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M a t h e m a t i c s

ON n-NODE LINES IN GCn SETS
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An n-poised node set X in the plane is called GCn set, if the fundamental
polynomial of each node is a product of linear factors. A line is called k-node
line, if it passes through exactly k-nodes of X. At most n+ 1 nodes can be
collinear in X and an (n+1)-node line is called maximal line. The well-known
conjecture of M. Gasca and J.I. Maeztu states that every GCn set has a maximal
line. Until now the conjecture has been proved only for the cases n ≤ 5. In
this paper we prove some results concerning n-node lines, assuming that the
Gasca–Maeztu conjecture is true.
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Introduction. A set of nodes X is said to be an n-poised, if the interpolation
problem with bivariate polynomials of total degree ≤ n is unisolvent.

The sets, called GCn sets and introduced by Chang and Yao [1], are the simplest
n-poised sets. For a GCn set, as in the univariate case, the fundamental polynomial
of each node is a product of linear factors. A line is called k-node line, if it passes
through exactly k-nodes of X. At most n+1 nodes can be collinear in a GCn set and
(n+1)-node line is called maximal line. The well-known conjecture of M. Gasca and
J. I. Maeztu states that every GCn set has a maximal line. Untill now the conjecture
has been verified for the cases n ≤ 5. In this paper we consider n-node lines in
GCn sets, by assuming that the Gasca–Maeztu conjecture is true.

We bring short proofs of the properties of n-node lines presented in [2].
It is worth mentioning that the proofs in [2] are based on the classification of GCn

sets of Carnicer, Gasca and Godés, which we do not use. Also we prove new results.
In particular, we establish an interesting connection between the defect of the
node set and an n-node line there. Let us mention that we discuss the case n = 3
not covered in [2].

Let Πn be the space of bivariate polynomials of total degree at most n.
We have that N := dimΠn = (n+2)(n+1)/2.

Let X be a set of N distinct nodes (points): X= {(x1,y1), . . . ,(xN ,yN)}.
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D e f i n i t i o n 1. A set of nodes X is called n-poised if for any set of values
{c1,c2, . . . ,cN} there exists a unique polynomial p ∈ Πn, satisfying the conditions
p(xi,yi) = ci, i = 1,2, . . .N.

A polynomial p ∈ Πn is called an n-fundamental polynomial for a node
A = (xk,yk) ∈ X, where 1 ≤ k ≤ N, if p(xi,yi) = δik, i = 1, . . . ,N, where δ is the
Kronecker symbol. We denote this polynomial by p?A = p?A,X.

Maximal Lines.

D e f i n i t i o n 2. Given an n-poised set X. We say that a node A ∈ X uses a
line ` ∈Π1, if p?A = `q, where q ∈Πn−1.

The following proposition is well-known.

P r o p o s i t i o n 1. Suppose that a polynomial p ∈Πn vanishes at n+1 points
of a line `. Then we have that p = `r, where r ∈Πn−1.

This implies that at most n+ 1 nodes of an n-poised set X can be collinear.
A line passing through n+1 nodes is called a maximal line. Clearly, a maximal line λ

is used by all the nodes in X\λ .

By using Proposition 1 one can prove the following

P r o p o s i t i o n 2. (Prop. 2.1, [3]). Let X be an n-poised set. Then we
have that

1) any two maximal lines of X intersect necessarily at a node of X;
2) any three maximal lines of X cannot be concurrent;
3) X possesses at most n+2 maximal lines.

We call a node A ∈X type km node if exactly k maximal lines of X pass through
A. Thus, according to Proposition 2, there can be only type 0m,1m and 2m nodes in X.

GCn Sets and the Gasca–Maeztu Conjecture. Now let us consider a special
type of n-poised sets satisfying a geometric characterization (GC) property:

D e f i n i t i o n 3. [1]. An n-poised set X is called GCn set if the n-fundamental
polynomial of each node A ∈ X is a product of n linear factors.

Thus, GCn sets are the sets each node of which uses exactly n lines.
By using Proposition 1 one gets

P r o p o s i t i o n 3. (Prop. 2.3, [4]). Let λ be a maximal line in a GCn set X.
Then the set X\λ is a GCn−1 set.

Next we present the Gasca–Maeztu conjecture, briefly called GM conjecture:

C o n j e c t u r e. [5]. Any GCn set possesses a maximal line.

Till now, this conjecture has been confirmed for n≤ 5 (see [6, 7]).
The following important result holds:

T h e o r e m 1. (Theorem 4.1, [4]). If the GM conjecture is true for all k ≤ n,
then any GCn set possesses at least three maximal lines.
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One gets from here, in view of Corollary 2 (ii), that each node of X uses at least
one maximal line.

Denote by M(X) the set of maximal lines of the node set X.

D e f i n i t i o n 4. [3]. The “defect” of an n-correct set X is the number
def(X) := n+2−#M(X).

In view of Proposition 2 we have that 0≤ def(X)≤ n+2.

P r o p o s i t i o n 4. (Crl. 3.5, [4]). Let λ be a maximal line of a GCn set X.
Then we have that def(X\λ ) = def(X) or def(X)−1.

This equality means that #M(X\λ ) = #M(X)−1 or #M(X).

In view of Proposition 3 all #M(X)−1 maximal lines of X different from λ

belong to M(X\λ ). Thus there can be at most one newly emerged maximal line of
X\λ .

D e f i n i t i o n 5. Given an n-correct set X and a line `, X` is the subset of
nodes of X, which use the line `.

Next let us present a result of Carnicer and Godés.

T h e o r e m 2. (Th. 4.2, [8]). Let X be a GCn set. Assume that the GM
Conjecture holds for all degrees up to n. Then def(X) ∈ {0,1,2,3,n−1} .

Of course, this implies that #M(X) ∈ {3,n−1,n,n+1,n+2} .
Consider the set X0 := X\∪λ∈M(X)λ . This is the set of 0m nodes of X, which,

according to Proposition 3, forms a GCk set with k = de f (X)−2. Therefore, we get

C o r o l l a r y 1. Let X be a GCn set. Assume that the GM Conjecture holds
for all degrees up to n. Then we have that

(i) there are no 0m nodes in X if de f (X)≤ 1;
(ii) there is exactly one 0m node in X if de f (X) = 2;
(iii) there are exactly three noncollinear 0m nodes in X if de f (X) = 3.

Now let us present the following

T h e o r e m 3. (Th. 3.1 and Prop. 3.3, [9]). Assume that GM Conjecture holds
for all degrees up to n. Let X be a GCn set, n≥ 4, and ` be an n-node line.

Then one of the following two conditions holds:

1. #X` =

(
n
2

)
if and only if there is a maximal line λ0 such that λ0∩`∩X= /0.

In this case we have that X` = X\ (`∪λ0).

2. #X` =

(
n−1

2

)
if and only if there are two maximal lines λ ′,λ ′′, such that

λ ′∩λ ′′∩ ` ∈ X. In this case we have that X` = X\ (`∪λ ′∪λ ′′).

Moreover, if n = 3, then the above statement holds with one addition:
3. #X` = 0 if and only if there are exactly three maximal lines in X and they

intersect ` at three distinct nodes.
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C o r o l l a r y 2. (Crl. 4.4, [9]). Assume that GM Conjecture holds for all
degrees up to n. Let X be a GCn set with exactly three maximal lines, where n≥ 4.
Then, there are exactly three n-node lines in X, each of which intersects exactly two of
the three maximal lines at nodes of X and does not contain a 2m node.

On 3-Node Lines in GC3 Sets. Let us start by mentioning that there are no
n-node lines in a defect 0 set X, if n ≥ 3. Indeed, assume conversely that there is a
such line.

Then all the nodes in the line are 2m nodes and there are 2n different maximal
lines of X passing through those nodes. Thus, in view of Proposition 2, (iii), we have
that 2n≤ n+2 and n≤ 2.

Let us call a 3-node line ` to be type (i, j,k)m, if its three nodes are type of
im, jm and km, respectively.

Fig. 1. A defect two set, n = 3.

Case de f (X) = 1. Let us start by considering defect one GC3 set X. In each of
four maximal lines of such set we have three 2m nodes and one 1m node.

It can be checked readily that in X there can be type (2,1,1)m or (1,1,1)m

3-node lines only. Indeed, there is no type 0m node in a defect one set. Then note
that there cannot be two 2m nodes in a 3-node line, since there are four different
maximal lines passing through the two 2m nodes and containing all the nodes of X, i.e.
4+3+2+1 = 10.

It is easily seen that through each 2m node of X of defect one it may pass at most
one 3-node line. Indeed, the 3-node line passing through a 2m node passes necessarily
through the two 1m nodes in the two maximal lines not passing through the 2m node.

Case de f (X) = 2. It can be readily verified the following general constraction
of a GC3 set of defect two (see Fig. 1).

There are three 2m nodes denoted by A,B,C and a 0m node denoted by O.
The other six nodes are 1m nodes denoted by D,E,F and D′,E ′,F ′. For these latter
nodes we have the following conditions, where by `AB the line passing through A and
B is denoted. The three lines `DD′ , `EE ′ , `FF ′ are concurrent at O. Also we have that
D′,E ∈ `AB,E ′,F ∈ `BC and F ′,D ∈ `AC.

It is easy to see that the three 3-node lines concurrent at O as well as the three
2-node lines `DE ′ , `EF ′ , `FD′ , are the only used lines in X except the three maximal
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lines `AB, `BC, `AC.

In a defect two set X there can be type (0,1,1)m or (1,1,1)m 3-node lines only.
Indeed, assume conversely that a 2m node belongs to a 3-node line `0. Then we have
O ∈ `0 and no third node in X belongs to `0.

Let X be a GCn set. Denote by N(X) the set of n-node lines in X.

P r o p o s i t i o n 5. Let X be a GC3 set, de f (X) = 1 or 2. Then the following
hold:

(i) #N(X)≤ 4 or 5 if de f (X) = 1 or 2, respectively;
(ii) Two 3-node lines may not intersect at a node of X provided that they both

are type (k,1,1)m, where k = 2 or 1 if de f (X) = 1 or 2, respectively;
(iii) There are no three 3-node lines such that no two of them intersect at a node

of X;
(iv) There are no four 3-node lines concurrent at a node of X.

P ro o f. Case de f (X) = 1. For (i) note that there are exactly six 2m nodes in
X and recall that through each of them it may pass at most one 3-node line.

First consider the case when there is a type (1,1,1)m 3-node line in X. Assume
that the fourth 1m node belongs to the maximal line λ . Then clearly for the three 2m

nodes in λ there are no 3-node lines passing through them. At most three such lines
in all are possible for the remaining three 2m nodes. Thus altogether we have at most
four 3-node lines.

Fig. 2. Four 3-node lines in a defect one set, n = 3.

Now consider the case when there is no type (1,1,1)m 3-node line in X. Note
that if through each of four 1m nodes there pass at most two 3-node lines then the
number of 3-node lines in X does not exceed four, i.e., 4×2/2 = 4. Thus more than
four 3-node lines in X may be possible only if there is a 1m node (see the node Q in
Fig. 2), through which there pass three 3-node lines. Note that we are to consider
eight cases concerning the interval of a maximal line to which Q belongs. Indeed,
instead of four maximal lines we can consider only two of them since, by using the
reflection about the axis AD, the consideration for the maximal lines AC and AF as
well as DC and DF are similar. For a 1m node, say for Q, let us call neighbor nodes
the two 2m nodes (A and E in Fig. 2) between which it lies. Let us mention that in the
case if Q lies on the right hand side of F, or on on the left hand side of A, then the two
neighbors of Q are the nodes A and F.
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To prove that the number of 3-node lines in X does not exceed four it suffices
to verify that there are no 3-node lines passing through the two neighboring 2m nodes
of Q. Note that such a line, say through the neighbor E may pass only through the
two 1m nodes not belonging to the two maximal lines passing through the node E,
i.e. through the nodes Q1 and Q3. Notice that these latter nodes are in the same side
of one of the two maximal lines and in the different sides of the other maximal line
(see Fig. 2). It can be easily verified that the same thing happens in each of the above
mentioned eight cases.

The item (ii) follows from the fact that there are exactly four 1m nodes in X and
therefore two type (1,1,1)m 3-node lines intersect necessarily at a node of X. For the
same reason type (2,1,1)m and type (1,1,1)m 3-node lines intersect necessarily at a
node of X. For (iii) note that two 3-node lines not intersecting at a node, according to
(ii), pass through all four 1m nodes of X. Finally, for (iv) note that three 3-node lines
may intersect at a node, if the node is a 1m node and the lines are all type (2,1,1)m.
Then the three lines pass through three 2m nodes and the remaining three 2m nodes in
X belong to the maximal line that contains the 1m node. Note that in this case there is
no type (1,1,1)m line.

Case de f (X) = 2. For (i) recall that there are exactly three type (0,1,1)m

3-node lines intersecting at the 0m node. Also there may be at most two type (1,1,1)m

3-node lines, each of which intersects above mentioned three 3-node lines at three
different nodes. Therefore the items (ii)-(iv) also hold.

At the end of this section let us bring a general example of a defect two GC3
set with exactly five 3-node lines. This set among three used concurrent 3-node lines
has also two not used 3-node lines. Let us mention that in the corresponding example
in [9] there is only one not used line.

Fig. 3. Five 3-node lines in a defect two set, n = 3.

Let us start the construction with the two non-used 3-node lines `1 with nodes
D,E,F and `2 with nodes D′,E ′,F ′ (see Fig. 3). Let O /∈ `1∪ `2 be the 0m node of X
and the three lines `DD′ , `EE ′ , `FF ′ are concurrent at O.

Also we assume that the three lines `D′E , `FE ′ , `DF ′ , intersect at three different
nodes denoted by A := `D′E ∩ `DF ′ , B := `D′E ∩ `FE ′ , C := `DF ′ ∩ `FE ′ .

Then we readily get that the set of ten nodes A,B,C,D,E,F,D′,E ′,F ′,O is the
desired set.
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On the Intersection of Two n-Node Lines. From now on, considering a GCn

set we assume that GM Conjecture holds for all degrees up to n.
The following proposition is proved in [2], Proposition 8.1. Here we bring a

much shorter proof, where the classification of GCn sets is not used. Let us mention
that the part “Moreover” presents a new result.

P r o p o s i t i o n 6. Let X be a GCn set and `1, `2 be n-node lines, where n≥ 4.
Then we have that

`1∩ `2 ∈ X.

Moreover, in the case n = 3 two 3-node lines `1 and `2 do not intersect at a node in X

only in the following two cases:
(i) de f (X) = 1 and each line passes through one 2m and two 1m nodes, where

the two 2m nodes do not belong to the same maximal line.
ii) de f (X) = 2 and each line passes through three 1m nodes, where the six 1m

nodes are different.

P ro o f. Assume to the contrary that `1 and `2 are n-node lines not intersecting
at a node in the GCn set X, where n≥ 4. Assume also that for the line `1 there are two
maximal lines λ ′1 and λ ′′1 such that the condition (ii) of Theorem 3 holds. Therefore,
we have that

X`1 = X\ (λ ′1∪λ
′′
1 ∪ `1). (1)

Next assume that λ2 is a maximal line satisfying the condition (i) of Theorem 3,
for `2, or one of two maximal lines, satisfying the condition (ii) of Theorem 3.

Now consider a node A in the line λ2 not belonging to the lines λ ′1,λ
′′
1 , `1 and

`2. There is a such node since we have at least 5≤ n+1 nodes in λ2.
Now, A does not use the line `2, since A ∈ λ2.
On the other hand, in view of (1), A uses the line `1. Hence p∗A = `1q, where

q ∈ Πn−1. Since A /∈ `2 and `1 ∩ `2 /∈ X we get that q vanishes at n nodes in `2.
Therefore, in view of Proposition 1, we have that q = `2r, where r ∈Πn−2. Hence we
conclude that p∗A = `1`2r, i.e. the node A uses the line `2, which is a contradiction.

Note that if for one of the lines, say for `1, the condition (i) of Theorem 3,
is satisfied, i.e. there is a maximal line λ1 such that λ1 ∩ `1 /∈ X, then the above
consideration is true, where λ ′1,λ

′′
1 (and their union) is replaced by λ1. Note also that

in this case we need to have in λ2 at least 4≤ n+1 nodes.
Next let us consider the case n = 3. Assume that `1 and `2 are two 3-node lines

not intersecting at a node in a GC3 set X.
Assume first that de f (X) = 1, i.e., X has four maximal lines. Hence for any

3-node line either the condition (i) or (ii) of Theorem 3 holds.
Assume that for one of the lines, say for `1, there is a maximal line λ1 such that

the condition (i) of Theorem 3 is satisfied. Then, as it was mentioned above, the above
arguments hold true for the case n+1 = 4, i.e. n = 3. Hence in this case for both lines
the condition (ii) of Theorem 3 is satisfied. Therefore, each of the lines passes through
a 2m node.
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Now assume that de f (X) = 2, i.e. X has three maximal lines. Assume that one
of the lines, say `1, is a used line. Then it passes through the 0m node and intersects
other two used 3-node lines at O. As it was verified earlier it intersects also each of
two possible not used lines (at a 1m node) .

On the Cardinality of the Set N(X). The following proposition, is proved
in [2], Proposition 8.1. Here we bring a much shorter proof, where the classification
of GCn sets is not used.

P r o p o s i t i o n 7. Let X be a GCn set, where n≥ 4. Then we have that

#N(X)≤ 3.

Let us start with the following

L e m m a. Let X be a GCn set, where n ≥ 3. Then we have that four n-node
lines cannot be concurrent at a node in X.

P ro o f. Let us use induction on n. The case n = 3 is verified in
Proposition 5, (iv).

Now assume that Lemma is true for degrees ≤ n− 1 and let us prove it for
the degree n ≥ 4. Assume conversely that `i, i = 1, . . . ,4, are n-node lines passing
through a node O ∈ X. Then it is easily seen that O is a 0m node. Indeed, if a maximal
line λ passes through O, then we have that no two of the four lines intersect at a node
in the GCn−1 set X\λ , which contradicts Proposition 6 or Proposition 5, (iii), if n≥ 5
or n = 4, respectively.

Now consider a maximal line λ in X.
If λ intersects all four lines at nodes of X, then we have that `i, i = 1, . . . ,4,

are n− 1-node lines in the GCn−1 set X \λ concurrent at O, which contradicts the
induction hypothesis.

If λ does not intersect two of the four lines, say the first two, at nodes of X, then
we have that `i, i = 1,2, are two maximal lines in the GCn−1 set X\λ and `i, i = 3,4,
have at least n−1 nodes. Then consider the GCn−3 set X\ (λ ∪ `1∪ `2), where the
lines `i, i = 3,4, do not intersect at a node, which is a contradiction.

Finally consider the case when each maximal line of X does not intersect
only one n-node line. Assume that the maximal line λi does not intersect the line
`i, i = 1,2. Then let us consider the GCn−2 set X\ (λ1∪λ2), where `i, i = 1,2, are
two maximal lines. Next we consider the GCn−3 set X\ (λ1∪λ2∪ `1∪ `2), where the
lines `i, i = 3,4, do not intersect at a node, which is a contradiction.

P ro o f o f P ro p o s i t i o n 7 . Let us mention that the case of a GCn of defect
n−1, follows from Corollary 2. Thus, in view of Theorem 2, assume that de f (X)≤ 3.
Let us consider first

The Case n ≥ 5. Assume conversely that we have four n-node lines
`i, i = 1, . . . ,4, in X. According to Lemma , they are not concurrent at a node in X. If
only three of these lines are concurrent at a node, then, in view of
Proposition 6, we have four intersection nodes of these lines. Otherwise, if no three
lines are concurrent at a node, then we have six intersection nodes.
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Notice that each node of intersection of two n-node lines is an 0m node. Indeed,
assume conversely that two n-node lines `1 and `2 intersect at a node through which a
maximal line λ passes. Consider the GCn−1 set X\λ , n−1≥ 4. Here we have that
the n−1-node lines `1 and `2 do not intersect at a node, which is a contradiction.

Thus we have at least four 0m nodes in X, contradicting Corollary 1.
The Case n = 4. Conversely assume that we have four 4-node lines

`i, i = 1, . . . ,4, in a GC4 set X. According to Lemma they are not concurrent at
a node.

First consider the case when three of these lines, say the first three, are
concurrent at O∈X. As above, by using Corollary 5, (iii), we easily get that O∈X is a
0m node. Now, in view of Corollary 1 and the considered case de f (X) = n−1 = 3, we
get de f (X) = 2. Thus the node O is the only 0m node and we have that p?O = λ1 · · ·λ4,
where λi is a maximal line. Therefore, all the four maximal lines intersect `4 at its
four different nodes. This contradicts Theorem 3.

Now consider the case when there are no three concurrent n-node lines. Then
we have six intersection nodes.

Assume first that de f (X) = 2, i.e. there are 4 maximal lines. There is one 0m

node in X denoted by O ∈X. Choose a 4 node line, say `1, not containing the node O.
Now, through each node of `1 a maximal line passes. Thus the four maximal lines of
X pass through 4 nodes of `1, again contradicting Theorem 3.

Next assume that de f (X) = 1, i.e. there are 5 maximal lines in X. There are
ten 2m nodes in X and #X= 15. The 4-node lines have 6 intersection nodes. Hence
we conclude that one of these intersection nodes, say A := `1∩ `2, is type 2m. Assume
that the two maximal lines passing through A are λ1 and λ2. Consider the GC2 set
X \ (λ1∪λ2). Here the lines `1 and `2 are maximal lines not intersecting at a node,
which is a contradiction.

A Relation Between de f (X) and an n-Node Line.

P r o p o s i t i o n 8. Let X be a GCn set, where n≥ 4 and `0 be an n-node line
with exactly k0 nodes of type 0m. Then we have that

de f (X) = k0 +1.
Moreover, we have that any n-node line in X contains

(i) not more than one 2m node;
(ii) exactly s or s+1 1m nodes, where s = #M(X)−2≥ 1.
Furthermore, if an n-node line contains all types 0m,1m,2m nodes,

then de f (X) = 2.

P ro o f. Assume first that `0 passes through k0 ≥ 3 nodes of type 0m of X.
Then, in view of Corollary 1 we get de f (X) ≥ 4 and, according to Theorem 2, we
have de f (X) = n−1. Now, in view of Corollary 2, we get k0 = n−2.

Next, in view of Theorem 2, it remains to consider the cases k0 = 0,1,2.
Let `0 be an n-node line in a GCn set X passing through exactly k0 nodes of

type 0m. Recall that there is no n-node line in a GCn set of defect 0. Hence we have
de f (X)≥ 1, i.e. #M(X)≤ n+1.
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Now assume that k0 = 0. Let us prove that de f (X) = 1, i.e. there are
exactly n+1 maximal lines in X. Assume conversely that there are only ≤ n maximal
lines. Then each node of `0 belongs to exactly one maximal line, which contradicts
Theorem 3.

Finally, assume that k0 = 1 or 2. Let us prove that de f (X) = k0 +1, i.e. there
are exactly n+1− k0 maximal lines in X.

Corollary 1 implies, that if de f (X) ≤ k0, then there are at most k0− 1 0m

nodes in a line in X. Thus de f (X)≥ k0 +1. It remains to prove that de f (X)≤ k0 +1,
i.e. #M(X)≥ n+1− k0.

Assume conversely that there are only ≤ n− k0 maximal lines. Then each of
n− k0 nodes of type 1m or 2m of `0 belongs to exactly one maximal line, which
contradicts Theorem 3.

Now let us prove the “Moreover” part. The statement (i) follows readily
from Theorem 3. For the item (ii) note, that if `0 is an n-node line and contains
exactly k nodes of type 0m nodes, then the number of 1m or 2m nodes in ` equals
n− k = n−de f (X)+1 = #M(X)−1. Therefore (ii) follows from (i).

Finally let us turn to the “Furthermore” part. Let `0 be an n-node line in X,
containing all nodes of types 0m,1m,2m.

In view of the above considered case de f (X) = n− 1 we conclude that
1≤ de f (X)≤ 3.

Then, since there is a 0m node in X, in view of Corollary 1, we get that
de f (X) = 2, or 3. Assume conversely that de f (X) = 3, i.e. there are exactly n− 1
maximal lines in X. Let us use induction on n.

Assume first that n = 4. Then again we have the case de f (X) = 3 = n− 1.
Next assume that our assumption is not possible for (n−1)-node lines in GCn−1 sets.
Now, consider the case n ≥ 5. According to “Moreover” part, there is exactly one
type 2m node in `0. Next, in view of Theorem 3, all other n−3 maximal lines of X
intersect `0 at different nodes. Thus there are exactly n−3≥ 2 nodes of type 1m in
`0. Consequently, there are exactly two 0m nodes in `0, denoted by O1 and O2.

Then consider a maximal line denoted by λ1 passing through an 1m node
A1 ∈ `0. In the GCn−1 set X1 := X\λ1 the line `0 is an (n−1)-node line. It is easily
seen that `0 here also contains all types 0m,1m,2m, nodes. Indeed, the 2m node remains
unchanged. Now, in view of Theorem 3, the 1m nodes, except A1, remain 1m. Also
at least one of the two 0m nodes remains 0m, since there can be at most one newly
emerged maximal line in X1.

By using the induction hypothesis, we get that de f (X1) 6= 3. Hence,
Proposition 4 implies that de f (X) = 2. Now consider the newly emerged maximal
line in X1, denoted by `1, which is an n-node line in X not intersecting λ1. By above
arguments `1 intersects `0 at a 0m node, say O2.

By considering the maximal line denoted by λ2, passing through another 1m

node A2 ∈ `0, in the same way, we get in the GCn−1 set X2 :=X\λ2 a newly emerged
maximal line `2, which is an n-node line in X not intersecting λ2 at a node and
intersecting `0 at the second 0m node O1. In view of Proposition 6, let us denote also
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O0 := `1∩ `2.
If n≥ 6, then there is a third 1m node in `0. In view of Proposition 7, there is

no space for the corresponding n-node line. This contradiction yields that n = 5.
Next consider the two maximal lines, denoted by λ ′0 and λ ′′0 passing through the

2m node in `0, which we denote by T. Consider the GC4 set X′′0 =X\λ ′′0 . As above, in
view of Proposition 7, we get readily that in X′′0 we have no newly emerged maximal
line. Thus in the line `0 in X′′0 we have two 0m nodes and three 1m nodes. Also
we have that M(X′′0) = {λ ′0,λ1,λ2}. In each of these maximal lines we have exactly
one type 1m node not lying in the 5-node lines `0, `1, `2. Denote them by A∗0′ ,A

∗
1,A
∗
2,

respectively. Now, consider the fundamental polynomial of the node A0′1 = λ ′0∩λ1 in
X′′0. It contains the factor λ2 then `2 and next it contains the line passing through the
three nodes O2,A∗0′ ,A

∗
1. Thus these nodes are collinear.

In the same way, by considering the fundamental polynomial of the node
A0′2 = λ ′0∩λ2, we get that the three nodes O,A∗0′ ,A

∗
2 are collinear. Thus we get that

A∗0′ = `O2A∗1 ∩ `OA∗1 .
Next, by considering the GC4 set X′0 =X\λ ′0 in the same way as above, we get

that A∗0′′ = `O2A∗1 ∩ `OA∗1 , where A∗0′′ is the only node in λ ′′0 not lying in the 5-node lines
`0, `1, `2. Thus the two nodes A∗0′ and A∗0′′ coincide, i.e. A := A∗0′ = A∗0′′ . Therefore, the
two lines λ ′0 and λ ′′0 coincide, since both they pass through the two nodes A and T.
This contradiction completes the proof.
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n-HANGOWYCNEROV OW�I�NERI VERABERYAL GCn
BAZMOW�YOWNNEROWM

Har�ow�yan vra hangowycneri n-ko�ekt X bazmow�yown� ko�vowm � GCn

bazmow�yown, e�e yowraqan�yowr hangowyci fowndamental bazmandam�

g�ayin artadri�neri artadryal �: Ow�i�� ko�vowm � k-hangowycani, e�e
ayn ancnowm � X-i �i�t k hangowycnerov: Amena�at� n+1 hangowyc X-owm

karo� en linel hamagi�  n + 1-hangowycani ow�i�� ko�vowm � maqsimal

ow�i�: M. Gasqa  J.I. Maez�owi lav haytni varka�n pndowm �, or

cankaca� GCn bazmow�yown owni maqsimal ow�i�: Min� ay�m varka��

apacowcvel � miayn n≤ 5 depqeri hamar: Ays hodva�owm menq apacowcowm

enq oro� ardyownqner n-hangowycani ow�i�neri veraberyal, en�adrelov, or
Gasqa{Maez�owi varka�� �i�t �:

Г. К. ВАРДАНЯН

О ПРЯМЫХ С n-УЗЛАМИ В МНОЖЕСТВАХ GCn

n-Корректное множество узлов X на плоскости называется GCn-
множеством, если фундаментальный многочлен каждого узла является
произведением линейных множителей. Прямая называется k-узловой
прямой, если она проходит ровно через k узлов X. Не более n+1 узлов в X

могут быть коллинеарны, и n+1-узловая прямая называется максимальной
прямой. Известная гипотеза М. Гаска и Дж. И. Маэзту утверждает, что
каждое множество GCn имеет максимальную прямую. До сих пор гипотеза
доказана только для случаев n ≤ 5. В данной статье мы доказываем
некоторые результаты, касающиеся n-узловых прямых, предполагая, что
гипотеза Гаска–Маэзту верна.
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