\left\{\lambda_{0}^{\prime}, \lambda_{1}, \lambda_{2}\right\}$. In each of these maximal lines we have exactly one type 1_{m} node not lying in the 5 -node lines $\ell_{0}, \ell_{1}, \ell_{2}$. Denote them by $A_{0^{\prime}}^{*}, A_{1}^{*}, A_{2}^{*}$, respectively. Now, consider the fundamental polynomial of the node $A_{0^{\prime} 1}=\lambda_{0}^{\prime} \cap \lambda_{1}$ in $X_{0}^{\prime \prime}$. It contains the factor λ_{2} then ℓ_{2} and next it contains the line passing through the three nodes $O_{2}, A_{0^{\prime}}^{*}, A_{1}^{*}$. Thus these nodes are collinear.

In the same way, by considering the fundamental polynomial of the node $A_{0^{\prime} 2}=\lambda_{0}^{\prime} \cap \lambda_{2}$, we get that the three nodes $O, A_{0^{\prime}}^{*}, A_{2}^{*}$ are collinear. Thus we get that $A_{0^{\prime}}^{*}=\ell_{O_{2} A_{1}^{*}} \cap \ell_{O A_{1}^{*}}$.

Next, by considering the $G C_{4}$ set $X_{0}^{\prime}=X \backslash \lambda_{0}^{\prime}$ in the same way as above, we get that $A_{0^{\prime \prime}}^{*}=\ell_{O_{2} A_{1}^{*}} \cap \ell_{O A_{1}^{*}}$, where $A_{0^{\prime \prime}}^{*}$ is the only node in $\lambda_{0}^{\prime \prime}$ not lying in the 5-node lines $\ell_{0}, \ell_{1}, \ell_{2}$. Thus the two nodes $A_{0^{\prime}}^{*}$ and $A_{0^{\prime \prime}}^{*}$ coincide, i.e. $A:=A_{0^{\prime}}^{*}=A_{0^{\prime \prime}}^{*}$. Therefore, the two lines λ_{0}^{\prime} and $\lambda_{0}^{\prime \prime}$ coincide, since both they pass through the two nodes A and T. This contradiction completes the proof.

Received 09.03.2021
Reviewed 18.03.2021
Accepted 31.03.2021

REFERENCES

1. Chung K.C., Yao T.H. On Lattices Admitting Unique Lagrange Interpolations. SIAM J. Numer. Anal. 14 (1977), 735-743.
https://doi.org/10.1137/0714050
2. Hakopian H., Vardanyan N. On Basic Properties of $G C_{n}$ Sets. Journal of Knot Theory and its Ramifications 29 (2020), 1-26 p. https://doi.org/10.1142/S0218216520500984
3. Carnicer J.M., Gasca M. Planar Configurations with Simple Lagrange Formula in Mathematical Methods in CAGD (eds. T. Lyche, L.L. Schumaker). Oslo (2000), 55-62. Vanderbilt University Press, Nashville, TN (2001), 55-62.
4. Carnicer J.M., Gasca M. On Chung and Yao's Geometric Characterization for Bivariate Polynomial Interpolation (eds. T. Lyche, M.L. Mazure, L.L. Schumaker). Saint Malo (2002), 21-30. Curve and Surface Design. Nashboro Press, Brentwood (2003).
5. Gasca M., Maeztu J.I. On Lagrange and Hermite Interpolation in \mathbb{R}^{k}. Numer. Math. 39 (1982), 1-14.
https://doi.org/10.1007/BF01399308
6. Busch J.R. A Note on Lagrange Interpolation in \mathbb{R}^{2}. Rev. Un. Mat. Argentina 36 (1990), 33-38.
7. Hakopian H., Jetter K., Zimmermann G. The Gasca-Maeztu Conjecture for $n=5$. Numer. Math. 127 (2014), 685-713.
https://doi.org/10.1007/s00211-013-0599-4
8. Carnicer J.M., Godés C. Configurations of Nodes with Defects Greater Than Three. J. Comput. Appl. Math. 233 (2010), 1640-1648.
https://doi.org/10.1016/j.cam.2009.02.024
9. Hakopian H., Vardanyan V. On a Correction of a Property of $G C_{n}$ Sets. Adv. Comput. Math. 45 (2019), 311-325.
https://doi.org/10.1007/s10444-018-9618-4

 คQ,

Г. К. ВАРДАНЯН

О ПРЯМЫХ С n-УЗЛАМИ В МНОЖЕСТВАХ $G C_{n}$
n-Kорректное множество узлов X на плоскости называется $G C_{n}$ множеством, если фундаментальный многочлен каждого узла является произведением линейных множителей. Прямая называется k-узловой прямой, если она проходит ровно через k узлов \mathcal{X}. Не более $n+1$ узлов в \mathcal{X} могут быть коллинеарны, и $n+1$-узловая прямая называется максимальной прямой. Известная гипотеза М. Гаска и Дж. И. Маэзту утверждает, что каждое множество $G C_{n}$ имеет максимальную прямую. До сих пор гипотеза доказана только для случаев $n \leq 5$. В данной статье мы доказываем некоторые результаты, касающиеся n-узловых прямых, предполагая, что гипотеза Гаска-Маэзту верна.

[^0]: * E-mail: gagik.vardanyan2000@gmail.com

